1
|
Liu X, Sun M, Zhang F, Zhang J, Xuanyuan T, Liu W. A heterotypic tumor-on-a-chip platform for user-friendly combinatorial chemotherapeutic testing. Anal Chim Acta 2024; 1330:343278. [PMID: 39489960 DOI: 10.1016/j.aca.2024.343278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Three-dimensional (3D) tumor microdevices are promising platform for biomimetic antitumor prediction and high-throughput chemotherapeutic screening and play crucial roles in the exploration of cancer-associated pharmaceutics and therapeutics. Traditional cell manipulation tools (e.g., non-adhesive surfaces and hanging drops) and recent microengineered systems (e.g., microfluidic chips and micropatterned array chips) have progressed in terms of microscale control, substantial tumor production, programmable drug combinations, and throughput analysis. However, establishing a facile 3D tumor microdevice to construct heterotypic tumor-microenvironmental profiles and for throughput, implementable, multi-instrument-compatible analysis of chemotherapies to advance consumer-grade tumor modelling tools is still being explored. RESULTS In this study, we present a facilely operated tumor-on-a-chip platform for massive production of heterotypic 3D tumors and diverse investigations of combinatorial chemotherapy screening. Large quantity of heterotypic tumor generation with high geometric controllability (size difference: 19.6 μm) and operational repeatability (n = 10) was achieved using simple-to-fabricate micropatterned chips. Multiple characteristics of solid tumors, including phenotypic gradients (viability and proliferation) and heterogeneous cellular compositions (multi-cell participation and stroma composition), were reproduced in heterotypic tumors, being more biomimetic than homotypic tumors. We completed the user-friendly analytical evaluation of individual and combinatorial drug therapies, and demonstrated the high applicability of the platform in biomimetic tumor-related large-scale manipulation and on-chip analysis, as well as its high compatibility for off-chip detection. The entire operative process during tumor production and chemotherapy only requires the routine and easy-to-master pipetting manipulation. SIGNIFICANCE The establishment of a biomimetic and easy-to-use 3D tumor platform and the large-scale screening-like evaluation of combinatorial chemotherapies based on the usage of the micropatterned chip was achieved in a user-friendly manner. This advancement has significant application potential in the fields of oncology, drug discovery, and tissue engineering, and is expected to be valuable for developing accessible and generalizable tumor-on-a-chip microsystems for exploring cancer therapies.
Collapse
Affiliation(s)
- Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Fen Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; Department of Bioengineering, School of Food and Bioengineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Pong KCC, Lai YS, Wong RCH, Lee ACK, Chow SCT, Lam JCW, Ho HP, Wong CTT. Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process. BIOSENSORS 2024; 14:392. [PMID: 39194621 DOI: 10.3390/bios14080392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Three-dimensional (3D) spheroid models are crucial for cancer research, offering more accurate insights into tumour biology and drug responses than traditional 2D cell cultures. However, inconsistent and low-throughput spheroid production has hindered their application in drug screening. Here, we present an automated high-throughput platform for a spheroid selection, fabrication, and sorting system (SFSS) to produce uniform gelatine-encapsulated spheroids (GESs) with high efficiency. SFSS integrates advanced imaging, analysis, photo-triggered fabrication, and microfluidic sorting to precisely control spheroid size, shape, and viability. Our data demonstrate that our SFSS can produce over 50 GESs with consistent size and circularity in 30 min with over 97% sorting accuracy while maintaining cell viability and structural integrity. We demonstrated that the GESs can be used for drug screening and potentially for various assays. Thus, the SFSS could significantly enhance the efficiency of generating uniform spheroids, facilitating their application in drug development to investigate complex biological systems and drug responses in a more physiologically relevant context.
Collapse
Affiliation(s)
- Kelvin C C Pong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- BioArchitec Group Limited, Hong Kong, China
| | - Yuen Sze Lai
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Roy Chi Hang Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Alan Chun Kit Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | | | | | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Clarence T T Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Fortes BN, Wirth F, Dos Santos AM, Chorilli M, Freitas VM, Farias J, Chambergo FS, Nunes C Dantas VA, Ishida K. Three-dimensional lung parenchyma model for studies of Aspergillus fumigatus infection and antifungal treatment. Future Microbiol 2024:1-14. [PMID: 39011856 DOI: 10.1080/17460913.2024.2371926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: This work aims to standardize the three-dimensional hydroxyethyl-alginate-gelatin (HAG) scaffold as a model to evaluate Aspergillus fumigatus biofilm and antifungal treatments. Methods: The scaffold was characterized by physical, rheological and microscopic analyses; the antibiofilm action was evaluated by determination of cfu and metabolic activity. Results: The scaffold was non-toxic showing stability in aqueous media, swelling capacity, elasticity and had homogeneously distributed pores averaging 190 μm. The A. fumigatus biofilm established itself very well on the scaffold and treatment with amphotericin B and voriconazole reduced viable cells and metabolic activity. Conclusion: The HAG scaffold proved to be a model to mimic lung parenchyma, suitable for establishing a 3D biofilm culture of A. fumigatus and evaluating the efficacy of antifungals.
Collapse
Affiliation(s)
- Bruna Nakanishi Fortes
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| | - Fernanda Wirth
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University - Jaú Highway, Km 1, 14800-903, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University - Jaú Highway, Km 1, 14800-903, Araraquara, Brazil
| | - Vanessa Morais Freitas
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| | - Jennifer Farias
- School of Arts, Sciences & Humanities, University of São Paulo, Arlindo Bettio Avenue, 1000, 03828-000, São Paulo, Brazil
| | - Felipe S Chambergo
- School of Arts, Sciences & Humanities, University of São Paulo, Arlindo Bettio Avenue, 1000, 03828-000, São Paulo, Brazil
| | - Viviane Abreu Nunes C Dantas
- School of Arts, Sciences & Humanities, University of São Paulo, Arlindo Bettio Avenue, 1000, 03828-000, São Paulo, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| |
Collapse
|
4
|
Cortesi M, Giordano E. Driving cell response through deep learning, a study in simulated 3D cell cultures. Heliyon 2024; 10:e29395. [PMID: 38699000 PMCID: PMC11063986 DOI: 10.1016/j.heliyon.2024.e29395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Computational simulations are becoming increasingly relevant in biomedical research, providing strategies to reproduce experimental results, improve the resolution of in-vitro experiments, and predict the system's behavior in untested conditions. Their use to determine the features associated with an extensive response to treatment and optimize treatment schedules has, however received little attention. To bridge this gap, we propose a deep learning framework capable of reliably classifying simulated time series data and identifying class-defining features. This information will be shown to be useful for the determination of which changes in treatment schedule elicit a more extensive cellular response. This analysis pipeline will be initially tested on a synthetic dataset created ad-hoc to identify its accuracy in identifying the most relevant portion of the signals. Successively this method will be applied to simulations describing the behaviors of populations of cancer cells treated with either one or two drugs in different concentrations. The proposed method will be shown to be effective in identifying which changes in the treatment protocol lead to a more extensive response to treatment. While lacking direct experimental validation, this result holds great potential for the integration of in-silico and in-vitro analyses and the effective optimization of experimental conditions in complex experimental setups.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi” (DEI), Alma Mater Studiorum – University of Bologna, via dell'Università 50, Cesena, 47521, FC, Italy
- Gynaecological Cancer Research Group, School of Clinical Medicine, University of New South Wales, High Street, Kensington, 2033, NSW, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi” (DEI), Alma Mater Studiorum – University of Bologna, via dell'Università 50, Cesena, 47521, FC, Italy
| |
Collapse
|
5
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Jana A, Sahoo S, Paul S, Sahoo S, Jayabaskaran C, Chakravarty AR. Photodynamic Therapy with Targeted Release of Boron-Dipyrromethene Dye from Cobalt(III) Prodrugs in Red Light. Inorg Chem 2024; 63:6822-6835. [PMID: 38560761 DOI: 10.1021/acs.inorgchem.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ ∼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 μM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.
