1
|
Mallett G. The effect of exercise and physical activity on skeletal muscle epigenetics and metabolic adaptations. Eur J Appl Physiol 2025:10.1007/s00421-025-05704-6. [PMID: 39775881 DOI: 10.1007/s00421-025-05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT). As a result, the essential metabolic and regulatory pathways and myogenic genes associated with skeletal muscle alter in response to acute and chronic exercise. Epigenetics is the study of the relationship between genetics and the environment. Exercise evokes signaling pathways that strongly alter myofiber metabolism and skeletal muscle physiological and contractile properties. Epigenetic modifications have recently come to light as essential regulators of exercise adaptations. Research has shown various epigenetic markers linked to PA and exercise. The most critical epigenetic alterations in gene transcription identified are DNA methylation and histone modifications, which are associated with the transcriptional response of skeletal muscle to exercise and facilitate the modification to exercise. Other changes in the epigenetic markers are starting to emerge as essential processes for gene transcription, including acetylation as a new epigenetic modification, mediated changes by methylation, phosphorylation, and micro-RNA (miRNA). This review briefly introduces PA and exercise and associated benefits, provides a summary of epigenetic modifications, and a fundamental review of skeletal muscle physiology. The objectives of this review are 1) to discuss exercise-induced adaptations related to epigenetics and 2) to examine the interaction between exercise metabolism and epigenetics.
Collapse
Affiliation(s)
- Gregg Mallett
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
| |
Collapse
|
2
|
Chen S, Cao Y, Fan Z, Xu L, Pan Z, Gao Y, Wei L, Wei Q, Tian Y, Zhang X, Liu M, Ren F. Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway. Mol Med 2024; 30:246. [PMID: 39701936 DOI: 10.1186/s10020-024-01017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI. METHODS The roles of TFAM and DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 X-linked (DDX3X) in AILI were determined with TFAM overexpression and DDX3X knockdown, respectively. RESULTS TFAM expression was suppressed in AILI patients. TFAM overexpression alleviated liver necrosis and mitochondrial dysfunction. Treatment of the AILI mice model with N-acetylcysteine (NAC), a drug used to treat APAP overdose, resulted in significant TFAM activation. In vivo experiments confirmed that TFAM expression was negatively regulated by DDX3X. Mechanistic studies showed that nuclear respiratory factor 2 (NRF-2), a key regulator of TFAM, was selectively activated after DDX3X knockdown via activated peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α), in vivo and in vitro. CONCLUSIONS This study demonstrates that depressed hepatic TFAM plays a key role in the pathogenesis of AILI, which is regulated by the DDX3X-PGC1α-NRF2 signaling pathway.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Zhenzhen Pan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yao Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Linlin Wei
- The Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qiaoxin Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Mei Liu
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
3
|
Lee J, Lee SH, Kim H, Chung SW. Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model. J Orthop Res 2024; 42:2634-2645. [PMID: 39097824 DOI: 10.1002/jor.25943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all p < 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all p < 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.
Collapse
Affiliation(s)
- Jeongkun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Su Hyun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyuntae Kim
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
4
|
Niu K, Chang L, Zhang R, Jiang Y, Shen X, Lu X, Zhang S, Ma K, Zhao Z, Li M, Hou Y, Wu Y. Bazi Bushen mitigates age-related muscular atrophy by alleviating cellular senescence of skeletal muscle. J Tradit Complement Med 2024; 14:510-521. [PMID: 39262657 PMCID: PMC11385411 DOI: 10.1016/j.jtcme.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Muscular atrophy is one of the most common age-related conditions characterized by the deterioration of skeletal muscle structures and impaired functions. It is associated with cellular senescence and chronic inflammation, which impair the function of muscle stem cells. Bazi Bushen (BZBS) is a patent compound Chinese medicine that has been shown to have anti-aging effects in various animal models. In this study, we investigated the effects and mechanisms of BZBS on muscular atrophy in naturally aged mice. Experimental procedure A muscular atrophy model of naturally aged mice (18 months) was employed with administration of BZBS (2 g/kg/d, 1 g/kg/d) and nicotinamide mononucleotide (NMN, 200 mg/kg/d). After six months of drug administration, muscle weight loss, muscle function and muscle histopathology were measured to evaluate the therapeutic effect of BZBS. The expression of cellular senescence, inflammatory and satellite cell-related factors were used to assess the effects of BZBS in inhibiting cellular senescence, reducing inflammation and improving muscle atrophy. Results and conclusion Compared with age matched natural aging mice, we found that BZBS improved muscle strength, mass, and morphology by reducing senescent cells, inflammatory cytokines, and intermyofiber fibrosis in aged muscle tissues. We also found that BZBS prevented the reduction of Pax7 positive stem cells and stimulated the activation and differentiation into myocytes. Our results suggest that BZBS might be a promising intervention in senile muscular atrophy.
Collapse
Affiliation(s)
- Kunxu Niu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Runtao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaogang Shen
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Lu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Shixiong Zhang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kun Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Zhiqin Zhao
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yiling Wu
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| |
Collapse
|
5
|
Damasceno SCS, Rocha EF, Nobre SAM, Caldas BV, Mendes MF, Esteves EA, de Paula AMB, Santos SHS, Andrade JMO. Diet Based on Pereskia aculeata Miller Flour Increases Muscle Volume and Modulates the Expression of Myokines in Mice Subjected to Resistance Training. J Med Food 2024; 27:749-757. [PMID: 39017636 DOI: 10.1089/jmf.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The study aimed to evaluate the effects of Pereskia aculeata Miller (ora-pro-nobis [OPN]) flour on body and biochemical parameters, thermogenic activity, and molecular expression of markers in the muscle tissue of mice subjected to resistance training (RT). Twelve mice were randomly assigned to two groups (n=6 animals/group): G1: control (Control) fed a standard diet + RT and G2: experimental (OPN) fed a diet based on OPN flour + RT. The RT consisted of a 6-week program using a vertical ladder combined with a fixed weight attached to the animal. Several parameters were measured, including assessment of body composition, biochemical markers, thermogenic activity, and molecular (mRNA expression of interleukin (IL)-6, fibronectin type III domain-containing protein 5 (FNDC5), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). The OPN group exhibited a decrease in body weight and visceral adiposity, higher energy expenditure, and lipid oxidation rate. In addition, it was observed an increase in muscle volume and in mRNA expression levels of IL-6, FNDC5, PGC-1α, and TFAM. These findings suggest that OPN flour could be a nutritional option to enhance performance in RT.
Collapse
Affiliation(s)
| | | | | | - Bruna Viana Caldas
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
| | - Mateus Ferreira Mendes
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | - Elizabethe Adriana Esteves
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Graduate Program in Food and Health, Federal University of Minas Gerais, Brazil
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Food and Health, Federal University of Minas Gerais, Brazil
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Food and Health, Federal University of Minas Gerais, Brazil
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
- Departmente of Physiopathology, State University of Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
6
|
Song Y, Wang W, Wang B, Shi Q. The Protective Mechanism of TFAM on Mitochondrial DNA and its Role in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:4381-4390. [PMID: 38087167 DOI: 10.1007/s12035-023-03841-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Mitochondrial transcription factor A (TFAM) is a mitochondrial protein encoded by nuclear genes and transported from the cytoplasm to the mitochondria. TFAM is essential for the maintenance, expression, and delivery of mitochondrial DNA (mtDNA) and can regulate the replication and transcription of mtDNA. TFAM is associated with the formation of mtDNA nucleomimetic structures, mtDNA repair, and mtDNA stability. However, the mechanism by which TFAM protects mtDNA is still being studied. This review provides a summary of the protective mechanism of TFAM on mtDNA including the discrete regulatory effects of TFAM acetylation and phosphorylation on mtDNA, the regulation of Ca2+ levels by TFAM to activate transcription in mitochondria, and the increased binding of TFAM to mtDNA damage hot spots. This review also discusses the association between TFAM and some neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
- Hangzhou King's Bio-Pharmaceutical Technology Co., Ltd., Hangzhou, 310007, Zhejiang, China.
