1
|
Kiss MG, Cohen O, McAlpine CS, Swirski FK. Influence of sleep on physiological systems in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1284-1300. [PMID: 39528718 DOI: 10.1038/s44161-024-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sleep is a fundamental requirement of life and is integral to health. Deviation from optimal sleep associates with numerous diseases including those of the cardiovascular system. Studies, spanning animal models to humans, show that insufficient, disrupted or inconsistent sleep contribute to poor cardiovascular health by disrupting body systems. Fundamental experiments have begun to uncover the molecular and cellular links between sleep and heart health while large-scale human studies have associated sleep with cardiovascular outcomes in diverse populations. Here, we review preclinical and clinical findings that demonstrate how sleep influences the autonomic nervous, metabolic and immune systems to affect atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Yi ZY, Liang QX, Zhou Q, Yang L, Meng QR, Li J, Lin YH, Cao YP, Zhang CH, Schatten H, Qiao J, Sun QY. Maternal total sleep deprivation causes oxidative stress and mitochondrial dysfunction in oocytes associated with fertility decline in mice. PLoS One 2024; 19:e0306152. [PMID: 39413105 PMCID: PMC11482706 DOI: 10.1371/journal.pone.0306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024] Open
Abstract
Previous studies have shown sleep deprivation is increasingly reported as one of the causes of female infertility. However, how and by what relevant mechanisms it affects female fertility remains unclear. In this study, female mice underwent 72 hours of total sleep deprivation (TSD) caused by rotating wheel or 2 different controls: a stationary wheel, or forced movement at night. Even though, there was no significant difference in the number of eggs ovulated by the TSD mice compared to the control groups. Overall levels of estrogen and FSH were lower throughout the estrus cycle. A total of 42 genes showed significant differential expression in GV oocytes after TSD by RNA sequencing (RNA-Seq). These included genes were enriched in gene ontology terms of mitochondrial protein complex, oxidoreductase activity, cell division, cell cycle G1/S phase transition, as well as others. The increased concentrations of reactive oxygen species (ROS) in germinal vesicle (GV) and metaphase II (MII) oocytes from TSD mice were observed, which might be induced by impaired mitochondrial function caused by TSD. The GV oocytes displayed increased mitochondrial DNA (mtDNA) copy number and a significant transient increase in inner mitochondrial membrane potential (Δψm) from the TSD mice probably due to compensatory effect. In contrast, MII oocytes in the TSD group showed a decrease in the mtDNA copy number and a lower Δψm compared with the controls. Furthermore, abnormal distribution of mitochondria in the GV and MII oocytes was also observed in TSD mice, suggesting mitochondrial dysfunction. In addition, abnormal spindle and abnormal arrangement of chromosomes in MII oocytes were markedly increased in the TSD mice compared with the control mice. In conclusion, our results suggest that TSD significantly alters the oocyte transcriptome, contributing to oxidative stress and disrupted mitochondrial function, which then resulted in oocyte defects and impaired early embryo development in female mice.
Collapse
Affiliation(s)
- Zi-Yun Yi
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiu-Xia Liang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Lin Yang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, China
| | - Qing-Ren Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yi-hua Lin
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan-pei Cao
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chun-Hui Zhang
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Jie Qiao
- Reproductive Medical Center, Peking University Third Hospital, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
3
|
Autophagy Triggered by Oxidative Stress Appears to Be Mediated by the AKT/mTOR Signaling Pathway in the Liver of Sleep-Deprived Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6181630. [PMID: 32148653 PMCID: PMC7044486 DOI: 10.1155/2020/6181630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/22/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022]
Abstract
Sleep deprivation adversely affects the digestive system. Multiple studies have suggested sleep deprivation and oxidative stress are closely related. Autophagy can be triggered by oxidative stress as a self-defense strategy to promote survival. In this study, we investigated the effects of sleep deprivation on liver functions, oxidative stress, and concomitant hepatocyte autophagy, as well as the associated pathways. Enzymatic and nonenzymatic biochemical markers in the serum were used to assess hepatic function and damage. To evaluate the occurrence of autophagy, expression of autophagy-related proteins was tested and autophagosomes were labeled. Additionally, methane dicarboxylic aldehyde (MDA), antioxidant enzymes, and the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway were analyzed using chemical methods and a Western blot. Serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase increased in sleep-deprived rats. Total protein and albumin abundance was also abnormal. Sleep deprivation induced histopathological changes in the liver. The superoxide dismutase level decreased significantly in the liver of sleep-deprived rats. In contrast, the MDA content increased in the sleep deprivation group. Moreover, the microtubule-associated protein 1 light chain 3 beta (LC3B) II/I ratio and Beclin I content increased considerably in the sleep-deprived rats, while p62 levels decreased. Sleep deprivation apparently inhibited the AKT/mTOR signaling pathway. We conclude that sleep deprivation can induce oxidative stress and ultimately cause liver injury. Autophagy triggered by oxidative stress appears to be mediated by the AKT/mTOR pathway and plays a role in relieving oxidative stress caused by sleep deprivation.