Collapse
Affiliation(s)
- Avishek Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadarsini Sahoo
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadeep Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
7
|
Li Y, Zhu X, Li L, Bao C, Liu Q, Zhang N, He Z, Ji Y, Bao J. Construction and applications of the EOMA spheroid model of Kaposiform hemangioendothelioma. J Biol Eng 2024; 18:21. [PMID: 38486263 PMCID: PMC10941415 DOI: 10.1186/s13036-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Kaposiform hemangioendothelioma (KHE) is a rare intermediate vascular tumor with unclear pathogenesis. Recently, three dimensional (3D) cell spheroids and organoids have played an indispensable role in the study of many diseases, such as infantile hemangioma and non-involuting congenital hemangiomas. However, few research on KHE are based on the 3D model. This study aims to evaluate the 3D superiority, the similarity with KHE and the ability of drug evaluation of EOMA spheroids as an in vitro 3D KHE model. RESULTS After two days, relatively uniform morphology and high viability of EOMA spheroids were generated by the rotating cell culture system (RCCS). Through transcriptome analysis, compared with 2D EOMA cells, focal adhesion-related genes such as Itgb4, Flt1, VEGFC, TNXB, LAMA3, VWF, and VEGFD were upregulated in EOMA spheroids. Meanwhile, the EOMA spheroids injected into the subcutaneous showed more obvious KMP than 2D EOMA cells. Furthermore, EOMA spheroids possessed the similar characteristics to the KHE tissues and subcutaneous tumors, such as diagnostic markers (CD31 and LYVE-1), cell proliferation (Ki67), hypoxia (HIF-1α) and cell adhesion (E-cadherin and N-cadherin). Based on the EOMA spheroid model, we discovered that sirolimus, the first-line drug for treating KHE, could inhibit EOMA cell proliferation and downregulate the VEGFC expression. Through the extra addition of VEGFC, the effect of sirolimus on EOMA spheroid could be weakened. CONCLUSION With a high degree of similarity of the KHE, 3D EOMA spheroids generated by the RCCS can be used as a in vitro model for basic researches of KHE, generating subcutaneous tumors and drug screening.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Xinglong Zhu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Li Li
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Chunjuan Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Qin Liu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China
| | - Ning Zhang
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
| | - Ziyan He
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Yi Ji
- Department of Pediatric Surgery, Division of Oncology, West China Hospital of Sichuan University, 37# Guo-Xue-Xiang, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
9
|
Zhu Y, Yang S, Zhang T, Ge Y, Wan X, Liang G. Cardiac Organoids: A 3D Technology for Disease Modeling and Drug Screening. Curr Med Chem 2024; 31:4987-5003. [PMID: 37497713 DOI: 10.2174/0929867331666230727104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; therefore, there is increasing attention to developing physiological-related in vitro cardiovascular tissue models suitable for personalized healthcare and preclinical test. Recently, more complex and powerful in vitro models have emerged for cardiac research. Human cardiac organoids (HCOs) are three-dimensional (3D) cellular constructs similar to in vivo organs. They are derived from pluripotent stem cells and can replicate the structure, function, and biogenetic information of primitive tissues. High-fidelity HCOs are closer to natural human myocardial tissue than animal and cell models to some extent, which helps to study better the development process of the heart and the occurrence of related diseases. In this review, we introduce the methods for constructing HCOs and the application of them, especially in cardiovascular disease modeling and cardiac drug screening. In addition, we propose the prospects and limitations of HCOs. In summary, we have introduced the research progress of HCOs and described their innovation and practicality of them in the biomedical field.
Collapse
Affiliation(s)
- Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
10
|
Garnique ADMB, Machado-Santelli GM. Characterization of 3D NSCLC Cell Cultures with Fibroblasts or Macrophages for Tumor Microenvironment Studies and Chemotherapy Screening. Cells 2023; 12:2790. [PMID: 38132110 PMCID: PMC10742261 DOI: 10.3390/cells12242790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 12/23/2023] Open
Abstract
The study of 3D cell culture has increased in recent years as a model that mimics the tumor microenvironment (TME), which is characterized by exhibiting cellular heterogeneity, allowing the modulation of different signaling pathways that enrich this microenvironment. The TME exhibits two main cell populations: cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAM). The aim of this study was to investigate 3D cell cultures of non-small cell lung cancer (NSCLC) alone and in combination with short-term cultured dermal fibroblasts (FDH) and with differentiated macrophages of the THP-1 cell line. Homotypic and heterotypic spheroids were morphologically characterized using light microscopy, immunofluorescence and transmission electron microscopy. Cell viability, cycle profiling and migration assay were performed, followed by the evaluation of the effects of some chemotherapeutic and potential compounds on homotypic and heterotypic spheroids. Both homotypic and heterotypic spheroids of NSCLC were generated with fibroblasts or macrophages. Heterotypic spheroids with fibroblast formed faster, while homotypic ones reached larger sizes. Different cell populations were identified based on spheroid zoning, and drug effects varied between spheroid types. Interestingly, heterotypic spheroids with fibroblasts showed similar responses to the treatment with different compounds, despite being smaller. Cellular viability analysis required multiple methods, since the responses varied depending on the spheroid type. Because of this, the complexity of the spheroid should be considered when analyzing compound effects. Overall, this study contributes to our understanding of the behavior and response of NSCLC cells in 3D microenvironments, providing valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Ave., Prof, Lineu Prestes, 1524, Cidade Universitária, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
11
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
12
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
13
|
Niu B, Wu Y, Zhou M, Lin R, Ge P, Chen X, Zhou H, Zhang X, Xie J. Precise delivery of celastrol by PEGylated aptamer dendrimer nanoconjugates for enormous therapeutic effect via superior intratumor penetration over antibody counterparts. Cancer Lett 2023; 579:216461. [PMID: 37898358 DOI: 10.1016/j.canlet.2023.216461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Antibody-coated nanoparticles have been reported to have the extremely low delivery efficiency in solid tumors in preclinical trials. Though aptamers were considered to be superior over antibodies in cancer theranostics, whether PEGylated aptamer nanoparticles are better than antibody nanoparticles in improving delivery specificity and penetration efficiency of chemotherapeutics is still unknown. Here, we conjugate celastrol, a natural product with anti-tumor effect, onto PEGylated EpCAM aptamer or antibody dendrimers to obtain two nanoconjugates, and for the first time, conduct a comprehensive study to compare their performance in delivery specificity, intratumoral penetration ability and therapeutic outcomes. Our results showed that compared to antibody counterparts, PEGylated aptamer nanoconjugates exhibited the enhanced accumulation and retention specificities at tumor sites and the stronger intratumoral penetration capabilities by reducing the macrophage reservoir effects in solid tumors. When delivered celastrol to a colorectal xenograft tumor mice model by PEGylated aptamer dendrimers, 20 % of enhanced therapeutic efficiency was achieved compared to that by antibody-modified ones. Moreover, celastrol at 2 mg/kg delivered by PEGylated aptamer dendrimers showed the prominent anticancer efficiency (nearly 92 %) but without obvious side effects. These data firstly provide the proof-of-concept implementation that PEGylated aptamer nanoconjugates will display the great potential in the effective and safe cancer treatment with regard to the superiority over antibody ones in penetration abilities.