| | - Wenjun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Beibei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Qiwen Shi
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| |
Collapse
|
7
|
Shi Z, Fang T, Fan B, Ma J, Wang J, Feng S. Analysis and experimental validation of genes and their transcription factor prediction in contused rat spinal cord at the intermediate phase. Aging (Albany NY) 2024; 16:9990-10003. [PMID: 38862258 PMCID: PMC11210225 DOI: 10.18632/aging.205912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/16/2024] [Indexed: 06/13/2024]
Abstract
The intermediate phase of spinal cord injury (SCI) serves as an important target site for therapeutic mediation of SCI. However, there is a lack of insight into the mechanism of the intermediate phase of SCI. The present study aimed to investigate the molecular mechanism and the feasible treatment targets in the intermediate phase of SCI. We downloaded GSE2599 from GEO and identified 416 significant differentially expressed genes (DEGs), including 206 downregulated and 210 upregulated DEGs. Further enrichment analysis of DEGs revealed that many important biological processes and signal pathways were triggered in the injured spinal cord. Furthermore, a protein-protein interaction (PPI) network was constructed and the top 10 high-degree hub nodes were identified. Furthermore, 27 predicted transcription factors (TFs) and 136 predicted motifs were identified. We then selected insulin-like growth factor 1 (IGF1) and its predicted transcription factor, transcription factor A, mitochondrial (TFAM) for further investigation. We speculated and preliminarily confirmed that TFAM may regulate gene transcription of IGF1 and effected alterations in the function recovery of rats after SCI. These findings together provide novel information that may improve our understanding of the pathophysiological processes during the intermediate phase of SCI.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Tuo Fang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Baoyou Fan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jun Ma
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jianhao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, P.R. China
| |
Collapse
|
8
|
Kim H, Lee S, Jeong C, Han Y, Lee M. RORα-GABP-TFAM axis alleviates myosteatosis with fatty atrophy through reinforcement of mitochondrial capacity. J Cachexia Sarcopenia Muscle 2024; 15:615-630. [PMID: 38272857 PMCID: PMC10995264 DOI: 10.1002/jcsm.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Fat infiltration in muscle, called 'myosteatosis', precedes muscle atrophy, which subsequently results in sarcopenia. Myosteatosis is frequently observed in patients with nonalcoholic fatty liver disease (NAFLD). We have previously reported that retinoic acid receptor-related orphan receptor-α (RORα) regulates mitochondrial dynamics and mitophagy in hepatocytes, resulting in an alleviation of NAFLD. In this study, we aimed to investigate the role of RORα in skeletal muscle and to understand molecular mechanisms by which RORα controls mitochondrial capacity, using an NAFLD-associated myosteatosis mouse model. METHODS To establish a myosteatosis model, 7-week-old C57BL/6N mice were fed with high-fat diet (HFD). After 15 weeks of diet feeding, an adeno-associated virus vector encoding RORα (AAV-RORα) was injected to gastrocnemius (GA) muscles, or after 7 weeks of HFD feeding, JC1-40, an RORα agonistic ligand, was administered daily at a dose of 5 mg/kg/day by oral gavage for 5 weeks. Histological, biochemical and molecular analyses in various in vivo and in vitro experiments were performed. RESULTS First, the number of oxidative MyHC2a fibres with intensive lipid infiltration increased by 3.8-fold in the red region of the GA of mice with myosteatosis (P < 0.001). RORα was expressed around MyHC2a fibres, and its level increased by 2.7-fold after HFD feeding (P < 0.01). Second, treatment of RORα ligands in C2C12 myoblasts, such as cholesterol sulfate and JC1-40, enhanced the number of oxidative fibres stained for MyHC1 and MyHC2a by two-fold to four-fold (P < 0.01), while it reduced the lipid levels in MyHC2a fibres by 20-50% (P < 0.001) in the presence of palmitic acids. Third, mitochondrial membrane potential (P < 0.01) and total area of mitochondria (P < 0.01) were enhanced by treatment of these ligands. Chromatin immunoprecipitation analysis showed that RORα bound the promoter of GA-binding protein α subunit gene that led to activation of mitochondrial transcription factor A (TFAM) in C2C12 myoblasts (P < 0.05). Finally, intramuscular transduction of AAV-RORα alleviated the HFD-induced myosteatosis with fatty atrophy; lipid contents in MyHC2a fibres decreased by 48% (P < 0.001), whereas the number of MyHC2b fibre increased by 22% (P < 0.001). Also, administration of JC1-40 improved the signs of myosteatosis in that it decreased the level of adipose differentiation-related protein (P < 0.01) but increased mitochondrial proteins such as cytochrome c oxidase 4 and TFAM in GA muscle (P < 0.01). CONCLUSIONS RORα plays a versatile role in regulating the quantity of mitochondria and the oxidative capacity, ultimately leading to an improvement in myosteatosis symptoms.
Collapse
Affiliation(s)
- Hyeon‐Ji Kim
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
| | - Sang‐Heon Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Cheolhee Jeong
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Yong‐Hyun Han
- College of PharmacyKangwon National UniversityChuncheonSouth Korea
| | - Mi‐Ock Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
- Bio‐MAX InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
9
|
Yang ZJ, Guo CL, Gong YX, Li L, Wang LL, Liu HM, Cao JM, Lu ZY. Dapagliflozin Suppresses Isoprenaline-Induced Cardiac Hypertrophy Through Inhibition of Mitochondrial Fission. J Cardiovasc Pharmacol 2024; 83:193-204. [PMID: 38030139 PMCID: PMC10842662 DOI: 10.1097/fjc.0000000000001518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
ABSTRACT Dapagliflozin (DAPA) is a novel oral hypoglycemic agent, and there is increasing evidence that DAPA has a protective effect against cardiovascular disease. The study aimed to investigate how DAPA inhibits cardiac hypertrophy and explore its potential mechanisms. By continuously infusing isoprenaline (ISO) for 2 weeks using a subcutaneous osmotic pump, a cardiac hypertrophic model was established in male C57BL/6 mice. On day 14 after surgery, echocardiography showed that left ventricle mass (LV mass), interventricular septum, left ventricle posterior wall diastole, and left ventricular posterior wall systole were significantly increased, and ejection fraction was decreased compared with control mice. Masson and Wheat Germ Agglutinin staining indicated enhanced myocardial fibrosis and cell morphology compared with control mice. Importantly, these effects were inhibited by DAPA treatment in ISO-induced mice. In H9c2 cells and neonatal rat cardiomyocytes, we found that mitochondrial fragmentation and mitochondrial oxidative stress were significantly augmented in the ISO-induced group. However, DAPA rescued the cardiac hypertrophy in ISO-induced H9c2 cells and neonatal rat cardiomyocytes. Mechanistically, we found that DAPA restored the PIM1 activity in ISO-induced H9c2 cells and subsequent increase in dynamin-associated protein 1 (Drp1) phosphorylation at S616 and decrease in Drp1 phosphorylation at S637 in ISO-induced cells. We found that DAPA mitigated ISO-induced cardiac hypertrophy by suppressing Drp1-mediated mitochondrial fission in a PIM1-dependent fashion.
Collapse
Affiliation(s)
- Zhuo-Jing Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Nursing, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chun-Ling Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu-Xin Gong
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Long Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Li-li Wang
- Department of Nursing, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Hui-Min Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; and
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Yang Lu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Ersoy U, Kanakis I, Alameddine M, Pedraza-Vazquez G, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction accelerates skeletal muscle loss and reduces muscle fibre size by impairing proteostasis and mitochondrial homeostasis. Redox Biol 2024; 69:102980. [PMID: 38064763 PMCID: PMC10755587 DOI: 10.1016/j.redox.2023.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/01/2024] Open
Abstract
The early life environment significantly affects the development of age-related skeletal muscle disorders. However, the long-term effects of lactational protein restriction on skeletal muscle are still poorly defined. Our study revealed that male mice nursed by dams fed a low-protein diet during lactation exhibited skeletal muscle growth restriction. This was associated with a dysregulation in the expression levels of genes related to the ribosome, mitochondria and skeletal muscle development. We reported that lifelong protein restriction accelerated loss of type-IIa muscle fibres and reduced muscle fibre size by impairing mitochondrial homeostasis and proteostasis at 18 months of age. However, feeding a normal-protein diet following lactational protein restriction prevented accelerated fibre loss and fibre size reduction in later life. These findings provide novel insight into the mechanisms by which lactational protein restriction hinders skeletal muscle growth and includes evidence that lifelong dietary protein restriction accelerated skeletal muscle loss in later life.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Gibran Pedraza-Vazquez
- Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Mandy Jayne Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
11
|
Wang C, Huang Y, Gong Y, Wu M, Jiang L, Dang B. Tetramethylpyrazine protects mitochondrial function by up-regulation of TFAM and inhibition of neuronal apoptosis in a rat model of surgical brain injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:352-359. [PMID: 38333750 PMCID: PMC10849202 DOI: 10.22038/ijbms.2023.72947.15862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 02/10/2024]
Abstract
Objectives Mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage and mutation is widely accepted as one of the pathological processes of neurodegenerative diseases. As an mtDNA binding protein, mitochondrial transcription factor A (TFAM) maintains the integrity of mtDNA through transcription, replication, nucleoid formation, damage perception, and DNA repair. In recent works, the overexpression of TFAM increased the mtDNA copy count, promoted mitochondrial function, and improved the neurological dysfunction of neurodegenerative diseases. The role of TFAM in neurodegenerative diseases has been well explained. However, the role of TFAM after surgical brain injury (SBI) has not been studied. In this work, we aimed to study the role of TFAM in the brain after SBI and its mechanism of action. Materials and Methods One hour after the occurrence of SBI, tetramethylpyrazine (TMP) was injected into the abdominal cavity of rats, and the brain was collected 48 hr later for testing. The evaluation included neurobehavioral function test, brain water content measurement, immunofluorescence, western blot, TUNEL staining, FJC staining, ROS test, and ATP test. Results After SBI, the content of TFAM on the ipsilateral side increased and reached a peak at about 48 hr. After intraperitoneal injection of TMP in rats, 48 hr after SBI, the concentration of TFAM, Bcl-2, and adenosine triphosphate (ATP) increased; the content of caspase-3, reactive oxygen species (ROS), and cerebral edema decreased; and the nerve function significantly improved. Conclusion TMP inhibited cell apoptosis after SBI in rats by up-regulating TFAM and protecting brain tissues.
