1
|
Han G, Bai X, Li F, Huang L, Hao Y, Li W, Bu P, Zhang H, Liu X, Xie J. Long non-coding RNA HANR modulates the glucose metabolism of triple negative breast cancer via stabilizing hexokinase 2. Heliyon 2024; 10:e23827. [PMID: 38192790 PMCID: PMC10772629 DOI: 10.1016/j.heliyon.2023.e23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Increasing evidence has demonstrated the oncogenic roles of long non-coding RNA (lncRNA) hepatocellular carcinoma (HCC)-associated long non-coding RNA (HANR) in the development of HCC and lung cancer; however, the involvement of HANR in triple-negative breast cancer (TNBC) remains largely unknown. Our results demonstrated the significant overexpression of HANR in TNBC tissues and cells. Higher HANR levels significantly correlated with the poorer phenotypes in patients with TNBC. HANR down-regulation inhibited the proliferation and cell cycle progression and increased the apoptosis of TNBC cells. Mechanistically, immunoprecipitation-mass spectrometry revealed hexokinase II (HK2) as a direct binding target of HANR. HANR binds to and stabilizes HK2 through the proteasomal pathway. Consistent with the important role of HK2 in cancer cells, HANR depletion represses the glucose absorbance and lactate secretion, thus reprogramming the metabolism of TNBC cells. An in vivo xenograft model also demonstrated that HANR promoted tumor growth and aerobic glycolysis. This study reveals the role of HANR in modulating the glycolysis in TNBC cells by regulating HK2 stability, suggesting that HANR is a potential drug target for TNBC.
Collapse
Affiliation(s)
- Guohui Han
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiangdong Bai
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Li
- Department of Biochemistry and Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Huang
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yating Hao
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weina Li
- Department of radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huanhu Zhang
- Gastroenterology Department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinxin Liu
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
2
|
Hussain MS, Majami AA, Ali H, Gupta G, Almalki WH, Alzarea SI, Kazmi I, Syed RU, Khalifa NE, Bin Break MK, Khan R, Altwaijry N, Sharma R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol Res Pract 2023; 251:154850. [PMID: 37839358 DOI: 10.1016/j.prp.2023.154850] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
MEG3, a significant long non-coding RNA (lncRNA), substantially functions in diverse biological processes, particularly breast cancer (BC) development. Within the imprinting DLK-MEG3 region on human chromosomal region 14q32.3, MEG3 spans 35 kb and encompasses ten exons. It exerts regulatory effects through intricate interactions with miRNAs, proteins, and epigenetic modifications. MEG3's multifaceted function in BC is evident in gene expression modulation, osteogenic tissue differentiation, and involvement in bone-related conditions. Its role as a tumor suppressor is highlighted by its influence on miR-182 and miRNA-29 expression in BC. Additionally, MEG3 is implicated in acute myocardial infarction and endothelial cell function, emphasising cell-specific regulatory mechanisms. MEG3's impact on gene activity encompasses transcriptional and post-translational adjustments, including DNA methylation, histone modifications, and interactions with transcription factors. MEG3 dysregulation is linked to unfavourable outcomes and drug resistance. Notably, higher MEG3 expression is associated with enhanced survival in BC patients. Overcoming challenges such as unravelling context-specific interactions, understanding epigenetic control, and translating findings into clinical applications is imperative. Prospective endeavours involve elucidating underlying mechanisms, exploring epigenetic alterations, and advancing MEG3-based diagnostic and therapeutic approaches. A comprehensive investigation into broader signaling networks and rigorous clinical trials are pivotal. Rigorous validation through functional and molecular analyses will shed light on MEG3's intricate contribution to BC progression.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haider Ali
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, 11115, Sudan
| | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint, Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rahul Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| |
Collapse
|
3
|
Das PK, Siddika A, Rashel KM, Auwal A, Soha K, Rahman MA, Pillai S, Islam F. Roles of long noncoding RNA in triple-negative breast cancer. Cancer Med 2023; 12:20365-20379. [PMID: 37795578 PMCID: PMC10652353 DOI: 10.1002/cam4.6600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Triple-negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. METHODS We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. RESULTS LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNA-regulator of reprogramming (LincRNA-ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OP-responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATP-binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. CONCLUSION In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| | - Ayesha Siddika