Collapse
Affiliation(s)
- Boning Niu
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuehuang Wu
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Min Zhou
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruimiao Lin
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Pengjin Ge
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Xiaohui Chen
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Xiaokun Zhang
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
14
|
Kheiri S, Chen Z, Yakavets I, Rakhshani F, Young EWK, Kumacheva E. Integrating spheroid-on-a-chip with tubeless rocker platform: A high-throughput biological screening platform. Biotechnol J 2023; 18:e2200621. [PMID: 37436706 DOI: 10.1002/biot.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Spheroid-on-a-chip platforms are emerging as promising in vitro models that enable screening of the efficacy of biologically active ingredients. Generally, the supply of liquids to spheroids occurs in the steady flow mode with the use of syringe pumps; however, the utilization of tubing and connections, especially for multiplexing and high-throughput screening applications, makes spheroid-on-a-chip platforms labor- and cost-intensive. Gravity-induced flow using rocker platforms overcomes these challenges. Here, a robust gravity-driven technique was developed to culture arrays of cancer cell spheroids and dermal fibroblast spheroids in a high-throughput manner using a rocker platform. The efficiency of the developed rocker-based platform was benchmarked to syringe pumps for generating multicellular spheroids and their use for screening biologically active ingredients. Cell viability, internal spheroid structure as well as the effect of vitamin C on spheroids' protein synthesis was studied. The rocker-based platform not only offers comparable or enhanced performance in terms of cell viability, spheroids formation, and protein production by dermal fibroblast spheroids but also, from a practical perspective, offers a smaller footprint, requires a lower cost, and offers an easier method for handling. These results support the application of rocker-based microfluidic spheroid-on-a-chip platforms for in vitro screening in a high-throughput manner with industrial scaling-up opportunities.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Mortazavi M, Eskandari M, Moosavi F, Damghani T, Khoshneviszadeh M, Pirhadi S, Saso L, Edraki N, Firuzi O. Novel quinazoline-1,2,3-triazole hybrids with anticancer and MET kinase targeting properties. Sci Rep 2023; 13:14685. [PMID: 37673888 PMCID: PMC10482942 DOI: 10.1038/s41598-023-41283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Oncogenic activation of receptor tyrosine kinases (RTKs) such as MET is associated with cancer initiation and progression. We designed and synthesized a new series of quinazoline derivatives bearing 1,2,3-triazole moiety as targeted anticancer agents. The MET inhibitory effect of synthesized compounds was assessed by homogeneous time-resolved fluorescence (HTRF) assay and western blot analysis. Sulforhodamine B assay was conducted to examine the antiproliferative effects of synthetic compounds against 6 cancer cell lines from different origins including MET-dependent AsPC-1, EBC-1 and MKN-45 cells and also Mia-Paca-2, HT-29 and K562 cells. The growth inhibitory effect of compounds in a three-dimensional spheroid culture was examined by acid phosphatase (APH) assay, while apoptosis induction was evaluated by Annexin V/propidium iodide method. Compound 8c bearing p-methyl benzyl moiety on the triazole ring exhibited the highest MET inhibitory capacity among tested agents that was further confirmed by western blot findings. Derivatives 8c and 8h exhibited considerable antiproliferative effects against all tested cell lines, with more inhibitory effects against MET-positive cells with IC50 values as low as 6.1 μM. These two agents also significantly suppressed cell growth in spheroid cultures and induced apoptosis in MET overexpressing AsPC-1 cells. Moreover, among a panel of 24 major oncogenic kinases, the PDGFRA kinase was identified as a target of 8c and 8h compounds. The docking study results of compounds 8c and 8h were in agreement with experimental findings. The results of the present study suggest that quinazoline derivatives bearing 1,2,3-triazole moiety may represent promising targeted anticancer agents.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Eskandari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Haselager MV, van Driel BF, Perelaer E, de Rooij D, Lashgari D, Loos R, Kater AP, Moerland PD, Eldering E. In Vitro 3D Spheroid Culture System Displays Sustained T Cell-dependent CLL Proliferation and Survival. Hemasphere 2023; 7:e938. [PMID: 37637994 PMCID: PMC10448932 DOI: 10.1097/hs9.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental cells and signals. The lymph node (LN) is the critical site of in vivo CLL proliferation and development of resistance to both chemotherapy and targeted agents. We present a new model that incorporates key aspects of the CLL LN, which enables investigation of CLL cells in the context of a protective niche. We describe a three-dimensional (3D) in vitro culture system using ultra-low attachment plates to create spheroids of CLL cells derived from peripheral blood. Starting from CLL:T cell ratios as observed in LN samples, CLL activation was induced by either direct stimulation and/or indirectly via T cells. Compared with two-dimensional cultures, 3D cultures promoted CLL proliferation in a T cell-dependent manner, and enabled expansion for up to 7 weeks, including the formation of follicle-like structures after several weeks of culture. This model enables high-throughput drug screening, of which we describe response to Btk inhibition, venetoclax resistance, and T cell-mediated cytotoxicity as examples. In summary, we present the first LN-mimicking in vitro 3D culture for primary CLL, which enables readouts such as real-time drug screens, kinetic growth assays, and spatial localization. This is the first in vitro CLL system that allows testing of response and resistance to venetoclax and Bruton's tyrosine kinase inhibitors in the context of the tumor microenvironment, thereby opening up new possibilities for clinically useful applications.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Bianca F. van Driel
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Eduard Perelaer
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Dennis de Rooij
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Danial Lashgari
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Remco Loos
- Center for Innovation and Translational Research Europe, Bristol Myers Squibb, Sevilla, Spain
| | - Arnon P. Kater
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Perry D. Moerland
- Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zhou Y, Pereira G, Tang Y, James M, Zhang M. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics 2023; 15:1691. [PMID: 37376138 DOI: 10.3390/pharmaceutics15061691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Natural polymer-based porous scaffolds have been investigated to serve as three-dimensional (3D) tumor models for drug screening owing to their structural properties with better resemblance to human tumor microenvironments than two-dimensional (2D) cell cultures. In this study, a 3D chitosan-hyaluronic acid (CHA) composite porous scaffold with tunable pore size (60, 120 and 180 µm) was produced by freeze-drying and fabricated into a 96-array platform for high-throughput screening (HTS) of cancer therapeutics. We adopted a self-designed rapid dispensing system to handle the highly viscous CHA polymer mixture and achieved a fast and cost-effective large-batch production of the 3D HTS platform. In addition, the adjustable pore size of the scaffold can accommodate cancer cells from different sources to better mimic the in vivo malignancy. Three human glioblastoma multiforme (GBM) cell lines were tested on the scaffolds to reveal the influence of pore size on cell growth kinetics, tumor spheroid morphology, gene expression and dose-dependent drug response. Our results showed that the three GBM cell lines showed different trends of drug resistance on CHA scaffolds of varying pore size, which reflects the intertumoral heterogeneity across patients in clinical practice. Our results also demonstrated the necessity to have a tunable 3D porous scaffold for adapting the heterogeneous tumor to generate the optimal HTS outcomes. It was also found that CHA scaffolds can produce a uniform cellular response (CV < 0.15) and a wide drug screening window (Z' > 0.5) on par with commercialized tissue culture plates, and therefore, can serve as a qualified HTS platform. This CHA scaffold-based HTS platform may provide an improved alternative to traditional 2D-cell-based HTS for future cancer study and novel drug discovery.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gillian Pereira
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yuanzhang Tang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Dos Santos KS, Oliveira LT, de Lima Fontes M, Migliato KF, Fusco-Almeida AM, Mendes Giannini MJS, Moroz A. Alginate-Based 3D A549 Cell Culture Model to Study Paracoccidioides Infection. J Fungi (Basel) 2023; 9:634. [PMID: 37367570 DOI: 10.3390/jof9060634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