Collapse
Affiliation(s)
- Chaoyu Wang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- These authors contributed eqully to this work
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- These authors contributed eqully to this work
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lei Jiang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
12
|
Liao T, Xiong L, Wang X, Yang S, Liang Z. Mitochondrial disorders as a mechanism for the development of obese Sarcopenia. Diabetol Metab Syndr 2023; 15:224. [PMID: 37926816 PMCID: PMC10626707 DOI: 10.1186/s13098-023-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Obese sarcopenia is a severe and prevalent disease in an aging society. Compared to sarcopenia alone, the development and advanced stage of obesity sarcopenia is faster and more severe. Diagnosis of the cause of adipocyte accumulation is also more complicated; however, no effective pharmacological treatment is available. Chronic inflammation is one of the causes of sarcopenia, and obese patients, who are more likely to develop chronic inflammation, may simultaneously suffer from obesity and sarcopenia. Mitochondrial metabolic disorders have been more easily observed in the tissue cells of patients with obesity and sarcopenia. Mitochondrial metabolic disorders include abnormal mtDNA release, mitochondrial autophagy, and dynamic mitochondrial disorders. Therefore, this review will reveal the mechanism of development of obesity myasthenia gravis from the perspective of mitochondria and discuss the currently existing small-molecule drugs.
Collapse
Affiliation(s)
- Tingfeng Liao
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lijiao Xiong
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaohao Wang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Shu Yang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China.
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Zhen Liang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China.
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Wang Z, Li Q, Yang H, Zhang D, Zhang Y, Wang J, Liu J. 5-Heptadecylresorcinol Ameliorates Obesity-Associated Skeletal Muscle Mitochondrial Dysfunction through SIRT3-Mediated Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16032-16042. [PMID: 37862266 DOI: 10.1021/acs.jafc.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Skeletal muscle dysfunction caused by obesity is characterized by the decline in mitochondrial content and function. 5-Heptadecylresorcinol (AR-C17) is a specific bioactive component derived from whole wheat and rye, which has been evidenced to improve obesity-associated skeletal muscle dysregulation. However, the mechanism underlying its protective activity requires further exploration. Herein, we found that AR-C17 (5, 10, and 20 μM) intervention reversed PA-induced (0.5 mM) reduction in mitochondrial content, mitochondrial membrane potential, and mitochondrial energy metabolism in C2C12 cells. Meanwhile, AR-C17 evidently alleviated PA-mediated myotube mitochondrial dysfunction via elevating mitochondria autophagy flux and upregulating the expression level of autophagy-related protein, while this effect was abolished by an autophagy inhibitor (3-MA). Further analysis showed that SIRT3-FOXO3A-PINK-Parkin-mediated mitophagy was involved in the modulation of myocyte mitochondrial dysfunction by AR-C17. In addition, AR-C17 administration (30 and 150 mg/kg/day) significantly improved high-fat-diet-induced mitochondrial dysregulation in mice skeletal muscle tissue via SIRT3-dependent mitophagy. Our findings indicate that skeletal muscle cells are responsive to AR-C17, which improves myogenesis and mitophagy in vitro and in vivo.
Collapse
Affiliation(s)
- Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University (BTBU), 100048 Beijing, China
| | - Qing Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haihong Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dandan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yiman Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University (BTBU), 100048 Beijing, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University (BTBU), 100048 Beijing, China
| |
Collapse
|
14
|
Yeo HS, Lim JY. Effects of exercise prehabilitation on muscle atrophy and contractile properties in hindlimb-unloaded rats. Muscle Nerve 2023; 68:886-893. [PMID: 37772693 DOI: 10.1002/mus.27979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION/AIMS Effective strategies for rapid recovery after surgery are needed. Therefore, we investigated the effects of exercise prehabilitation (EP) and hindlimb unloading (HU) on muscle loss and contractility. METHODS Twenty-two Sprague-Dawley rats (12 wk old) were divided into normal control (NCON, n = 5), hindlimb unloading control (HCON, n = 10), and exercise prehabilitation followed by hindlimb unloading (Ex-preH, n = 7) groups. Ex-PreH performed exercise training for 14 days before hindlimb unloading for 14 days. Body composition was evaluated, along with muscle strength and function. The soleus (SOL) and extensor digitorum longus (EDL) muscle contractile properties were analyzed at the whole-muscle level. The titin concentration and myosin heavy chain (MHC) type composition were analyzed. RESULTS There were no effects of Ex-preH on total mass, lean mass, or muscle weight. Physical function was significantly higher in the Ex-preH group than in the HCON group (39.5° vs. 35.7°). The SOL twitch force (19.6 vs. 7.1 mN/m2 ) and specific force (107.3 vs. 61.2 mN/m2 ) were greater in Ex-preH group than in HCON group. EDL shortening velocity was higher in Ex-preH group than in HCON group (13.2 vs. 5.0 FL/s). The SOL full-length titin level was higher in Ex-preH group than in HCON group. DISCUSSION Exercise prehabilitation did not prevent muscle mass loss followed by muscle wasting, although it minimized the reduction of physical function. Therefore, exercise prehabilitation should be considered for rapid functional recovery after disuse due to surgery and injuries.
Collapse
Affiliation(s)
- Hyo-Seong Yeo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Seoul National University Institute on Aging, Seoul, South Korea
- Aging & Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
15
|
Si M, Yu R, Lin H, Li F, Jung S, Thomas SS, Danesh FS, Wang Y, Peng H, Hu Z. ROCK1 activates mitochondrial fission leading to oxidative stress and muscle atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563469. [PMID: 37905139 PMCID: PMC10614981 DOI: 10.1101/2023.10.22.563469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chronic kidney disease (CKD) is often associated with protein-energy wasting (PEW), which is characterized by a reduction in muscle mass and strength. Although mitochondrial dysfunction and oxidative stress have been implicated to play a role in the pathogenesis of muscle wasting, the underlying mechanisms remain unclear. In this study, we used transcriptomics, metabolomics analyses and mouse gene manipulating approaches to investigate the effects of mitochondrial plasticity and oxidative stress on muscle wasting in mouse CKD models. Our results showed that the expression of oxidative stress response genes was increased, and that of oxidative phosphorylation genes was decreased in the muscles of mice with CKD. This was accompanied by reduced oxygen consumption rates, decreased levels of mitochondrial electron transport chain proteins, and increased cellular oxidative damage. Excessive mitochondrial fission was also observed, and we found that the activation of ROCK1 was responsible for this process. Inducible expression of muscle-specific constitutively active ROCK1(mROCK1ca)exacerbated mitochondrial fragmentation and muscle wasting in CKD mice. Conversely, ROCK1 depletion (ROCK1-/-) alleviated these phenomena. Mechanistically, ROCK1 activation promoted the recruitment of Drp1 to mitochondria, thereby facilitating fragmentation. Notably, the pharmacological inhibition of ROCK1 mitigated muscle wasting by suppressing mitochondrial fission and oxidative stress. Our findings demonstrate that ROCK1 participates in CKD-induced muscle wasting by promoting mitochondrial fission and oxidative stress, and pharmacological suppression of ROCK1 could be a therapeutic strategy for combating muscle wasting in CKD conditions.