- Institute of Tissue Banking & Biomaterial Research, Atomic Energy Research Establishment (AERE) SavarDhakaBangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Abdul Auwal
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Kazi Soha
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Md. Arifur Rahman
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
| | - Suja Pillai
- School of Biomedical SciencesUniversity of QueenslandSaint LuciaAustralia
| | - Farhadul Islam
- Department of Biochemistry & Molecular BiologyRajshahi UniversityRajshahiBangladesh
- Institute for GlycomicsGriffith UniversityGold CoastAustralia
| |
Collapse
|
4
|
Palcau AC, Brandi R, Mehterov NH, Botti C, Blandino G, Pulito C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2023; 15:4181. [PMID: 37627209 PMCID: PMC10453179 DOI: 10.3390/cancers15164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is one of the most frequent causes of cancer death among women worldwide. In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype because it is characterized by the absence of molecular targets, thus making it an orphan type of malignancy. The discovery of new molecular druggable targets is mandatory to improve treatment success. In that context, non-coding RNAs represent an opportunity for modulation of cancer. They are RNA molecules with apparently no protein coding potential, which have been already demonstrated to play pivotal roles within cells, being involved in different processes, such as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accordingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment, thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Renata Brandi
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Nikolay Hristov Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Claudio Botti
- Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| |
Collapse
|
5
|
Jaiswal A, Kaushik N, Choi EH, Kaushik NK. Functional impact of non-coding RNAs in high-grade breast carcinoma: Moving from resistance to clinical applications: A comprehensive review. Biochim Biophys Acta Rev Cancer 2023; 1878:188915. [PMID: 37196783 DOI: 10.1016/j.bbcan.2023.188915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Suwon 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
6
|
lncRNA LUCAT1/ELAVL1/LIN28B/SOX2 Positive Feedback Loop Promotes Cell Stemness in Triple-Negative Breast Cancer. Breast J 2022; 2022:7689718. [PMID: 35711895 PMCID: PMC9187271 DOI: 10.1155/2022/7689718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Background. Triple-negative breast cancer (TNBC), as a subtype of breast cancer (BC), features an aggressive nature. Long noncoding RNAs (lncRNAs) are proved to get involved in the processes of cancers. lncRNA lung cancer associated transcript 1 (LUCAT1) has been reported in multiple cancers. The role of LUCAT1 in TNBC and its latent regulatory mechanism were investigated. Methods. RT-qPCR was performed to examine LUCAT1 expression. Functional experiments were implemented to disclose the role of LUCAT1 in TNBC. The underlying regulatory mechanism of LUCAT1 in TNBC was explored by chromatin immunoprecipitation (ChIP), RNA-binding protein immunoprecipitation (RIP), luciferase reporter, and RNA pull-down assays. Results. LUCAT1 is significantly overexpressed in TNBC cells. LUCAT1 interference impedes cell stemness in TNBC cells. SRY-box transcription factor 2 (SOX2) is an active transcription factor of LUCAT1. LUCAT1 recruits ELAV-like RNA binding protein 1 (ELAVL1) protein to stabilize lin-28 homolog B (LIN28B) mRNA, thereby further modulating SOX2 expression, which forms a positive feedback loop. Conclusion. The lncRNA LUCAT1/ELAVL1/LIN28B/SOX2 positive feedback loop promotes cell stemness in TNBC. The exploration of the mechanisms underlying TNBC stemness might be beneficial to TNBC treatment.
Collapse
|
7
|
Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst) 2021; 2021:9005073. [PMID: 34595090 PMCID: PMC8478560 DOI: 10.1155/2021/9005073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BRCA) has severely threatened women's health worldwide. Radiotherapy is a treatment for BRCA, which applies high doses of ionizing radiation to induce cancer cell death and reduce disease recurrence. Radioresistance is one of the most important elements that affect the therapeutic efficacy of radiotherapy. Long noncoding RNAs (lncRNAs) are suggested to dominate crucial roles in regulating the biological behavior of BRCA. Currently, some studies indicate that overexpression or inhibition of lncRNAs can greatly alter the radioresistance of BRCA. In this review, we summarized the knowledge on the classification and function of lncRNAs and the molecular mechanism of BRCA radioresistance, listed lncRNAs related to the BRCA radioresistance, highlighted their underlying mechanisms, and discussed the potential application of these lncRNAs in regulating BRCA radioresistance.
Collapse
|
8
|
Thakur KK, Kumar A, Banik K, Verma E, Khatoon E, Harsha C, Sethi G, Gupta SC, Kunnumakkara AB. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis. J Cell Physiol 2021; 236:7938-7965. [PMID: 34105151 DOI: 10.1002/jcp.30463] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.