Collapse
|
4
|
Kou T, Wang Q, Lv W, Wei B, Liu Y, Zhao S, Du X, Zou Y, Sun L, Tian H, Zhao Z, Liu Q, Dong C, Zhang G, Gao X, Yu C. Poor Sleep Quality Is Associated with a Higher Risk of Pulmonary tuberculosis in Patients with a Type 2 Diabetes Mellitus Course for More than 5 Years. Jpn J Infect Dis 2019; 72:243-249. [PMID: 30918145 DOI: 10.7883/yoken.jjid.2018.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A case-control study was conducted in Shandong from January to December 2017 to explore the relationship between sleep quality and the risk of active pulmonary tuberculosis (PTB). Seventy-nine patients with type 2 diabetes mellitus coincident with newly diagnosed pulmonary tuberculosis (DM-PTB) and 169 age, sex, and DM course frequency-matched controls (DM alone) were enrolled. Univariate and multivariable unconditional logistic regression analyses were conducted. We further conducted subgroup analyses to explore the relationship between sleep quality and PTB risk, including DM course (≤5 and >5 years), age, sex, and the presence of overweight or obesity (body mass index (BMI) > 24 kg/m2). Multivariate logistic regression demonstrated that poor sleep quality had a borderline negative association with the odds of PTB (P = 0.065). Subgroup multivariate analyses showed that poor sleep quality increased the risk of PTB to more than 3 times among patients with a DM course > 5 years (odds ratio 3.31, 95% confidence interval: 1.08-10.13; P = 0.036) after adjusting for potential confounding factors including residential area, educational level, BMI, history of contact with tuberculosis patients, smoking, alcohol consumption, physical exercise, immune status, and frequency of blood glucose monitoring. In conclusion, poor sleep quality is an independent risk factor of PTB among DM patients with a course of > 5 years, which indicates significant epidemiological implications for PTB control.
Collapse
Affiliation(s)
- Tingyan Kou
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Qiuzhen Wang
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Wenshan Lv
- Endocrinology and metabolic Department, The affiliated hospital of Qingdao University
| | - Boyang Wei
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Yufeng Liu
- Clinical Department, Qingdao Chest Hospital
| | | | - Xiuping Du
- Endocrine Department, Gaomi people's Hospital
| | - Yue Zou
- Clinical Department, Qingdao Chest Hospital
| | - Limei Sun
- Clinical Department, Qingdao Chest Hospital
| | - Hong Tian
- Clinical Department, Qingdao Chest Hospital
| | - Zhenlei Zhao
- Clinical Department, Linyi Third people's Hospital
| | - Qian Liu
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Chunjiang Dong
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Guilan Zhang
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Xiaoli Gao
- Institute of Human Nutrition, The Medical College of Qingdao University
| | - Caiting Yu
- Institute of Human Nutrition, The Medical College of Qingdao University
| |
Collapse
|
5
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 683] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
6
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
7
|
Yaacoby-Bianu K, Hakim F. Sleep Disturbance and Cancer—Animal Models. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|