A three-dimensional (3D) lung aggregate model based on sodium alginate scaffolds was developed to study the interactions between Paracoccidioides brasiliensis (Pb) and lung epithelial cells. The suitability of the 3D aggregate as an infection model was examined using cell viability (cytotoxicity), metabolic activity, and proliferation assays. Several studies exemplify the similarity between 3D cell cultures and living organisms, which can generate complementary data due to the greater complexity observed in these designed models, compared to 2D cell cultures. A 3D cell culture system of human A549 lung cell line plus sodium alginate was used to create the scaffolds that were infected with Pb18. Our results showed low cytotoxicity, evidence of increased cell density (indicative of cell proliferation), and the maintenance of cell viability for seven days. The confocal analysis revealed viable yeast within the 3D scaffold, as demonstrated in the solid BHI Agar medium cultivation. Moreover, when ECM proteins were added to the alginate scaffolds, the number of retrieved fungi was significantly higher. Our results highlight that this 3D model may be promising for in vitro studies of host-pathogen interactions.
Collapse
Affiliation(s)
- Kelvin Sousa Dos Santos
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Lariane Teodoro Oliveira
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Marina de Lima Fontes
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Andrei Moroz
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| |
Collapse
|
19
|
Mu P, Zhou S, Lv T, Xia F, Shen L, Wan J, Wang Y, Zhang H, Cai S, Peng J, Hua G, Zhang Z. Newly developed 3D in vitro models to study tumor-immune interaction. J Exp Clin Cancer Res 2023; 42:81. [PMID: 37016422 PMCID: PMC10074642 DOI: 10.1186/s13046-023-02653-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
Immunotherapy as a rapidly developing therapeutic approach has revolutionized cancer treatment and revitalized the field of tumor immunology research. 3D in vitro models are emerging as powerful tools considering their feature to maintain tumor cells in a near-native state and have been widely applied in oncology research. The novel 3D culture methods including the co-culture of organoids and immune cells, ALI culture, 3D-microfluidic culture and 3D-bioprinting offer new approaches for tumor immunology study and can be applied in many fields such as personalized treatment, immunotherapy optimizing and adoptive cell therapy. In this review, we introduce commonly used 3D in vitro models and summarize their applications in different aspects of tumor immunology research. We also provide a preliminary analysis of the current shortcomings of these models and the outlook of future development.
Collapse
Affiliation(s)
- Peiyuan Mu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Shujuan Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Tao Lv
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Yaqi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Cancer institute, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Junjie Peng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Guoqiang Hua
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
- Cancer institute, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| |
Collapse
|
20
|
Tartagni O, Borók A, Mensà E, Bonyár A, Monti B, Hofkens J, Porcelli AM, Zuccheri G. Microstructured soft devices for the growth and analysis of populations of homogenous multicellular tumor spheroids. Cell Mol Life Sci 2023; 80:93. [PMID: 36929461 PMCID: PMC10020259 DOI: 10.1007/s00018-023-04748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Multicellular tumor spheroids are rapidly emerging as an improved in vitro model with respect to more traditional 2D culturing. Microwell culturing is a simple and accessible method for generating a large number of uniformly sized spheroids, but commercially available systems often do not enable researchers to perform complete culturing and analysis pipelines and the mechanical properties of their culture environment are not commonly matching those of the target tissue. We herein report a simple method to obtain custom-designed self-built microwell arrays made of polydimethylsiloxane or agarose for uniform 3D cell structure generation. Such materials can provide an environment of tunable mechanical flexibility. We developed protocols to culture a variety of cancer and non-cancer cell lines in such devices and to perform molecular and imaging characterizations of the spheroid growth, viability, and response to pharmacological treatments. Hundreds of tumor spheroids grow (in scaffolded or scaffold-free conditions) at homogeneous rates and can be harvested at will. Microscopy imaging can be performed in situ during or at the end of the culture. Fluorescence (confocal) microscopy can be performed after in situ staining while retaining the geographic arrangement of spheroids in the plate wells. This platform can enable statistically robust investigations on cancer biology and screening of drug treatments.
Collapse
Affiliation(s)
- Ottavia Tartagni
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
| | - Alexandra Borók
- Department of Electronics Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Emanuela Mensà
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
| | - Attila Bonyár
- Department of Electronics Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy.
- Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Bologna, Italy.
- S3 Center, Institute of Nanoscience, Italian National Research Council, Modena, Italy.
| |
Collapse
|
21
|
You S, Xiang Y, Hwang HH, Berry DB, Kiratitanaporn W, Guan J, Yao E, Tang M, Zhong Z, Ma X, Wangpraseurt D, Sun Y, Lu TY, Chen S. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. SCIENCE ADVANCES 2023; 9:eade7923. [PMID: 36812321 PMCID: PMC9946358 DOI: 10.1126/sciadv.ade7923] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) bioprinting techniques have emerged as the most popular methods to fabricate 3D-engineered tissues; however, there are challenges in simultaneously satisfying the requirements of high cell density (HCD), high cell viability, and fine fabrication resolution. In particular, bioprinting resolution of digital light processing-based 3D bioprinting suffers with increasing bioink cell density due to light scattering. We developed a novel approach to mitigate this scattering-induced deterioration of bioprinting resolution. The inclusion of iodixanol in the bioink enables a 10-fold reduction in light scattering and a substantial improvement in fabrication resolution for bioinks with an HCD. Fifty-micrometer fabrication resolution was achieved for a bioink with 0.1 billion per milliliter cell density. To showcase the potential application in tissue/organ 3D bioprinting, HCD thick tissues with fine vascular networks were fabricated. The tissues were viable in a perfusion culture system, with endothelialization and angiogenesis observed after 14 days of culture.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Henry H. Hwang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David B. Berry
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Ma
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting-yu Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Phukhum P, Phetcharaburanin J, Chaleekarn K, Kittirat Y, Kulthawatsiri T, Namwat N, Loilome W, Khuntikeo N, Titapun A, Wangwiwatsin A, Khampitak T, Suksawat M, Klanrit P. The impact of hypoxia and oxidative stress on proteo-metabolomic alterations of 3D cholangiocarcinoma models. Sci Rep 2023; 13:3072. [PMID: 36810897 PMCID: PMC9944917 DOI: 10.1038/s41598-023-30204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The three-dimensional multicellular spheroid (3D MCS) model has been employed in cholangiocarcinoma research as it generates 3D architecture and includes more physiological relevance with the multicellular arrangement. However, it is also essential to explain the molecular signature in this microenvironment and its structural complexity. The results indicated that poorly differentiated CCA cell lines were unable to form 3D MCS due to the lack of cell adhesion molecules with more mesenchymal marker expression. The well-differentiated CCA and cholangiocyte cell lines were able to develop 3D MCSs with round shapes, smooth perimeter, and cell adhesion molecules that led to the hypoxic and oxidative microenvironment detected. For MMNK-1, KKU-213C, and KKU-213A MCSs, the proteo-metabolomic analysis showed proteins and metabolic products altered compared to 2D cultures, including cell-cell adhesion molecules, energy metabolism-related enzymes and metabolites, and oxidative-related metabolites. Therefore, the 3D MCSs provide different physiological states with different phenotypic signatures compared to 2D cultures. Considering the 3D model mimics more physiological relevance, it might lead to an alternate biochemical pathway, targeting to improve drug sensitivity for CCA treatment.