Collapse
Affiliation(s)
- Krishan K Thakur
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elina Khatoon
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Choudhary Harsha
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Subash C Gupta
- Department of Biochemistry, Laboratory for Translational Cancer Research, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
9
|
Bai X, Zhang S, Qiao J, Xing X, Li W, Zhang H, Xie J. Long non‑coding RNA SChLAP1 regulates the proliferation of triple negative breast cancer cells via the miR‑524‑5p/HMGA2 axis. Mol Med Rep 2021; 23:446. [PMID: 33846810 PMCID: PMC8060801 DOI: 10.3892/mmr.2021.12085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA (lncRNA) second chromosome locus associated with prostate-1 (SChLAP1), also named LINC00913, has been reported to accelerate the carcinogenesis of prostate cancer. The aim of this study was to explore the role and mechanism of SChLAP1 in triple negative breast cancer (TNBC). The expression of SChLAP1 in TNBC tissues and cells was determined by reverse transcription quantitative PCR. The effects of SChLAP1 on the growth of TNBC cells was evaluated by detecting cell viability, colony formation and apoptosis. The present study determined that SChLAP1 was upregulated in TNBC tissues and was associated with the long-distant lymph node metastasis of patients with TNBC. Knockdown of SChLAP1 significantly inhibited cell viability and colony formation, and triggered apoptosis of TNBC cells. Bioinformatics analysis suggested that SChLAP1 acted as a sponge of microRNA (miR)-524-5p and negatively modulated the expression of miR-524-5p. An inverse correlation was also identified between the expression levels of SChLAP1 and miR-524-5p in TNBC tissues. Furthermore, the results demonstrated that SChLAP1 interacted with miR-524-5p, and subsequently regulated the expression level of High Mobility Group AT-Hook 2 (HMGA2) in TNBC cells. It was also found that the overexpression of HMGA2 rescued the suppressed viability of TNBC cells induced by SChLAP1 knockdown. In conclusion, the present findings demonstrated that SChLAP1 modulated the malignant tumor behaviors of TNBC cells by regulating HMGA2 and subsequently restraining miR-524-5p.
Collapse
Affiliation(s)
- Xiangdong Bai
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Shengxiao Zhang
- Department of Rheumatism and Immunology, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jun Qiao
- Department of Rheumatism and Immunology, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaolong Xing
- Research and Development Division, Shanxi Immune Medical Technology Co., Ltd., Taiyuan, Shanxi 030001, P.R. China
| | - Weina Li
- Department of Radiotherapy, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Huanhu Zhang
- Department of Gastroenterology, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
10
|
Wang SM, Pang J, Zhang KJ, Zhou ZY, Chen FY. lncRNA MIR503HG inhibits cell proliferation and promotes apoptosis in TNBC cells via the miR-224-5p/HOXA9 axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:62-73. [PMID: 33869743 PMCID: PMC8027537 DOI: 10.1016/j.omto.2021.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer. This study investigated the molecular mechanism and influences of MIR503HG, miR-224-5p, and homeobox A9 (HOXA9) on TNBC cell growth and migration. Dual-luciferase reporter gene and RNA immunoprecipitation were performed to examine the regulation of MIR503HG, miR-224-5p, and HOXA9. Cell proliferation, apoptosis, migration, and invasion were evaluated by colony formation, flow cytometry, and Transwell assays. Finally, nude mice were employed to investigate the influence of MIR503HG on TNBC tumor growth. HOXA9 protein levels were detected by immunohistochemical staining. MIR503HG and HOXA9 expression were reduced in TNBC, while miR-224-5p was increased. Overexpression of MIR503HG or HOXA9 reduced the cell migration ability and proliferation and promoted apoptosis, and knockdown of MIR503HG or overexpression of miR-224-5p exhibited the opposite effects. Furthermore, MIR503HG promoted HOXA9 expression by inhibiting miR-224-5p. Overexpression of miR-224-5p reversed the effects of MIR503HG overexpression on TNBC cells, while overexpression of HOXA9 reversed the effect of MIR503HG knockdown. Additionally, an in vivo study proved that MIR503HG inhibited TNBC tumor growth via the miR-224-5p/HOXA9 axis. MIR503HG inhibited cell proliferation and promoted the apoptosis of TNBC cells via the miR-224-5p/HOXA9 axis, which may function as a novel target for the treatment of TNBC.