Collapse
Affiliation(s)
- Meijun Si
- Nephrology Division, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences; Guangzhou, China
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rizhen Yu
- Nephrology Division, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Hangzhou, Zhejiang, China
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hongchun Lin
- Nephrology Division, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Feng Li
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sungyun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandhya S. Thomas
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Farhard S Danesh
- Nephrology Division, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hui Peng
- Nephrology Division, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Yin L, Qi S, Zhu Z. Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism. Front Endocrinol (Lausanne) 2023; 14:1267170. [PMID: 37900128 PMCID: PMC10613047 DOI: 10.3389/fendo.2023.1267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
An increasing number of studies have reported that androgens and androgen receptors (AR) play important roles in the regulation of glucose and lipid metabolism. Impaired glucose and lipid metabolism and the development of obesity-related diseases have been found in either hypogonadal men or male rodents with androgen deficiency. Exogenous androgens supplementation can effectively improve these disorders, but the mechanism by which androgens regulate glucose and lipid metabolism has not been fully elucidated. Mitochondria, as powerhouses within cells, are key organelles influencing glucose and lipid metabolism. Evidence from both pre-clinical and clinical studies has reported that the regulation of glucose and lipid metabolism by androgens/AR is strongly associated with the impact on the content and function of mitochondria, but few studies have systematically reported the regulatory effect and the molecular mechanism. In this paper, we review the effect of androgens/AR on mitochondrial content, morphology, quality control system, and function, with emphases on molecular mechanisms. Additionally, we discuss the sex-dimorphic effect of androgens on mitochondria. This paper provides a theoretical basis for shedding light on the influence and mechanism of androgens on glucose and lipid metabolism and highlights the mitochondria-based explanation for the sex-dimorphic effect of androgens on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuo Qi
- School of Sport Health, Shandong Sport University, Jinan, China
| | - Zhiqiang Zhu
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Lee HJ, Choi HJ, Lee SA, Baek DH, Heo JB, Song GY, Lee W. Myogenesis Effects of RGX365 to Improve Skeletal Muscle Atrophy. Nutrients 2023; 15:4307. [PMID: 37836590 PMCID: PMC10574276 DOI: 10.3390/nu15194307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Age-related skeletal muscle atrophy and weakness not only reduce the quality of life of those afflicted, but also worsen the prognosis of underlying diseases. We evaluated the effect of RGX365, a protopanaxatriol-type rare ginsenoside mixture, on improving skeletal muscle atrophy. We investigated the myogenic effect of RGX365 on mouse myoblast cells (C2C12) and dexamethasone (10 µM)-induced atrophy of differentiated C2C12. RGX365-treated myotube diameters and myosin heavy chain (MyHC) expression levels were analyzed using immunofluorescence. We evaluated the myogenic effects of RGX365 in aging sarcopenic mice. RGX365 increased myoblast differentiation and MyHC expression, and attenuated the muscle atrophy-inducing F-box (Atrogin-1) and muscle RING finger 1 (MuRF1) expression. Notably, one month of oral administration of RGX365 to 23-month-old sarcopenic mice improved muscle fiber size and the expression of skeletal muscle regeneration-associated molecules. In conclusion, rare ginsenosides, agonists of steroid receptors, can ameliorate skeletal muscle atrophy during long-term administration.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Sang-Ah Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbruecken, Germany
| | - Dong Hyuk Baek
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
18
|
Kuang G, Halimitabrizi M, Edziah AA, Salowe R, O’Brien JM. The potential for mitochondrial therapeutics in the treatment of primary open-angle glaucoma: a review. Front Physiol 2023; 14:1184060. [PMID: 37601627 PMCID: PMC10433652 DOI: 10.3389/fphys.2023.1184060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells' mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
Collapse
Affiliation(s)
- Grace Kuang
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Mina Halimitabrizi
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy-Ann Edziah
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Salowe
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Joan M. O’Brien
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
de Lira CAB, Minozzo FC, Costa TG, de Oliveira VN, Costa GCT, Oliveira ASB, Quadros AAJ, Vancini RL, Sousa BS, da Silva AC, Andrade MS. Functional exercise capacity in maximal and submaximal activities of individuals with polio sequelae. Eur J Appl Physiol 2023; 123:711-719. [PMID: 36401622 DOI: 10.1007/s00421-022-05095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Poliomyelitis is an infectious disease that can cause total paralysis. Furthermore, poliomyelitis survivors may develop new signs and symptoms, including muscular weakness and fatigue, years after the acute phase of the disease, i.e., post-polio syndrome (PPS). Thus, the objective was to compare the functional exercise capacity during maximal and submaximal exercises among individuals with polio sequelae (without PPS diagnosis), PPS, and a control group. METHODS Thirty individuals participated in three groups: a control group (CG, n = 10); a group of individuals with polio sequelae but without PPS diagnosis (PG, n = 10); and a PPS group (PPSG, n = 10). All participants underwent (i) a cardiopulmonary exercise test to determine their maximal oxygen uptake ([Formula: see text]) and (ii) a series of functional field tests (i.e., walking test, sit-to-stand test, and stair climbing test). RESULTS [Formula: see text]O2max was 30% lower in PPSG than in CG and PG. Regarding functional field tests, walking and stair climbing test performances were significantly different among all groups. The PPSG sit-to-stand performance was lower than CG. CONCLUSION The sequelae of paralytic poliomyelitis impair functional exercise capacity obtained from maximal and submaximal tests, especially in patients with PPS. Furthermore, submaximal variables appear to be more negatively impacted than maximal variables.
Collapse
Affiliation(s)
- Claudio Andre Barbosa de Lira
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil.
| | | | - Thalles Guilarducci Costa
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | - Vinnycius Nunes de Oliveira
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | - Gustavo Conti Teixeira Costa
- Faculty of Physical Education and Dance, Federal University of Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia, Brazil
| | | | | | - Rodrigo Luiz Vancini
- Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | |
Collapse
|
20
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
21
|
Miyachi R, Morita Y, Yamazaki T. Division of loading time in reloading the disused atrophic soleus muscle induces proximal muscle injury. J Phys Ther Sci 2023; 35:193-198. [PMID: 36866019 PMCID: PMC9974327 DOI: 10.1589/jpts.35.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 03/04/2023] Open
Abstract
[Purpose] This study aimed to compare the effects of loading time division in reloading atrophied muscles in different muscle long-axis regions. [Materials and Methods] We divided 8-week-old male Wistar rats into control (CON), 14-day hindlimb suspension (HS), 7-day hindlimb suspension followed by 60-min reloading for 7 consecutive days (WO), and 7-day hindlimb suspension followed by 60-min reloading on two separate occasions for 7 days (WT) groups. After the experimental period, muscle fibre cross-sectional area and necrotic fibre/central nuclei fibre ratio were measured in the soleus muscle's proximal, middle, and distal regions. [Results] The necrotic fibre/central nuclei fibre ratio was higher in the WT group than in the other groups in the proximal region. Proximal muscle fibre cross-sectional area was higher in the CON group than in the other groups. In the middle region, only HS group had muscle fibre cross-sectional area lower than the CON group. Similarly, muscle fibre cross-sectional area of the HS group was lower than the CON and WT groups in the distal region. [Conclusion] When reloading atrophied muscles, dividing the loading time can inhibit atrophy in the distal region but induce muscle injury in the proximal region.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku
University: 1-1 Taiyogaoka, Kanazawa, Ishikawa 920-1180, Japan,Corresponding author. Ryo Miyachi (E-mail: )
| | - Yui Morita
- Department of Rehabilitation, Tokyo Medical and Dental
University Hospital, Japan
| | - Toshiaki Yamazaki
- Faculty of Health Sciences, Institute of Medical,
Pharmaceutical and Health Sciences, Kanazawa University, Japan
| |
Collapse
|
22
|
Wang Y, Li P, Cao Y, Liu C, Wang J, Wu W. Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underlying Mechanisms and Physical Therapy Perspectives. Aging Dis 2023; 14:33-45. [PMID: 36818563 PMCID: PMC9937710 DOI: 10.14336/ad.2022.0603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle dysfunction (SMD) is a prevalent extrapulmonary complication and a significant independent prognostic factor in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction is one of the core factors that damage structure and function in COPD skeletal muscle and is closely related to smoke exposure, hypoxia, and insufficient physical activity. The currently known phenotypes of mitochondrial dysfunction are reduced mitochondrial content and biogenesis, impaired activity of mitochondrial respiratory chain complexes, and increased mitochondrial reactive oxygen species production. Significant progress has been made in research on physical therapy (PT), which has broad prospects for treating the abovementioned potential mitochondrial-function changes in COPD skeletal muscle. In terms of specific types of PT, exercise therapy can directly act on mitochondria and improve COPD SMD by increasing mitochondrial density, regulating mitochondrial biogenesis, upregulating mitochondrial respiratory function, and reducing oxidative stress. However, improvements in mitochondrial-dysfunction phenotype in COPD skeletal muscle due to different exercise strategies are not entirely consistent. Therefore, based on the elucidation of this phenotype, in this study, we analyzed the effect of exercise on mitochondrial dysfunction in COPD skeletal muscle and the regulatory mechanism thereof. We also provided a theoretical basis for exercise programs to rehabilitate this condition.