Collapse
Affiliation(s)
- Pimpawadee Phukhum
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Jutarop Phetcharaburanin
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Kwuanjira Chaleekarn
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Yingpinyapat Kittirat
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Thanaporn Kulthawatsiri
- grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Nisana Namwat
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Watcharin Loilome
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Narong Khuntikeo
- grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Attapol Titapun
- grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Arporn Wangwiwatsin
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Tueanjit Khampitak
- grid.9786.00000 0004 0470 0856Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Manida Suksawat
- grid.9786.00000 0004 0470 0856Khon Kaen University Phenome Centre, Khon Kaen, 40002 Thailand ,grid.9786.00000 0004 0470 0856Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Khon Kaen University Phenome Centre, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
23
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdasait S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Sawyer WG. Three-Dimensional Bioconjugated Liquid-Like Solid (LLS) Enhance Characterization of Solid Tumor - Chimeric Antigen Receptor T cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529033. [PMID: 36865164 PMCID: PMC9980005 DOI: 10.1101/2023.02.17.529033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.
Collapse
Affiliation(s)
- Duy T. Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Ruixuan Liu
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elizabeth Ogando-Rivas
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Alfonso Pepe
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Diego Pedro
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Sadeem Qdasait
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Nhi Tran Yen Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Julia M. Lavrador
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Griffin R. Golde
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | | | - John Ligon
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - Linchun Jin
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Haipeng Tao
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | | | | | - Duane A. Mitchell
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elias J Sayour
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Jianping Huang
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Paul Castillo
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - W. Gregory Sawyer
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| |
Collapse
|
24
|
Pixelated Microfluidics for Drug Screening on Tumour Spheroids and Ex Vivo Microdissected Tumour Explants. Cancers (Basel) 2023; 15:cancers15041060. [PMID: 36831403 PMCID: PMC9954565 DOI: 10.3390/cancers15041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.
Collapse
|
25
|
Fu W, Sun M, Zhang J, Xuanyuan T, Liu X, Zhou Y, Liu W. Combinatorial Drug Screening Based on Massive 3D Tumor Cultures Using Micropatterned Array Chips. Anal Chem 2023; 95:2504-2512. [PMID: 36651128 DOI: 10.1021/acs.analchem.2c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.
Collapse
Affiliation(s)
- Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yujie Zhou
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
26
|
Wu Y, Hou L, Lan J, Yaz F, Huang G, Liu W, Gou Y. Mixed-ligand copper(II) hydrazone complexes: Synthesis, structure, and anti-lung cancer properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Benelli R, Costa D, Salvini L, Tardito S, Tosetti F, Villa F, Zocchi MR, Poggi A. Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab. J Immunother Cancer 2022; 10:jitc-2022-005660. [PMID: 36543375 PMCID: PMC9772689 DOI: 10.1136/jitc-2022-005660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADC) are essential therapeutic options to treat solid and hematological cancers. The anti-epidermal growth factor-receptor (EGFR) antibody cetuximab (Cet) is used for the therapy of colorectal carcinoma (CRC). Anti-CRC Vδ2 cytolytic T lymphocytes can be elicited by the priming of tumor cells with the aminobisphosphonate zoledronic acid (ZA) and consequent presentation of isopentenyl pyrophosphates through butyrophilin (BTN) family members such as BTN3A1 and BTN2A1. A major drawback that impairs the targeting of ZA to CRC is the bone tropism of aminobisphosphonates. METHODS The phosphoric group of ZA was linked to free amino groups of Cet in the presence of imidazole following the labeling of phosphoric groups of DNA to amino groups of proteins. The generation of Cet-ZA ADC was confirmed by matrix assisted laser desorption ionization mass spectrometry and inductively coupled plasma-mass spectrometry analysis. Thirteen CRC organoids were obtained with a chemically defined serum-free medium in Geltrex domes. Proliferation and activation of cytolytic activity against CRC organoids by Vδ2 T cells was detected with flow cytometry, crystal violet and cytotoxic probe assays and image analysis. Immunohistochemistry and quantification of BTN3A1 or BTN2A1 expression and the number of tumor infiltrating Vδ2 T cells in CRC were performed by automatic immunostaining, whole slide scanning and computerized analysis of digital pathology imaging. RESULTS The novel ADC Cet-ZA was generated with a drug antibody ratio of 4.3 and displayed a reactivity similar to the unconjugated antibody. More importantly, patient-derived CRC organoids, or CRC tumor cell suspensions, could trigger the expansion of Vδ2 T cells from peripheral blood and tumor infiltrating lymphocytes when primed with Cet-ZA. Furthermore, Cet-ZA triggered Vδ2 T cell-mediated killing of CRC organoids. The expression of BTN3A1 and BTN2A1 was detected not only in CRC organoids but also in CRC specimens, together with a considerable amount of tumor infiltrating Vδ2 T cells. CONCLUSIONS These findings are proof of concept that the Cet-ZA ADC can be used to target specifically CRC organoids and may suggest a new experimental approach to deliver aminobisphosphonates to EGFR+ solid tumors.
Collapse
Affiliation(s)
- Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Laura Salvini
- Technologies Facilities, Fondazione Toscana Life Sciences, Siena, Italy
| | - Samuele Tardito
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Villa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
29
|
Anthon SG, Valente KP. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Int J Mol Sci 2022; 23:14582. [PMID: 36498908 PMCID: PMC9737506 DOI: 10.3390/ijms232314582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The discrepancies between the findings in preclinical studies, and in vivo testing and clinical trials have resulted in the gradual decline in drug approval rates over the past decades. Conventional in vitro drug screening platforms employ two-dimensional (2D) cell culture models, which demonstrate inaccurate drug responses by failing to capture the three-dimensional (3D) tissue microenvironment in vivo. Recent advancements in the field of tissue engineering have made possible the creation of 3D cell culture systems that can accurately recapitulate the cell-cell and cell-extracellular matrix interactions, as well as replicate the intricate microarchitectures observed in native tissues. However, the lack of a perfusion system in 3D cell cultures hinders the establishment of the models as potential drug screening platforms. Over the years, multiple techniques have successfully demonstrated vascularization in 3D cell cultures, simulating in vivo-like drug interactions, proposing the use of 3D systems as drug screening platforms to eliminate the deviations between preclinical and in vivo testing. In this review, the basic principles of 3D cell culture systems are briefly introduced, and current research demonstrating the development of vascularization in 3D cell cultures is discussed, with a particular focus on the potential of these models as the future of drug screening platforms.