Collapse
Affiliation(s)
- Shou-Man Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Jian Pang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Ke-Jing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Zhi-Yang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Fei-Yu Chen
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
11
|
The role of EMT-related lncRNA in the process of triple-negative breast cancer metastasis. Biosci Rep 2021; 41:227597. [PMID: 33443534 PMCID: PMC7859322 DOI: 10.1042/bsr20203121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and fatal subtype of breast cancer, which has characterized by negativity expression of ER, PR, and HER2. Metastasis is the main factor affecting the prognosis of TNBC, and the process of metastasis is related to abnormal activation of epithelial–mesenchymal transition (EMT). Recent studies have shown that long non-coding RNA (LncRNA) plays an important role in regulating the metastasis and invasion of TNBC. Therefore, based on the metastasis-related EMT signaling pathway, great efforts have confirmed that LncRNA is involved in the molecular mechanism of TNBC metastasis, which will provide new strategies to improve the treatment and prognosis of TNBC. In this review, we summarized many signal pathways related to EMT involved in the transfer process. The advances from the most recent studies of lncRNAs in the EMT-related signal pathways of TNBC metastasis. We also discussed the clinical research, application, and challenges of LncRNA in TNBC.
Collapse
|
12
|
Exosomes and exosomal RNAs in breast cancer: A status update. Eur J Cancer 2021; 144:252-268. [DOI: 10.1016/j.ejca.2020.11.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
|
13
|
Hou T, Ye L, Wu S. Knockdown of LINC00504 Inhibits the Proliferation and Invasion of Breast Cancer via the Downregulation of miR-140-5p. Onco Targets Ther 2021; 14:3991-4003. [PMID: 34239305 PMCID: PMC8259944 DOI: 10.2147/ott.s294965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Breast cancer is one of the most common cancers in the world. Long noncoding RNA 00504 (LINC00504) was reported to be a functional gene in some tumours but not breast. Accordingly, the purpose of this article is to study the function of LINC00504 in breast cancer. METHODS qPCR assay was used to detect the expression of LINC00504 in tissue and cell lines. The online database and chromatin immunoprecipitation assay (ChIP) were employed to confirm the transcription factor of LINC00504. Cell function assays including cell proliferation, migration and invasion were designed to detect the function of LINC00504 in vitro and in vivo. Luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm the relationship between LINC00504 and miR-140-5p. And Western blot assay was employed for testing the key protein. RESULTS We found that LINC00504 is upregulated in breast cancer. In addition, we found that the transcription factor regulatory factor X5 (RFX5) can strongly bind to the LINC00504 promoter region and subsequently increase its transcriptional activity. We also found that the manipulation of RFX5 expression can significantly affect LINC00504 expression, which suggested that RFX5 can transcriptionally activate LINC00504 in breast cancer (BC). Knockdown of LINC00504 inhibits cell proliferation, migration and invasion in vitro and in vivo. We further found that LINCOO504 inhibits miR-140-5p, which decreases the levels of VEGFA. The further results showed that miR-140-5p was one of the target gene of LINC00504. The WB assay demonstrated that the E-cadherin was increased and Vimentin was decreased when knocking down of LINC00504 and they can be rescued while adding the inhibitors of miR-140-5p. DISCUSSION Our results demonstrated the mechanism by which the LINC00504-miR-140-5p-VEGFA axis participates in breast cancer cell proliferation and invasion and may lead to new lncRNA-based diagnostic or therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Tieying Hou
- Ph.D. Program of Immunology, Shantou University Medical College, Shantou, Guangdong Province, 515041, People’s Republic of China
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Shulin Wu
- Ph.D. Program of Immunology, Shantou University Medical College, Shantou, Guangdong Province, 515041, People’s Republic of China
- Correspondence: Shulin Wu Ph.D. Program of Immunology, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong Province, 515041, People’s Republic of ChinaTel +86-754-88550917Fax +86-754-88550917 Email
| |
Collapse
|
14
|
Sun CB, Wang HY, Han XQ, Liu YN, Wang MC, Zhang HX, Gu YF, Leng XG. LINC00511 promotes gastric cancer cell growth by acting as a ceRNA. World J Gastrointest Oncol 2020; 12:394-404. [PMID: 32368318 PMCID: PMC7191338 DOI: 10.4251/wjgo.v12.i4.394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/04/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most aggressive malignancies, with a high incidence and poor prognosis worldwide. Recently, accumulating evidence has illustrated that long noncoding RNAs (lncRNAs) play pivotal roles in many cancers. It has been reported that LINC00511 contributes to tumorigenesis in various diseases. However, the role of LINC00511 in GC cell growth remains mostly unknown. AIM To determine whether the lncRNA LINC00511 exerted its carcinogenic function in GC via the miR-124-3p/PDK4 axis. METHODS Cell culture and transfection, RNA extraction and quantitative real-time