Collapse
Affiliation(s)
- Yingqi Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Chanjing Liu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Jie Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| |
Collapse
|
23
|
Elevated Expression of ADAM10 in Skeletal Muscle of Patients with Idiopathic Inflammatory Myopathies Could Be Responsible for FNDC5/Irisin Unbalance. Int J Mol Sci 2023; 24:ijms24032469. [PMID: 36768791 PMCID: PMC9917005 DOI: 10.3390/ijms24032469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Dermatomyositis (DM) and immune-mediated necrotizing myopathy (IMNM) are two rare diseases belonging to the group of idiopathic inflammatory myopathies (IIM). Muscle involvement in DM is characterized by perifascicular atrophy and poor myofiber necrosis, while IMNM is characterized by myofiber necrosis with scarce inflammatory infiltrates. Muscle biopsies and laboratory tests are helpful in diagnosis, but currently, few biomarkers of disease activity and progression are available. In this context, we conducted a cohort study of forty-one DM and IMNM patients, aged 40-70 years. In comparison with control subjects, in the muscle biopsies of these patients, there was a lower expression of FNDC5, the precursor of irisin, a myokine playing a key role in musculoskeletal metabolism. Expectedly, the muscle cross-sectional areas of these patients were reduced, while, surprisingly, serum irisin levels were higher than in CTRL, as were mRNA levels of ADAM10, a metalloproteinase recently shown to be the cleavage agent for FNDC5. We hypothesize that elevated expression of ADAM10 in the skeletal muscle of DM and IMNM patients might be responsible for the discrepancy between irisin levels and FNDC5 expression. Future studies will be needed to understand the mechanisms underlying exacerbated FNDC5 cleavage and muscle irisin resistance in these inflammatory myopathies.
Collapse
|
24
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
25
|
Stochastic survival of the densest and mitochondrial DNA clonal expansion in aging. Proc Natl Acad Sci U S A 2022; 119:e2122073119. [PMID: 36442091 PMCID: PMC9894218 DOI: 10.1073/pnas.2122073119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The expansion of mitochondrial DNA molecules with deletions has been associated with aging, particularly in skeletal muscle fibers; its mechanism has remained unclear for three decades. Previous accounts have assigned a replicative advantage (RA) to mitochondrial DNA containing deletion mutations, but there is also evidence that cells can selectively remove defective mitochondrial DNA. Here we present a spatial model that, without an RA, but instead through a combination of enhanced density for mutants and noise, produces a wave of expanding mutations with speeds consistent with experimental data. A standard model based on RA yields waves that are too fast. We provide a formula that predicts that wave speed drops with copy number, consonant with experimental data. Crucially, our model yields traveling waves of mutants even if mutants are preferentially eliminated. Additionally, we predict that mutant loads observed in single-cell experiments can be produced by de novo mutation rates that are drastically lower than previously thought for neutral models. Given this exemplar of how spatial structure (multiple linked mtDNA populations), noise, and density affect muscle cell aging, we introduce the mechanism of stochastic survival of the densest (SSD), an alternative to RA, that may underpin other evolutionary phenomena.
Collapse
|
26
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
27
|
Lim AY, Chen YC, Hsu CC, Fu TC, Wang JS. The Effects of Exercise Training on Mitochondrial Function in Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:12559. [PMID: 36293409 PMCID: PMC9603958 DOI: 10.3390/ijms232012559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria dysfunction is implicated in the pathogenesis of cardiovascular diseases (CVD). Exercise training is potentially an effective non-pharmacological strategy to restore mitochondrial health in CVD. However, how exercise modifies mitochondrial functionality is inconclusive. We conducted a systematic review using the PubMed; Scopus and Web of Science databases to investigate the effect of exercise training on mitochondrial function in CVD patients. Search terms included “mitochondria”, “exercise”, “aerobic capacity”, and “cardiovascular disease” in varied combination. The search yielded 821 records for abstract screening, of which 20 articles met the inclusion criteria. We summarized the effect of exercise training on mitochondrial morphology, biogenesis, dynamics, oxidative capacity, antioxidant capacity, and quality. Amongst these parameters, only oxidative capacity was suitable for a meta-analysis, which demonstrated a significant effect size of exercise in improving mitochondrial oxidative capacity in CVD patients (SMD = 4.78; CI = 2.99 to 6.57; p < 0.01), but with high heterogeneity among the studies (I2 = 75%, p = 0.003). Notably, aerobic exercise enhanced succinate-involved oxidative phosphorylation. The majority of the results suggested that exercise improves morphology and biogenesis, whereas findings on dynamic, antioxidant capacity, and quality, were inadequate or inconclusive. A further randomized controlled trial is clearly required to explain how exercise modifies the pathway of mitochondrial quantity and quality in CVD patients.
Collapse
Affiliation(s)
- Ai Yin Lim
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Ching Chen
- Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Chin Hsu
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tieh-Cheng Fu
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 333, Taiwan
- Heart Failure Center, Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
28
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
29
|
Yang X, Xue P, Liu Z, Li W, Li C, Chen Z. SESN2 prevents the slow-to-fast myofiber shift in denervated atrophy via AMPK/PGC-1α pathway. Cell Mol Biol Lett 2022; 27:66. [PMID: 35945510 PMCID: PMC9361691 DOI: 10.1186/s11658-022-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sestrin2 (SESN2), a stress-inducible protein, has been reported to protect against denervated muscle atrophy through unfolded protein response and mitophagy, while its role in myofiber type transition remains unknown. METHODS A mouse sciatic nerve transection model was created to evaluate denervated muscle atrophy. Myofiber type transition was confirmed by western blot, fluorescence staining, ATP quantification, and metabolic enzyme activity analysis. Adeno-associated virus (AAV) was adopted to achieve SESN2 knockdown and overexpression in gastrocnemius. AMPK/PGC-1α signal was detected by western blot and activated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). C2C12 myotubes with rotenone treatment were adopted for in vitro experiments. RESULTS SESN2 was found to be upregulated in denervated skeletal muscles and rotenone-treated C2C12 cells. Knockdown of SESN2 aggravated muscle atrophy and accelerated myofiber type transition from slow-twitch to fast-twitch. Moreover, AMPK/PGC-1α signaling was proven to be activated by SESN2 after denervation, which further induced the expression of hypoxia-inducible factor HIF2α. Exogenous activation of AMPK/PGC-1α signaling could counteract the addition of slow-to-fast myofiber shift caused by SESN2 knockdown and lead to the retainment of muscle mass after denervation. CONCLUSION Collectively, the present study indicates that SESN2 prevents myofiber type transition from slow-twitch to fast-twitch and preserves muscle mass in denervated atrophy via AMPK/PGC-1α signaling. These findings contribute to a better understanding of the pathogenesis of muscle atrophy and provide novel insights into the role of SESN2 in myofiber type transition.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pingping Xue
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenyu Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Chuyan Li
- Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
30
|
Ibrahim Z, Ramachandran G, El-Huneidi W, Elmoselhi A, Qaisar R. Suppression of endoplasmic reticulum stress prevents disuse muscle atrophy in a mouse model of microgravity. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:45-52. [PMID: 35940689 DOI: 10.1016/j.lssr.2022.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hind-limb unloaded (HLU) mouse model exhibits skeletal muscle atrophy and weakness mimicking the conditions such as prolonged spaceflight. However, the molecular mechanisms and interventions of muscle loss during muscle unloading remain elusive. Dysfunction of protein folding by ednoplasmic reticulum (ER), a condition called ER stress, is implicated in diseases of various cell types, but its contribution to skeletal muscle detriment remains elusive. In this study, we investigated the contribution of ER stress to muscle atrophy. METHODS Sixteen-week-old c57BL/6j male mice were grouped into ground-based controls and HLU group, which was subsequently injected with injected saline (HLU-sal.) or pan-ER stress inhibitor 4-PBA (100mg/kg/d; HLU- 4PBA) via intraperitoneal injections for three weeks. RESULTS Three weeks of HLU resulted in reduction in muscle mass and strength, which were restored with 4PBA injections. We also report myofibers atrophy, myonuclear apoptosis, and aterations in the expressions of genes associated with ER stress, apoptosis, and calcium dysregulation. These findings were reversed by 4-PBA treatment. CONCLUSION Altogether, our results indicate that ER stress contributes to muscle atrophy in HLU conditions. We suggest that blocking ER stress may be an effective pharmacological therapy to prevent muscle weakness and atrophy during prolonged muscle unloading.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Gopika Ramachandran
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Waseem El-Huneidi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Adel Elmoselhi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE
| | - Rizwan Qaisar
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
31
|
Kim HJ, Kwon O. Aerobic exercise prevents apoptosis in skeletal muscles of high-fat-fed ovariectomized rats. Phys Act Nutr 2022; 26:1-7. [PMID: 35982623 PMCID: PMC9395254 DOI: 10.20463/pan.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Aging and obesity are associated with skeletal muscle atrophy-related signaling pathways, including apoptosis. Many studies have shown that menopause is associated with an increased risk of skeletal muscle atrophy. There is an increasing need to develop strategies that will improve the risk of skeletal muscle atrophy through exercise interventions. However, the effect of exercise on estrogen deficiency-induced apoptosis in skeletal muscles is poorly understood. Therefore, we examined the effects of low-intensity exercise on ovariectomy (OVX)-induced apoptosis of the soleus and plantaris muscles. [Methods] The ovaries of all female Sprague-Dawley rats aged 8 weeks, were surgically removed to induce postmenopausal status. The rats were randomly divided into three treatment groups: (1) NSV (normal-diet-sedentary-OVX); (2) HSV (high-fat-diet-sedentary-OVX); and (3) HEV (high-fat-diet-exercise-OVX). The exercise groups were regularly running for 30-40 min/day at 15-18 m/minute, five times/week, for eight weeks. [Results] The mRNA levels of Bax significantly decreased in the exercised soleus muscle, and caspase-3 decreased in the plantaris. The skeletal muscle TUNEL-positive apoptotic cells in the high-fat-diet-sedentary OVX rats improved in the treadmill exercise group. Additionally, nuclear caspase-3 levels decreased in the treadmill exercise group compared to those in both sedentary groups. These results suggest that low-intensity treadmill exercise prevents skeletal muscle apoptosis in HFD-fed OVX rats. [Conclusion] Induction of HFD in estrogen-deficient mice increased apoptosis in skeletal muscle, which could also be alleviated by low-intensity aerobic exercise. These results may indicate a crucial therapeutic effect of treadmill exercise in preventing skeletal muscle apoptosis in menopausal or post-menopausal women.