Collapse
Affiliation(s)
- Shamapto Guha Anthon
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | |
Collapse
|
30
|
Wang R, Zhang C, Li D, Yao Y. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol 2022; 10:1057913. [PMID: 36483772 PMCID: PMC9722735 DOI: 10.3389/fbioe.2022.1057913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 07/21/2023] Open
Abstract
The extracellular matrix interacts with cancer cells and is a key factor in the development of cancer. Traditional two-dimensional models cannot mimic the natural in situ environment of cancer tissues, whereas three-dimensional (3D) models such as spherical culture, bioprinting, and microfluidic approaches can achieve in vitro reproduction of certain structures and components of the tumor microenvironment, including simulation of the hypoxic environment of tumor tissue. However, the lack of a perfusable vascular network is a limitation of most 3D models. Solid tumor growth and metastasis require angiogenesis, and tumor models with microvascular networks have been developed to better understand underlying mechanisms. Tumor-on-a-chip technology combines the advantages of microfluidics and 3D cell culture technology for the simulation of tumor tissue complexity and characteristics. In this review, we summarize progress in constructing tumor-on-a-chip models with efficiently perfused vascular networks. We also discuss the applications of tumor-on-a-chip technology to studying the tumor microenvironment and drug development. Finally, we describe the creation of several common tumor models based on this technology to provide a deeper understanding and new insights into the design of vascularized cancer models. We believe that the tumor-on-a-chip approach is an important development that will provide further contributions to the field.
Collapse
Affiliation(s)
| | | | - Danxue Li
- *Correspondence: Danxue Li, ; Yang Yao,
| | - Yang Yao
- *Correspondence: Danxue Li, ; Yang Yao,
| |
Collapse
|
31
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
32
|
Chen J, Wang X, Ma A, Wang QE, Liu B, Li L, Xu D, Ma Q. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat Commun 2022; 13:6494. [PMID: 36310235 PMCID: PMC9618578 DOI: 10.1038/s41467-022-34277-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
Drug screening data from massive bulk gene expression databases can be analyzed to determine the optimal clinical application of cancer drugs. The growing amount of single-cell RNA sequencing (scRNA-seq) data also provides insights into improving therapeutic effectiveness by helping to study the heterogeneity of drug responses for cancer cell subpopulations. Developing computational approaches to predict and interpret cancer drug response in single-cell data collected from clinical samples can be very useful. We propose scDEAL, a deep transfer learning framework for cancer drug response prediction at the single-cell level by integrating large-scale bulk cell-line data. The highlight in scDEAL involves harmonizing drug-related bulk RNA-seq data with scRNA-seq data and transferring the model trained on bulk RNA-seq data to predict drug responses in scRNA-seq. Another feature of scDEAL is the integrated gradient feature interpretation to infer the signature genes of drug resistance mechanisms. We benchmark scDEAL on six scRNA-seq datasets and demonstrate its model interpretability via three case studies focusing on drug response label prediction, gene signature identification, and pseudotime analysis. We believe that scDEAL could help study cell reprogramming, drug selection, and repurposing for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoying Wang
- Department of Mathematics, Shandong University, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- Department of Mathematics, Shandong University, Shandong, 250100, China
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
33
|
Bhatt R, Ravi D, Evens AM, Parekkadan B. Scaffold-mediated switching of lymphoma metabolism in culture. Cancer Metab 2022; 10:15. [PMID: 36224623 PMCID: PMC9559005 DOI: 10.1186/s40170-022-00291-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diffuse large B cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and accounts for about a third of all NHL cases. A significant proportion (~40%) of treated DLBCL patients develop refractory or relapsed disease due to drug resistance which can be attributed to metabolomic and genetic variations amongst diverse DLBCL subtypes. An assay platform that reproduces metabolic patterns of DLBCL in vivo could serve as a useful model for DLBCL. METHODS This report investigated metabolic functions in 2D and 3D cell cultures using parental and drug-resistant DLBCL cell lines as compared to patient biopsy tissue. RESULTS A 3D culture model controlled the proliferation of parental and drug-resistant DLBCL cell lines, SUDHL-10, SUDHL-10 RR (rituximab resistant), and SUDHL-10 OR (obinutuzumab resistant), as well as retained differential sensitivity to CHOP. The results from metabolic profiling and isotope tracer studies with D-glucose-13C6 indicated metabolic switching in 3D culture when compared with a 2D environment. Analysis of DLBCL patient tumor tissue revealed that the metabolic changes in 3D grown cells were shifted towards that of clinical specimens. CONCLUSION 3D culture restrained DLBCL cell line growth and modulated metabolic pathways that trend towards the biological characteristics of patient tumors. Counter-intuitively, this research thereby contends that 3D matrices can be a tool to control tumor function towards a slower growing and metabolically dormant state that better reflects in vivo tumor physiology.
Collapse
Affiliation(s)
- Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical Health Sciences, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
34
|
Langer C, Köll-Weber M, Holzer M, Hantel C, Süss R. Mitotane Nanocarriers for the Treatment of Adrenocortical Carcinoma: Evaluation of Albumin-Stabilized Nanoparticles and Liposomes in a Preclinical In Vitro Study with 3D Spheroids. Pharmaceutics 2022; 14:pharmaceutics14091891. [PMID: 36145639 PMCID: PMC9501383 DOI: 10.3390/pharmaceutics14091891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a heterogeneous malignancy related to poor prognosis and limited treatment options. The orphan drug mitotane (MT) is still a cornerstone in ACC therapy, however, its application is characterized by low aqueous solubility, poor bioavailability, and unfavorable pharmacokinetics, often resulting in below-target plasma concentrations or toxic side effects. Throughout the last decades, nanoparticulate formulations have become attractive carriers to improve anticancer therapy. In this study, injectable MT liposomes (DOPC-MT) and albumin-stabilized MT nanoparticles (BSA-MT) were investigated in depth with respect to their physicochemical properties, and their colloidal and therapeutical stability upon storage. Furthermore, in vitro cytotoxicity was evaluated using the ACC model cell line NCI-H295R for preparing multicellular tumor spheroids, and was compared to non-malignant human dermal fibroblasts. Our results clearly demonstrate that BSA-MT, unlike DOPC-MT, represents a stable and storable MT formulation with a high drug concentration in an aqueous medium. Dual centrifugation was established as a reproducible method for nanoparticle preparation. Although an efficient cytotoxic effect on ACC tumor spheroids was demonstrated, concomitant low toxicity to fibroblasts suggests that higher drug concentrations may be tolerated in vivo. Consequently, BSA-MT is a novel and promising therapeutical approach to address key challenges in MT treatment.