PCR, CCK-8 assay, Colony formation assay, Luciferase reporter assay, RIP assay, RNA pull-down assay, and Western blot analysis were used to show expression and mechanisms of LINC00511 in GC progression and apoptosis. Rescue assays were performed to verify the relationships among LINC00511, miR-124-3p and PDK4 further. RESULTS The expression of LINC00511 was remarkably upregulated in GC cells compared to that in corresponding normal cell lines. Compared to the controls, cell proliferation was inhibited, and cell apoptosis was increased upon LINC00511 knockdown, demonstrating that LINC00511 influenced GC cell growth. An exploration of the molecular mechanism revealed that LINC00511 functioned as a molecular sponge of miR-124-3p and that PDK4 was a downstream target of miR-124-3p in GC. Rescue assays showed that the overexpression of PDK4 could partly restore the inhibitory function of si-LINC00511 in GC. CONCLUSION These data demonstrate that LINC00511 promotes gastric cancer cell growth by acting as a ceRNA to regulate the miR-124-3p/PDK4 axis, which may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Chong-Bing Sun
- Department of General Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Hong-Yi Wang
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Xiao-Qing Han
- Department of Spine Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Yong-Ning Liu
- Department of General Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Meng-Chun Wang
- Department of General Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Hong-Xia Zhang
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - You-Feng Gu
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| | - Xiao-Gang Leng
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang 261041, Shandong Province, China
| |
Collapse
|
15
|
Liang ZR, Qu LH, Ma LM. Differential impacts of charcoal-stripped fetal bovine serum on c-Myc among distinct subtypes of breast cancer cell lines. Biochem Biophys Res Commun 2020; 526:267-272. [PMID: 32209261 DOI: 10.1016/j.bbrc.2020.03.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Charcoal-stripped fetal bovine serum (CS-FBS) is frequently used in studies on hormone-responsive cancers to provide hormone-free cell culture conditions. CS-FBS may influence the growth of cancer cells; however, the underlying mechanisms remain unclear. In this study, we aimed to clarify the effects of CS-FBS on distinct subtypes of breast cancer cells. We found that the crucial oncoprotein c-Myc was significantly inhibited in estrogen receptor alpha (ER-α)-positive breast cancer cells when cultured in CS-FBS-supplemented medium, but it was not suppressed in ER-α-negative cells. The addition of 17β-estradiol (E2) to CS-FBS-supplemented medium rescued the CS-FBS-induced inhibition of c-Myc, while treatment with 5α-dihydrotestosterone (DHT) suppressed c-Myc expression. Our data demonstrated that CS-FBS may impede the growth of ER-α-positive breast cancer cells via c-Myc inhibition, and this was possibly due to the removal of estrogen. These results highlighted that the core drivers of c-Myc expression were subtype-specific depending on the distinct cell context and special caution should be exercised when using CS-FBS in studies of hormone-responsive cancer cells.
Collapse
Affiliation(s)
- Zi-Rui Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Li-Ming Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
16
|
Brown JM, Wasson MCD, Marcato P. The Missing Lnc: The Potential of Targeting Triple-Negative Breast Cancer and Cancer Stem Cells by Inhibiting Long Non-Coding RNAs. Cells 2020; 9:E763. [PMID: 32244924 PMCID: PMC7140662 DOI: 10.3390/cells9030763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment decisions for breast cancer are based on staging and hormone receptor expression and include chemotherapies and endocrine therapy. While effective in many cases, some breast cancers are resistant to therapy, metastasize and recur, leading to eventual death. Higher percentages of tumor-initiating cancer stem cells (CSCs) may contribute to the increased aggressiveness, chemoresistance, and worse outcomes among breast cancer. This may be particularly true in triple-negative breast cancers (TNBCs) which have higher percentages of CSCs and are associated with worse outcomes. In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified as playing an important role in breast cancer progression and some of these have been specifically associated within the CSC populations of breast cancers. LncRNAs are non-protein-coding transcripts greater than 200 nucleotides which can have critical functions in gene expression regulation. The preclinical evidence regarding lncRNA antagonists for the treatment of cancer is promising and therefore, presents a potential novel approach for treating breast cancer and targeting therapy-resistant CSCs within these tumors. Herein, we summarize the lncRNAs that have been identified as functionally relevant in breast CSCs. Furthermore, our review of the literature and analysis of patient datasets has revealed that many of these breast CSC-associated lncRNAs are also enriched in TNBC. Together, this suggests that these lncRNAs may be playing a particularly important role in TNBC. Thus, certain breast cancer-promoting/CSC-associated lncRNAs could be targeted in the treatment of TNBCs and the CSCs within these tumors should be susceptible to anti-lncRNA therapy.