Collapse
|
32
|
Liu B, Chen D, Wang Y, Li Q, Zhu L, Yang Z, Chen X. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol 2022; 149:106246. [PMID: 35738524 DOI: 10.1016/j.biocel.2022.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Muscular dysplasia is a common muscle disease, but its pathological mechanism is still unclear. Adipose is originally identified as a highly conservative and widely expressed anti-obesity gene, and our previous study has reported that Adipose is also a positive regulator of myogenesis. Considering the vital role of during muscle development, this study was to demonstrate a potential relationship between Sirtuin1 and Adipose and clarified the mechanism by which Adipose regulated muscle development. Our results showed that the muscle fiber cross-sectional area and myosin heavy chain protein level were significantly reduced in Sirtuin1+/- mice. Moreover, the longitudinal section of muscle fibers was obviously irregular. Sirtuin1 knockdown significantly reduced the expression levels of Adipose and its upstream transcriptional regulator Kruppel like factor 15 and notably inhibited the AMP-activated protein kinase α-peroxisome proliferator-activated receptor gamma coactivator 1α signaling pathway in skeletal muscle. However, Adipose over-expression activated this signaling pathway and promoted mitochondrial biosynthesis in C2C12 myoblasts. Adipose over-expression also enhanced glucose absorption of C2C12 cells, suggesting the increased needs for cells for metabolic substrates. In C2C12 cells with hydrogen peroxide treatment, Adipose over-expression repressed hydrogen peroxide-elicited apoptosis and mitochondrial loss, while Sirtuin1-specific inhibitor dramatically weakened these roles of Adipose. Taken together, our findings reveal that Adipose rescues the adverse effects of Sirtuin1 deficiency or hydrogen peroxide on muscle development by activating the AMP-activated protein kinase α- peroxisome proliferator-activated receptor gamma coactivator 1α pathway to promote mitochondria synthesis, which provides theoretical basis for developing new therapeutic targets against some muscle diseases.
Collapse
Affiliation(s)
- Bingbing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinjin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiqing Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Lim WC, Shin EJ, Lim TG, Choi JW, Song NE, Hong HD, Cho CW, Rhee YK. Ginsenoside Rf Enhances Exercise Endurance by Stimulating Myoblast Differentiation and Mitochondrial Biogenesis in C2C12 Myotubes and ICR Mice. Foods 2022; 11:foods11121709. [PMID: 35741909 PMCID: PMC9222511 DOI: 10.3390/foods11121709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Ginsenoside Rf (G-Rf) is a saponin of the protopanaxatriol family and a bioactive component of Korean ginseng. Several ginsenosides are known to have a positive effect on exercise endurance, but there is not yet a report on that of G-Rf. Forced swimming tests were performed on G-Rf-treated mice to evaluate the effect of G-Rf on exercise endurance. Subsequently, the expression of markers related to myoblast differentiation and mitochondrial biogenesis in murine skeletal C2C12 myotubes and tibialis anterior muscle tissue was determined using Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining to elucidate the mechanism of action of G-Rf. The swimming duration of the experimental animal was increased by oral gavage administration of G-Rf. Moreover, G-Rf significantly upregulated the myoblast differentiation markers, mitochondrial biogenesis markers, and its upstream regulators. In particular, the mitochondrial biogenesis marker increased by G-Rf was decreased by each inhibitor of the upstream regulators. G-Rf enhances exercise endurance in mice, which may be mediated by myoblast differentiation and enhanced mitochondrial biogenesis through AMPK and p38 MAPK signaling pathways, suggesting that it increases energy production to satisfy additional needs of exercising muscle cells. Therefore, G-Rf is an active ingredient in Korean ginseng responsible for improving exercise performance.
Collapse
Affiliation(s)
- Won-Chul Lim
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Eun Ju Shin
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Tae-Gyu Lim
- Division of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea;
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Nho-Eul Song
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
- Correspondence: (C.-W.C.); (Y.K.R.); Tel.: +82-63-219-9312 (C.-W.C.); +82-63-219-9319 (Y.K.R.)
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
- Correspondence: (C.-W.C.); (Y.K.R.); Tel.: +82-63-219-9312 (C.-W.C.); +82-63-219-9319 (Y.K.R.)
| |
Collapse
|
34
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as an Exercise-Induced Gene: Towards Novel Molecular Therapies for Immobilization-Related Muscle Atrophy in Elderly Patients. Genes (Basel) 2022; 13:1014. [PMID: 35741776 PMCID: PMC9223229 DOI: 10.3390/genes13061014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Long periods of immobilization, among other etiologies, would result is muscle atrophy. Exercise is the best approach to reverse this atrophy. However, the limited or the non-ability to perform the required physical activity for such patients and the limited pharmacological options make developing novel therapeutic approaches a necessity. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced gene. Whereas the knock-out of this gene leads to a phenotype that mimics number of the ageing-induced and sarcopenia-related changes including muscle atrophy, overexpressing SPARC in mice or adding it to muscular cell culture produces similar effects as exercise including enhanced muscle mass, strength and metabolism. Therefore, this piece of writing aims to provide evidence supporting the potential use of SPARC/SPARC as a molecular therapy for muscle atrophy in the context of immobilization especially for elderly patients.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
35
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
36
|
Hong H, He H, Lin X, Hayuehashi T, Xu J, Zhang J, Xu Y, Tong T, Lu Y, Zhou Z. Cadmium exposure suppresses insulin secretion through mtROS-mediated mitochondrial dysfunction and inflammatory response in pancreatic beta cells. J Trace Elem Med Biol 2022; 71:126952. [PMID: 35183883 DOI: 10.1016/j.jtemb.2022.126952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cadmium (Cd) exposure is a worldwide environmental threat to the public health and participates in the pathogenesis of multiple diseases. Epidemiologic research have established a direct relation between Cd exposure and diabetes development in humans. Although pancreatic β-cell dysfunction has been considered as the major culprit in the pathogenesis of diabetes, there is a paucity of studies to elucidate the molecular mechanism of Cd toxicity on β-cells. METHODS To unveil the toxic effect and its underlying mechanism of Cd exposure on β-cells, we used an in vitro MIN6 cell model of environment-relevant Cd exposure to elucidate the crucial role of mtROS-mediated mitochondrial dysfunction and inflammatory response in suppression of pancreatic β-cell insulin secretion. RESULTS We uncovered that Cd treatment suppresses cell viability and induces insulin secretion dysfunction in a dose-dependent manner. Moreover, Cd exposure elicits the inflammatory response, as indicated by increased IL-1β, IL-6 and TNF-α expressions. Significant elevations of intracellular ROS and mitochondrial ROS levels were detected as early as 3 h after Cd treatment. In mitochondrial function analysis, we demonstrated that Cd treatment induced mitochondrial dysfunction and disorder of mitochondrial fission indicated by the significant decline in ATP production, the marked depolarization of mitochondrial membrane potential, the decrease in mtDNA copy numbers, the suppressions of mitochondrial transcription factor A (Tfam) and mitochondrial fission-related gene Drp1 expressions. Pretreatment with TEMPO, a specific mitochondrial ROS (mtROS) scavenger, efficiently antagonizes Cd cytotoxicity, which is indicated by attenuating Cd-induced mitochondrial dysfunction, suppressing IL-1β, IL-6 and TNF-α expressions, ameliorating insulin production dysfunction and preserving cell viability in MIN6 cells. CONCLUSION Our study demonstrates that Cd exposure induces an inflammatory response through mtROS-mediated mitochondrial dysfunction. Antagonism of mtROS production might be an effective strategy to prevent pancreatic toxicity from environment-relevant Cd exposure.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tali Hayuehashi
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China.