Collapse
Affiliation(s)
- Carolin Langer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-2034899
| | - Monika Köll-Weber
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| | - Martin Holzer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Sonnenstraße 5, 79104 Freiburg, Germany
| |
Collapse
|
35
|
Munnik C, Xaba MP, Malindisa ST, Russell BL, Sooklal SA. Drosophila melanogaster: A platform for anticancer drug discovery and personalized therapies. Front Genet 2022; 13:949241. [PMID: 36003330 PMCID: PMC9393232 DOI: 10.3389/fgene.2022.949241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex disease whereby multiple genetic aberrations, epigenetic modifications, metabolic reprogramming, and the microenvironment contribute to the development of a tumor. In the traditional anticancer drug discovery pipeline, drug candidates are usually screened in vitro using two-dimensional or three-dimensional cell culture. However, these methods fail to accurately mimic the human disease state. This has led to the poor success rate of anticancer drugs in the preclinical stages since many drugs are abandoned due to inefficacy or toxicity when transitioned to whole-organism models. The common fruit fly, Drosophila melanogaster, has emerged as a beneficial system for modeling human cancers. Decades of fundamental research have shown the evolutionary conservation of key genes and signaling pathways between flies and humans. Moreover, Drosophila has a lower genetic redundancy in comparison to mammals. These factors, in addition to the advancement of genetic toolkits for manipulating gene expression, allow for the generation of complex Drosophila genotypes and phenotypes. Numerous studies have successfully created Drosophila models for colorectal, lung, thyroid, and brain cancers. These models were utilized in the high-throughput screening of FDA-approved drugs which led to the identification of several compounds capable of reducing proliferation and rescuing phenotypes. More noteworthy, Drosophila has also unlocked the potential for personalized therapies. Drosophila ‘avatars’ presenting the same mutations as a patient are used to screen multiple therapeutic agents targeting multiple pathways to find the most appropriate combination of drugs. The outcomes of these studies have translated to significant responses in patients with adenoid cystic carcinoma and metastatic colorectal cancers. Despite not being widely utilized, the concept of in vivo screening of drugs in Drosophila is making significant contributions to the current drug discovery pipeline. In this review, we discuss the application of Drosophila as a platform in anticancer drug discovery; with special focus on the cancer models that have been generated, drug libraries that have been screened and the status of personalized therapies. In addition, we elaborate on the biological and technical limitations of this system.
Collapse
Affiliation(s)
- Chamoné Munnik
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Malungi P. Xaba
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Sibusiso T. Malindisa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Bonnie L. Russell
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- Buboo (Pty) Ltd, The Innovation Hub, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- *Correspondence: Selisha A. Sooklal,
| |
Collapse
|
36
|
Millet M, Bollmann E, Ringuette Goulet C, Bernard G, Chabaud S, Huot MÉ, Pouliot F, Bolduc S, Bordeleau F. Cancer-Associated Fibroblasts in a 3D Engineered Tissue Model Induce Tumor-like Matrix Stiffening and EMT Transition. Cancers (Basel) 2022; 14:cancers14153810. [PMID: 35954473 PMCID: PMC9367573 DOI: 10.3390/cancers14153810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The physical properties of a tumor, such as stiffness, are important drivers of tumor progression. However, current in vitro tumor models fail to recapitulate the full range of physical properties observed in solid tumors. Here, we proposed a 3D self-assembly engineered bladder model using cancer-associated fibroblasts in which stromal cells produce their extracellular matrix. We then proceeded to assess how our model recapitulates biological and mechanical features found in tumors. We confirmed that stroma assembled by cancer-associated fibroblasts have increased extracellular matrix content and display increased remodeling and higher stiffness. Moreover, normal urothelial cells seeded on the tumor model displayed a mechanotransduction response, increased cell proliferation, cell infiltration within stroma, and displayed features of the epithelial-to-mesenchymal transition. Altogether, we demonstrated that our cancer-associated fibroblast-derived tumor stroma recapitulates several biological and physical features expected from a tumor-like environment and, thus, provides the basis for more accurate cancer models. Abstract A tumor microenvironment is characterized by its altered mechanical properties. However, most models remain unable to faithfully recreate the mechanical properties of a tumor. Engineered models based on the self-assembly method have the potential to better recapitulate the stroma architecture and composition. Here, we used the self-assembly method based on a bladder tissue model to engineer a tumor-like environment. The tissue-engineered tumor models were reconstituted from stroma-derived healthy primary fibroblasts (HFs) induced into cancer-associated fibroblast cells (iCAFs) along with an urothelium overlay. The iCAFs-derived extracellular matrix (ECM) composition was found to be stiffer, with increased ECM deposition and remodeling. The urothelial cells overlaid on the iCAFs-derived ECM were more contractile, as measured by quantitative polarization microscopy, and displayed increased YAP nuclear translocation. We further showed that the proliferation and expression of epithelial-to-mesenchymal transition (EMT) marker in the urothelial cells correlate with the increased stiffness of the iCAFs-derived ECM. Our data showed an increased expression of EMT markers within the urothelium on the iCAFs-derived ECM. Together, our results demonstrate that our tissue-engineered tumor model can achieve stiffness levels comparable to that of a bladder tumor, while triggering a tumor-like response from the urothelium.
Collapse
Affiliation(s)
- Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Enola Bollmann
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Cassandra Ringuette Goulet
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Geneviève Bernard
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Marc-Étienne Huot
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Frédéric Pouliot
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- CHU de Québec-Université Laval Research Center (Regenerative Medicine Division), Quebec City, QC G1V 4G2, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division) and Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Université Laval, Quebec City, QC G1J 1Z4, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 15554)
| |
Collapse
|
37
|
Morphometrical, Morphological, and Immunocytochemical Characterization of a Tool for Cytotoxicity Research: 3D Cultures of Breast Cell Lines Grown in Ultra-Low Attachment Plates. TOXICS 2022; 10:toxics10080415. [PMID: 35893848 PMCID: PMC9394479 DOI: 10.3390/toxics10080415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
Three-dimensional cell cultures may better mimic avascular tumors. Yet, they still lack characterization and standardization. Therefore, this study aimed to (a) generate multicellular aggregates (MCAs) of four breast cell lines: MCF7, MDA-MB-231, and SKBR3 (tumoral) and MCF12A (non-tumoral) using ultra-low attachment (ULA) plates, (b) detail the methodology used for their formation and analysis, providing technical tips, and (c) characterize the MCAs using morphometry, qualitative cytology (at light and electron microscopy), and quantitative immunocytochemistry (ICC) analysis. Each cell line generated uniform MCAs with structural differences among cell lines: MCF7 and MDA-MB-231 MCAs showed an ellipsoid/discoid shape and compact structure, while MCF12A and SKBR3 MCAs were loose, more flattened, and presented bigger areas. MCF7 MCAs revealed glandular breast differentiation features. ICC showed a random distribution of the proliferating and apoptotic cells throughout the MCAs, not fitting in the traditional spheroid model. ICC for cytokeratin, vimentin, and E-cadherin showed different results according to the cell lines. Estrogen (ER) and progesterone (PR) receptors were positive only in MCF7 and human epidermal growth factor receptor 2 (HER-2) in SKBR3. The presented characterization of the MCAs in non-exposed conditions provided a good baseline to evaluate the cytotoxic effects of potential anticancer compounds.