Collapse
Affiliation(s)
- Justin M Brown
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Marie-Claire D Wasson
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
| | - Paola Marcato
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (J.M.B.); (M.-C.D.W.)
- Departments of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
17
|
Du C, Wang Y, Zhang Y, Zhang J, Zhang L, Li J. LncRNA DLX6-AS1 Contributes to Epithelial-Mesenchymal Transition and Cisplatin Resistance in Triple-negative Breast Cancer via Modulating Mir-199b-5p/Paxillin Axis. Cell Transplant 2020; 29:963689720929983. [PMID: 32686982 PMCID: PMC7563824 DOI: 10.1177/0963689720929983] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive cancer types with high recurrence, metastasis, and drug resistance. Recent studies report that long noncoding RNAs (lncRNAs)-mediated competing endogenous RNAs (ceRNA) play an important role in tumorigenesis and drug resistance of TNBC. Although elevated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) has been observed to promote carcinogenesis in various cancers, the role in TNBC remained unclear. In this study, expression levels of DLX6-AS1 were increased in TNBC tissues and cell lines when compared with normal tissues or breast fibroblast cells which were determined by quantitative real-time PCR (RT-qPCR). Then, CCK-8 assay, cell colony formation assay and western blot were performed in CAL-51 cells transfected with siRNAs of DLX6-AS1 or MDA-MB-231 cells transfected with DLX6-AS1 over expression plasmids. Knock down of DLX6-AS1 inhibited cell proliferation, epithelial-mesenchymal transition (EMT), decreased expression levels of BCL2 apoptosis regulator (Bcl-2), Snail family transcriptional repressor 1 (Snail) as well as N-cadherin and decreased expression levels of cleaved caspase-3, γ-catenin as well as E-cadherin, while up regulation of DLX6-AS1 had the opposite effect. Besides, knockdown of DLX6-AS1 in CAL-51 cells or up regulation of DLX6-AS1 in MDA-MB-231 cells also decreased or increased cisplatin resistance of those cells analyzed by MTT assay. Moreover, by using dual luciferase reporter assay, RNA immunoprecipitation and RNA pull down assay, a ceRNA which was consisted by lncRNA DLX6-AS1, microRNA-199b-5p (miR-199b-5p) and paxillin (PXN) was identified. And DLX6-AS1 function through miR-199b-5p/PXN in TNBC cells. Finally, results of xenograft experiments using nude mice showed that DLX6-AS1 regulated cell proliferation, EMT and cisplatin resistance by miR-199b-5p/PXN axis in vivo. In brief, DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance through miR-199b-5p/PXN signaling in TNBC in vitro and in vivo.
Collapse
Affiliation(s)
- Chuang Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yingying Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jianhua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Linfeng Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jingruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
18
|
Arshi A, Raeisi F, Mahmoudi E, Mohajerani F, Kabiri H, Fazel R, Zabihian-Langeroudi M, Jusic A. A Comparative Study of HOTAIR Expression in Breast Cancer Patient Tissues and Cell Lines. CELL JOURNAL 2019; 22:178-184. [PMID: 31721532 PMCID: PMC6874785 DOI: 10.22074/cellj.2020.6543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
Objective Recent data suggest that increased levels of the HOTAIR long non-coding RNA (lncRNA) are involved in
the development of various types of malignancy, including breast cancer. The aim of present study was to investigate
HOTAIR lncRNA expression profile in breast cancer (BC) patients and cell lines.
Materials and Methods In this experimental study, expression level of HOTAIR lncRNA was evaluated in BC and
normal tissues of 15 patients as well as MDA-MB-231, MCF-7 and MCF-10A cell lines, using quantitative reverse-
transcription polymerase chain reaction (qRT-PCR). HOTAIR lncRNA expression levels were estimated using 2-ΔΔCt
method. Further, receiver operating characteristic (ROC) curve analysis was done to evaluate the selected lncRNA
diagnostic potential. The Cox’s proportional hazards regression model was performed to evaluate the predictive value
of this lncRNA level in BC patients.