| | - Zhou Zhou
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Liu QQ, Xie WQ, Luo YX, Li YD, Huang WH, Wu YX, Li YS. High Intensity Interval Training: A Potential Method for Treating Sarcopenia. Clin Interv Aging 2022; 17:857-872. [PMID: 35656091 PMCID: PMC9152764 DOI: 10.2147/cia.s366245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia, an age-related disease characterized by loss of muscle strength and muscle mass, has attracted the attention of medical experts due to its severe morbidity, low living quality, high expenditure of health care, and mortality. Traditionally, persistent aerobic exercise (PAE) is considered as a valid way to attenuate muscular atrophy. However, nowadays, high intensity interval training (HIIT) has emerged as a more effective and time-efficient method to replace traditional exercise modes. HIIT displays comprehensive effects on exercise capacity and skeletal muscle metabolism, and it provides a time-out for the recovery of cardiopulmonary and muscular functions without causing severe adverse effects. Studies demonstrated that compared with PAE, HIIT showed similar or even higher effects in improving muscle strength, enhancing physical performances and increasing muscle mass of elder people. Therefore, HIIT might become a promising way to cope with the age-related loss of muscle mass and muscle function. However, it is worth mentioning that no study of HIIT was conducted directly on sarcopenia patients, which is attributed to the suspicious of safety and validity. In this review, we will assess the effects of different training parameters on muscle and sarcopenia, summarize previous papers which compared the effects of HIIT and PAE in improving muscle quality and function, and evaluate the potential of HIIT to replace the status of PAE in treating old people with muscle atrophy and low modality; and point out drawbacks of temporary experiments. Our aim is to discuss the feasibility of HIIT to treat sarcopenia and provide a reference for clinical scientists who want to utilize HIIT as a new way to cope with sarcopenia.
Collapse
Affiliation(s)
- Qian-Qi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yu-Xuan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Yi-Dan Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Wei-Hong Huang
- Mobile Health Ministry of Education - China Mobile Joint Laboratory, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yu-Xiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, Hubei, 430056, People’s Republic of China
- Yu-Xiang Wu, Department of Health and Kinesiology, School of Physical Education, Jianghan University, No. 8, Sanjiaohu Road, Wuhan, Hubei, 430056, People’s Republic of China, Tel +86 27 8422 6921, Email
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Yu-Sheng Li, Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People’s Republic of China, Tel +86-13975889696, Email
| |
Collapse
|
38
|
Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23094483. [PMID: 35562874 PMCID: PMC9105402 DOI: 10.3390/ijms23094483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α protein (PGC-1α), and different types of fibers of the psoas muscle from mdx mice (DMD experimental model). Wildtype and mdx mice were randomly divided into sedentary and trained groups (n = 24). Trained animals were subjected to 37 sessions of low-intensity running on a motorized treadmill. Subsequently, the psoas muscle was excised and analyzed by immunofluorescence for dystrophin, satellite cells, myosin heavy chain (MHC), and PGC-1α content. The minimal Feret’s diameters of the fibers were measured, and light microscopy was applied to observe general morphological features of the muscles. The training (37 sessions) improved morphological features in muscles from mdx mice and caused an increase in the number of quiescent/activated satellite cells. It also increased the content of PGC-1α in the mdx group. We concluded that low-intensity aerobic exercise (37 sessions) was able to reverse deleterious changes determined by DMD.
Collapse
|
39
|
Orhan C, Gencoglu H, Tuzcu M, Sahin N, Ojalvo S, Sylla S, Komorowski JR, Sahin K. Maca could improve endurance capacity possibly by increasing mitochondrial biogenesis pathways and antioxidant response in exercised rats. J Food Biochem 2022; 46:e14159. [DOI: 10.1111/jfbc.14159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine Firat University Elazig Turkey
| | - Hasan Gencoglu
- Biology Department, Science Faculty Firat University Elazig Turkey
| | - Mehmet Tuzcu
- Biology Department, Science Faculty Firat University Elazig Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine Firat University Elazig Turkey
| | | | - Sarah Sylla
- Research and Development, Nutrition21 LLC Harrison New York USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine Firat University Elazig Turkey
| |
Collapse
|
40
|
Guan X, Yan Q, Wang D, Du G, Zhou J. IGF-1 Signaling Regulates Mitochondrial Remodeling during Myogenic Differentiation. Nutrients 2022; 14:nu14061249. [PMID: 35334906 PMCID: PMC8954578 DOI: 10.3390/nu14061249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is essential for locomotion, metabolism, and protein homeostasis in the body. Mitochondria have been considered as a key target to regulate metabolic switch during myo-genesis. The insulin-like growth factor 1 (IGF-1) signaling through the AKT/mammalian target of rapamycin (mTOR) pathway has a well-documented role in promoting muscle growth and regeneration, but whether it is involved in mitochondrial behavior and function remains un-examined. In this study, we investigated the effect of IGF-1 signaling on mitochondrial remodeling during myogenic differentiation. The results demonstrated that IGF-1 signaling stimulated mitochondrial biogenesis by increasing mitochondrial DNA copy number and expression of genes such as Cox7a1, Tfb1m, and Ppargc1a. Moreover, the level of mitophagy in differentiating myoblasts elevated significantly with IGF-1 treatment, which contributed to mitochondrial turnover. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) were identified as two key mediators of IGF-1-induced mitochondrial biogenesis and mitophagy, respectively. In addition, IGF-1 supplementation could alleviate impaired myoblast differentiation caused by mitophagy deficiency, as evidenced by increased fusion index and myosin heavy chain expression. These findings provide new insights into the role of IGF-1 signaling and suggest that IGF-1 signaling can serve as a target for the research and development of drugs and nutrients that support muscle growth and regeneration.
Collapse
Affiliation(s)
- Xin Guan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiyang Yan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
| | - Dandan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (X.G.); (Q.Y.); (D.W.); (G.D.)
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-8591-4371
| |
Collapse
|
41
|
Effect of C60 Fullerene on Recovery of Muscle Soleus in Rats after Atrophy Induced by Achillotenotomy. Life (Basel) 2022; 12:life12030332. [PMID: 35330083 PMCID: PMC8949448 DOI: 10.3390/life12030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.
Collapse
|
42
|
Kim S, Kim K, Park J, Jun W. Curcuma longa L. Water Extract Enhances Endurance Exercise Capacity by Promoting Intramuscular Mitochondrial Biogenesis in Mice. J Med Food 2022; 25:138-145. [PMID: 35148192 DOI: 10.1089/jmf.2021.k.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of Curcuma longa L. extract on endurance exercise capacity (EEC). EEC is the ability to exercise continuously and recover quickly, even when tired. C. longa contains antioxidants that contribute beneficial effects on the body. We separated groups of nonexercise (CON), exercise control (Ex-CON), branched-chain amino acid (BCAA) intake, and C. longa water extract (CLW) intake (Ex-CLW). EEC increased on the 28th day of BCAA and CLW intake. Both treatment groups exhibited decreased lactate levels with increased levels of nonesterified fatty acids and muscular glycogen compared with the Ex-CON group. Also, the Ex-CLW group possessed higher intramuscular antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) than the Ex-CON group. The expression of PGC-1α, NRF, and Tfam, which are factors related to mitochondrial biogenesis, increased in the Ex-CLW group. Results suggest that CLW intake elevated EEC by increasing intramuscular mitochondrial biogenesis through suppressing the accumulation of fatigue substances and increasing fat consumption, and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Shintae Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Kyungmi Kim
- Department of Biofood Analysis, Korea Bio Polytechnic, Ganggyung, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
43
|
Li H, Chen X, Huang Z, Chen D, Yu B, Luo Y, He J, Zheng P, Yu J, Chen H. Ellagic acid enhances muscle endurance by affecting the muscle fiber type, mitochondrial biogenesis and function. Food Funct 2022; 13:1506-1518. [PMID: 35060577 DOI: 10.1039/d1fo02318g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ellagic acid (EA) is a natural polyphenolic compound, which shows various effects, such as anti-inflammatory and antioxidant effects and inhibition of platelet aggregation. In this study, we investigated the effect of EA on muscle endurance and explored its possible underlying mechanism. Our data showed that EA significantly improved muscle endurance in mice. EA increased the protein level of slow myosin heavy chain (MyHC) I and decreased the protein level of fast MyHC. We also found that the AMP-activated protein kinase (AMPK) signaling pathway was activated by EA. Finally, our data indicated that EA could increase mitochondrial biogenesis and function by increasing the content of mitochondrial DNA (mtDNA), the concentration of ATP, the activities of succinodehydrogenase (SDH) and malate dehydrogenase (MDH), and the mRNA levels of ATP synthase (ATP5G), mtDNA transcription factor A (TFAM), mitochondrial transcription factor b1 (Tfb1m) and citrate synthase (Cs) in mice and C2C12 myotubes. These results proved that EA could enhance muscle endurance via transforming the muscle fiber type and improving mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, P. R. China
| |
Collapse
|
44
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
45
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:biomedicines10010126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| |
Collapse
|
46
|
Candidate Genes of Regulation of Skeletal Muscle Energy Metabolism in Athletes. Genes (Basel) 2021; 12:genes12111682. [PMID: 34828287 PMCID: PMC8625318 DOI: 10.3390/genes12111682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
All biological processes associated with high sports performance, including energy metabolism, are influenced by genetics. DNA sequence variations in such genes, single nucleotide variants (SNVs), could confer genetic advantages that can be exploited to achieve optimal athletic performance. Ignorance of these features can create genetic “barriers” that prevent professional athletes from pursuing a career in sports. Predictive Genomic DNA Profiling reveals single nucleotide variations (SNV) that may be associated with better suitability for endurance, strength and speed sports. (1) Background: To conduct a research on candidate genes associated with regulation of skeletal muscle energy metabolism among athletes. (2) Methods: We have searched for articles in SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed, e-LIBRARY databases for the period of 2010–2020 using keywords and keywords combinations; (4) Conclusions: Identification of genetic markers associated with the regulation of energy metabolism in skeletal muscles can help sports physicians and coaches develop personalized strategies for selecting children, teenagers and young adults for endurance, strength and speed sports (such as jogging, middle or long distance runs). However, the multifactorial aspect of sport performances, including impact of genetics, epigenetics, environment (training and etc.), is important for personalized strategies for selecting of athletes. This approach could improve sports performance and reduce the risk of sports injuries to the musculoskeletal system.