Results The results of present study demonstrated no significant difference in the expression of HOTAIR lncRNA in
MCF7 and MDA-MB-231 cancer cell lines compared to MCF-10A as normal cell line (P>0.05). However, we observed
a significantly increase in the expression of HOTAIR in BC patients compared to normal tissues (P<0.001). Significant
associations were found between gene expression and tumour size and margin. We found 91.1% sensitivity and 95.7%
specificity of circulating HOTAIR with an area under the ROC curve of 0.969. The Kaplan-Meier analysis indicated
significant correlation between HOTAIR expression and overall survival.
Conclusion This study demonstrated that expression of HOTAIR is increased in BC and might be associated with its
progression. According to these findings, HOTAIR expression could be proposed as biomarkers for BC early diagnosis and
prognosis.
Collapse
Affiliation(s)
- Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farzaneh Raeisi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Mohajerani
- Department of Genetics, Faculty of Modern Medical Science, Islamic Azad University of Medical Sciences of Tehran, Tehran, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Razieh Fazel
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina. Electronic Address:
| |
Collapse
|
19
|
Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, Ren YX, Zuo WJ, Hu X, Huang SL, Shen HJ, Lan F, He YF, Hu GH, Di GH, He XH, Li DQ, Liu S, Yu KD, Shao ZM. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. SCIENCE ADVANCES 2019; 5:eaat9820. [PMID: 30854423 PMCID: PMC6402854 DOI: 10.1126/sciadv.aat9820] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/23/2019] [Indexed: 05/03/2023]
Abstract
Human endogenous retroviruses (HERVs) play pivotal roles in the development of breast cancer. However, the detailed mechanisms of noncoding HERVs remain elusive. Here, our genome-wide transcriptome analysis of HERVs revealed that a primate long noncoding RNA, which we dubbed TROJAN, was highly expressed in human triple-negative breast cancer (TNBC). TROJAN promoted TNBC proliferation and invasion and indicated poor patient outcomes. We further confirmed that TROJAN could bind to ZMYND8, a metastasis-repressing factor, and increase its degradation through the ubiquitin-proteasome pathway by repelling ZNF592. TROJAN also epigenetically up-regulated metastasis-related genes in multiple cell lines. Correlations between TROJAN and ZMYND8 were subsequently confirmed in clinical samples. Furthermore, our study verified that antisense oligonucleotide therapy targeting TROJAN substantially suppressed TNBC progression in vivo. In conclusion, the long noncoding RNA TROJAN promotes TNBC progression and serves as a potential therapeutic target.
Collapse
Affiliation(s)
- Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Wei Sun
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Ya-Jie Guo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Yi-Xing Ren
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Wen-Jia Zuo
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Sheng-Lin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Hong-Jie Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Fei Lan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Key Laboratory of Epigenetics, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yun-Fei He
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Guo-Hong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
| | - Xiang-Huo He
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Da-Qiang Li
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Suling Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai 200032, P. R. China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, P. R. China
- Corresponding author. (Z.-M.S.); (X.-E.X.); (K.-D.Y.); (S.L.)
| |
Collapse
|
20
|
Youness RA, Gad MZ. Long non-coding RNAs: Functional regulatory players in breast cancer. Noncoding RNA Res 2019; 4:36-44. [PMID: 30891536 PMCID: PMC6404363 DOI: 10.1016/j.ncrna.2019.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Historically, the long-held protein-centered bias has denoted 98% of the human genome as 'Junk' DNA. However, the current work has shifted the perception of such 'junk' transcriptional products to functional regulatory molecules. The recent surveillance of the human transcriptome has highlighted the pivotal role of such non-coding RNA (ncRNA) molecules in diverse physiological and pathological conditions. Long non-coding RNA (lncRNA) is a recent class of ncRNA molecules that is still in its infancy stage. The main focus of this review is to unravel the importance of lncRNAs in the most prevalent malignancy among females which is Breast Cancer (BC). A specific focus on lncRNAs as prognostic markers among BC patients showing molecular subtype heterogeneity was also tackled in this review. Finally, the functional and the mechanistic roles of such booming ncRNA molecules in shaping the fate of the BC progression have been highlighted.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835, Cairo, Egypt
| | - Mohamed Zakaria Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835, Cairo, Egypt
| |
Collapse
|
21
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
22
|
Segaert P, Lopes MB, Casimiro S, Vinga S, Rousseeuw PJ. Robust identification of target genes and outliers in triple-negative breast cancer data. Stat Methods Med Res 2018; 28:3042-3056. [PMID: 30146936 PMCID: PMC6745616 DOI: 10.1177/0962280218794722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Correct classification of breast cancer subtypes is of high importance as it directly affects the therapeutic options. We focus on triple-negative breast cancer which has the worst prognosis among breast cancer types. Using cutting edge methods from the field of robust statistics, we analyze Breast Invasive Carcinoma transcriptomic data publicly available from The Cancer Genome Atlas data portal. Our analysis identifies statistical outliers that may correspond to misdiagnosed patients. Furthermore, it is illustrated that classical statistical methods may fail to identify outliers due to their heavy influence, prompting the need for robust statistics. Using robust sparse logistic regression we obtain 36 relevant genes, of which ca. 60% have been previously reported as biologically relevant to triple-negative breast cancer, reinforcing the validity of the method. The remaining 14 genes identified are new potential biomarkers for triple-negative breast cancer. Out of these, JAM3, SFT2D2, and PAPSS1 were previously associated to breast tumors or other types of cancer. The relevance of these genes is confirmed by the new DetectDeviatingCells outlier detection technique. A comparison of gene networks on the selected genes showed significant differences between triple-negative breast cancer and non-triple-negative breast cancer data. The individual role of FOXA1 in triple-negative breast cancer and non-triple-negative breast cancer, and the strong FOXA1-AGR2 connection in triple-negative breast cancer stand out. The goal of our paper is to contribute to the breast cancer/triple-negative breast cancer understanding and management. At the same time it demonstrates that robust regression and outlier detection constitute key strategies to cope with high-dimensional clinical data such as omics data.
Collapse
Affiliation(s)
| | - Marta B Lopes
- IDMEC, Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Casimiro
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Susana Vinga
- IDMEC, Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,INESC-ID, Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento, Lisboa, Portugal
| | | |
Collapse
|
23
|
Role of lncRNAs in ovarian cancer: defining new biomarkers for therapeutic purposes. Drug Discov Today 2018; 23:1635-1643. [PMID: 29698834 DOI: 10.1016/j.drudis.2018.04.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of noncoding RNA, involved in regulation of diverse physiological and pathological processes. Ovarian cancer is the leading cause of death among all gynecological malignancies in the world and its underlying mechanism is still unclear. LncRNAs exhibit multiple biological functions in various stages of ovarian cancer development. We will discuss and summarize the new and important lncRNAs and their involvement in disease, which might represent promising therapeutic targets. Therapeutic intervention based on silencing or functional inhibition of target lncRNAs will be beneficial for ovarian cancer patients.
Collapse
|
24
|
Kong X, Liu W, Kong Y. Roles and expression profiles of long non-coding RNAs in triple-negative breast cancers. J Cell Mol Med 2017; 22:390-394. [PMID: 28941134 PMCID: PMC5742739 DOI: 10.1111/jcmm.13327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) refers to the breast cancers that express little human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR) and oestrogen receptor (ER). When compared to other types of breast cancers, TNBC behaves more aggressively with relatively poorer prognosis. Moreover, except chemotherapy, no targeted treatments have been approved yet until now. Although the molecular‐biological mechanisms of the initiation and development of TNBC have been explored a lot, the exact details underlying its progressions are still not clear. Long non‐coding RNAs (lncRNAs), with the length greater than 200 nucleotides, are non‐protein coding transcripts. Previous researches have shown that lncRNAs are significantly involved in a variety of pathophysiological processes such as cell migration, invasion, proliferation, differentiation and development. lncRNAs’ dysregulated expressions have been observed in many types of tumours including TNBCs. This article will review the functional roles and dysregulations of lncRNAs in TNBCs. These lncRNAs are worthy of exploitation regarding their potential application values of TNBC's diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyue Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Tissue Engineering and Wound Healing Laboratory, Department of Surgery, Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yanguo Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Abstract
Long noncoding RNAs (lncRNAs) are a relatively well-characterized class of noncoding RNA (ncRNA) molecules, involved in the regulation of various cell processes, including transcription, intracellular trafficking, and chromosome remodeling. Their deregulation has been associated with the development and progression of various cancer types, the fact which makes them suitable as biomarkers for cancer diagnosis and prognosis. In recent years, detection of cancer-associated lncRNAs in body fluids of cancer patients has proven itself as an especially valuable method to effectively diagnose cancer. Cancer diagnosis and prognosis employing circulating lncRNAs are preferential when compared to classical biopsies of tumor tissues, especially due to their noninvasiveness, and have great potential for routine usage in clinical practice. Thus, this review focuses on summarizing the perspectives of lncRNAs as biomarkers in cancer, based on evaluating their expression profiles determined in body fluids of cancer patients.
Collapse
|