Collapse
|
47
|
Rezaee Z, Marandi SM, Esfarjani F. Age-related biochemical dysfunction in 6-OHDA model rats subject to induced- endurance exercise. Arch Gerontol Geriatr 2021; 98:104554. [PMID: 34688079 DOI: 10.1016/j.archger.2021.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/30/2023]
Abstract
Exercise can alleviate the disorders considered as the normal consequences of aging. Whether or not the treadmill endurance training affects the biochemical markers in the Parkinson's disease model rats after the 6-hydroxydopamine (6-OHDA) injection is assessed in this article. The experimental groups of N=8 rats consist of 1) Saline and Young sedentary (S-Young); 2) Saline and Old sedentary (S-Old); 3) Young and 6-OHDA without exercise (Y); 4) Young and 6-OHDA with exercise (YE); 5) Old and 6-OHDA without exercise (O); and 6) Old and 6-OHDA with exercise (OE). An 8 μg of 6-OHDA is injected into the right MFB. The rotation due to apomorphine, weight variation, and some biochemical expression are measured in the rats' striatum. Exposure to 6-OHDA: increase weight loss by (%8) and rotation by (%90), reduce the protein levels of Bdnf by (30%), Th by (43%), and Tfam by (24%), in aging rats (P<0.05). The P53 level rose after the injection compared with the same Saline group (Old rats: 27% and Young rats: 14%), the highest in the O group. The findings indicate that endurance exercise amends the mitochondrial parameters and the apomorphine-induced rotation impairments in the presence of 6-OHDA injection. These positive effects of treadmill running in unilateral 6-OHDA lesioned rat model are age-dependent and are more significant in younger rats.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Sayed Mohammad Marandi
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Fahimeh Esfarjani
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
48
|
Wang Z, Xia T, Jin S, Liu X, Pan R, Yan M, Chang Q. Chronic Restraint Stress-Induced Muscle Atrophy Leads to Fatigue in Mice by Inhibiting the AMPK Signaling Pathway. Biomedicines 2021; 9:biomedicines9101321. [PMID: 34680438 PMCID: PMC8533263 DOI: 10.3390/biomedicines9101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, an increasing number of people are suffering from fatigue due to the state of their lifestyles, such as sedentary work in a relatively small space, irregular sleep patterns, or the lack of movement and exercise. The present study was designed to simulate the occurrence of fatigue in the above populations through a chronic restraint stress (CRS) model, and to reveal its dynamic processes and potential underlying molecular mechanisms. ICR mice were subjected to 8 h of restraint stress each day for 5, 10, or 15 days. It was found that the weight-loaded swimming performance, grip strength, and locomotor activity of the mice all decreased under CRS treatment, and that up to 15 days of CRS induced notable fatigue. Gastrocnemius muscle atrophy and some abnormal biochemical parameters related to fatigue under CRS were observed. Furthermore, transcriptome data showed that the changes in muscle cell metabolism and mitochondrial dysfunction were associated with the AMPK signaling pathway in CRS-treated mice. Western blotting analysis of the AMPK/PGC-1α signaling pathway revealed that CRS could decrease mitochondrial biogenesis and reduce the numbers of type I skeletal muscle fibers in the gastrocnemius of mice. CRS could also block the protective mitophagic flux to inhibit the abnormal clearance of damaged mitochondria. Our study suggests a critical link between muscle atrophy and CRS-induced fatigue in mice, suggesting that the pharmacological promotion of muscle and mitochondrial function can be used as a treatment for stress-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingzhu Yan
- Correspondence: (M.Y.); (Q.C.); Tel.: +86-10-5783-3468 (M.Y.); +86-10-5783-3224 (Q.C.)
| | - Qi Chang
- Correspondence: (M.Y.); (Q.C.); Tel.: +86-10-5783-3468 (M.Y.); +86-10-5783-3224 (Q.C.)
| |
Collapse
|
49
|
Abstract
Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
50
|
Genchi GG, Degl’Innocenti A, Martinelli C, Battaglini M, De Pasquale D, Prato M, Marras S, Pugliese G, Drago F, Mariani A, Balsamo M, Zolesi V, Ciofani G. Cerium Oxide Nanoparticle Administration to Skeletal Muscle Cells under Different Gravity and Radiation Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40200-40213. [PMID: 34410709 PMCID: PMC8414486 DOI: 10.1021/acsami.1c14176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 05/28/2023]
Abstract
For their remarkable biomimetic properties implying strong modulation of the intracellular and extracellular redox state, cerium oxide nanoparticles (also termed "nanoceria") were hypothesized to exert a protective role against oxidative stress associated with the harsh environmental conditions of spaceflight, characterized by microgravity and highly energetic radiations. Nanoparticles were supplied to proliferating C2C12 mouse skeletal muscle cells under different gravity and radiation levels. Biological responses were thus investigated at a transcriptional level by RNA next-generation sequencing. Lists of differentially expressed genes (DEGs) were generated and intersected by taking into consideration relevant comparisons, which led to the observation of prevailing effects of the space environment over those induced by nanoceria. In space, upregulation of transcription was slightly preponderant over downregulation, implying involvement of intracellular compartments, with the majority of DEGs consistently over- or under-expressed whenever present. Cosmic radiations regulated a higher number of DEGs than microgravity and seemed to promote increased cellular catabolism. By taking into consideration space physical stressors alone, microgravity and cosmic radiations appeared to have opposite effects at transcriptional levels despite partial sharing of molecular pathways. Interestingly, gene ontology denoted some enrichment in terms related to vision, when only effects of radiations were assessed. The transcriptional regulation of mitochondrial uncoupling protein 2 in space-relevant samples suggests perturbation of the intracellular redox homeostasis, and leaves open opportunities for antioxidant treatment for oxidative stress reduction in harsh environments.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Andrea Degl’Innocenti
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Chiara Martinelli
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Matteo Battaglini
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Daniele De Pasquale
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Scuola
Superiore Sant’Anna, The BioRobotics
Institute, Viale Rinaldo
Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Mirko Prato
- Istituto
Italiano di Tecnologia, Materials Characterization, Via Morego 30, 16163 Genova, Italy
| | - Sergio Marras
- Istituto
Italiano di Tecnologia, Materials Characterization, Via Morego 30, 16163 Genova, Italy
| | - Giammarino Pugliese
- Istituto
Italiano di Tecnologia, Nanochemistry, Via Morego 30, 16163 Genova, Italy
| | - Filippo Drago
- Istituto
Italiano di Tecnologia, Nanochemistry, Via Morego 30, 16163 Genova, Italy
| | | | - Michele Balsamo
- Kayser
Italia S.r.l., Via di
Popogna 501, 57128 Livorno, Italy
| | - Valfredo Zolesi
- Kayser
Italia S.r.l., Via di
Popogna 501, 57128 Livorno, Italy
| | - Gianni Ciofani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| |
Collapse
|