Collapse
|
38
|
Fernandes S, Vyas C, Lim P, Pereira RF, Virós A, Bártolo P. 3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers (Basel) 2022; 14:cancers14143535. [PMID: 35884596 PMCID: PMC9318274 DOI: 10.3390/cancers14143535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a potentially fatal cancer with rising incidence over the last 50 years, associated with enhanced sun exposure and ultraviolet radiation. Its incidence is highest in people of European descent and the ageing population. There are multiple clinical and epidemiological variables affecting melanoma incidence and mortality, such as sex, ethnicity, UV exposure, anatomic site, and age. Although survival has improved in recent years due to advances in targeted and immunotherapies, new understanding of melanoma biology and disease progression is vital to improving clinical outcomes. Efforts to develop three-dimensional human skin equivalent models using biofabrication techniques, such as bioprinting, promise to deliver a better understanding of the complexity of melanoma and associated risk factors. These 3D skin models can be used as a platform for patient specific models and testing therapeutics.
Collapse
Affiliation(s)
- Samantha Fernandes
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peggy Lim
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Rúben F. Pereira
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Amaya Virós
- Skin Cancer and Ageing Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Paulo Bártolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: or
| |
Collapse
|
39
|
Nieto D, Jiménez G, Moroni L, López-Ruiz E, Gálvez-Martín P, Marchal JA. Biofabrication approaches and regulatory framework of metastatic tumor-on-a-chip models for precision oncology. Med Res Rev 2022; 42:1978-2001. [PMID: 35707911 PMCID: PMC9545141 DOI: 10.1002/med.21914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor‐on‐chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan‐on‐a‐chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three‐dimensional bioprinting systems with the novel tumor/metastasis/multiorgan‐on‐a‐chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.
Collapse
Affiliation(s)
- Daniel Nieto
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Universiteitssingel, Maastricht, The Netherlands.,Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
| | - Gema Jiménez
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Universiteitssingel, Maastricht, The Netherlands
| | - Elena López-Ruiz
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | - Juan Antonio Marchal
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
40
|
Zhu X, Li Y, Yang Y, He Y, Gao M, Peng W, Wu Q, Zhang G, Zhou Y, Chen F, Bao J, Li W. Ordered micropattern arrays fabricated by lung-derived dECM hydrogels for chemotherapeutic drug screening. Mater Today Bio 2022; 15:100274. [PMID: 35601895 DOI: 10.1016/j.mtphys.2020.100274] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023] Open
Abstract
AIMS This study aims to evaluate ECM-coated micropattern arrays derived from decellularization of native porcine lungs as a novel three-dimensional cell culture platform. METHODS ECM derived from decellularization of native porcine lungs was exploited to prepare hydrogels. Then, dECM-coated micropattern arrays were fabricated at four different diameters (50, 100, 150 and 200 μm) using polydimethylsiloxane (PDMS). Two lung cancer cell lines, A549 and H1299, were tested on a dECM-coated micropattern array as a novel culture platform for cell adhesion, distribution, proliferation, viability, phenotype expression, and drug screening to evaluate the cytotoxicity of paclitaxel, doxorubicin and cisplatin. RESULTS The ECM derived from decellularization of native porcine lungs supported cell adhesion, distribution, viability and proliferation better than collagen I and Matrigel as the coated matrix on the surface. Moreover, the optimal diameter of the micropattern arrays was 100-150 μm, as determined by measuring the morphology, viability, proliferation and phenotype of the cancer cell spheroids. Cell spheroids of A549 and H1299 on dECM-coated micropattern arrays showed chemoresistance to anticancer drugs compared to that of the monolayer. The different distributions of HIF-1α, MCL-1 (in the center) and Ki-67 and MRP2 (in the periphery) of the spheroids demonstrated the good establishment of basal-lateral polarity and explained the chemoresistance phenomenon of spheroids. CONCLUSIONS This novel three-dimensional cell culture platform is stable and reliable for anticancer drug testing. Drug screening in dECM-coated micropattern arrays provides a powerful alternative to existing methods for drug testing and metabolic profiling in the drug discovery process.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangyue Zhang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyan Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
41
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Takehana S, Yang W, Tabata Y. Potential Method of Autophagy Imaging with Cationized Gelatin Nanospheres Incorporating Molecular Beacon. ACS APPLIED BIO MATERIALS 2022; 5:2965-2975. [PMID: 35609115 DOI: 10.1021/acsabm.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop an imaging method with cationized gelatin nanospheres incorporating molecular beacon (cGNSMB) to visualize an autophagy activity in living cells. Cationized gelatin nanospheres (cGNS) were prepared by the conventional coacervation method, and then molecular beacon (MB) was incorporated into them. The cGNSMB prepared were internalized into cells at a high efficiency. In this study, a starvation medium of serum and amino acids-free was used to induce autophagy. The autophagy activity was confirmed by an immunofluorescence staining for microtubule-associated proteins light chain 3B (LC3B) of an autophagy specific protein. With the autophagy induction time, the number of LC3 fluorescent dots increased, which indicated an increased autophagy activity. As the autophagy-related genes, sequestosome 1 (SQSTM1) and cathepsin F (CTSF), which up-regulate after autophagy induction, were chosen as the targets of cGNSMB. The fluorescence intensity of cGNSMB targeting to SQSTM1 and CTSF increased with the starvation treatment time, which well corresponded with the gene expression results. When applied to cells in different autophagy conditions, the cGNSMB visualized the autophagy activity corresponding with the autophagy condition of cells. From the results obtained, it was concluded that the cGNSMB provide a promising method to visualize the autophagy of cells. The advantage of cGNSMB visualization is to obtain the temporal and spatial information without destroying sample cells.
Collapse
Affiliation(s)
- Sho Takehana
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wenxuan Yang
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
Filipiak-Duliban A, Brodaczewska K, Majewska A, Kieda C. Spheroid culture models adequately imitate distinctive features of the renal cancer or melanoma microenvironment. In Vitro Cell Dev Biol Anim 2022; 58:349-364. [PMID: 35536385 DOI: 10.1007/s11626-022-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
Tumor development studies should adapt to cancer cells' specific mechanisms in connection with their microenvironment. Standard two-dimensional cultures and gas composition are not relevant to the real cancer environment. Existing three-dimensional models are often requiring sophisticated conditions. Here, we propose and characterize, in two cancer models, melanoma (B16F10) and kidney cancer (RenCa), a three-dimensional culture method, reporting the presence of hypoxia-related genes/proteins and aggressiveness mechanisms (epithelial mesenchymal transition and cancer stem cells). We validate the designed three-dimensional method by comparing it with in vivo growing tumors. The developed method brings simplicity and data reproducibility. Melanoma spheroid-growing cells reached a cell cycle arrest at the G0/G1 phase and showed induction of hypoxia. Spheroid-recovered RenCa cells were enriched in proliferating cells and displayed delayed hypoxia. Moreover, the responses to hypoxia observed in spheroids were validated by in vivo tumor studies for both lines. Three-dimensional shapes induced cancer stem cells in renal cancer, whereas epithelial to mesenchymal transition occurred in the melanoma model. Such distinction in the use of different aggressiveness-leading pathways was observed in in vivo melanoma vs kidney tumors. Thus, this 3D culture model approach is adequate to uncover crucial molecular pathways using distinct mechanisms to reach aggressiveness; i.e., B16F10 cells perform epithelial to mesenchymal transition while RenCa cells dedifferentiate into cancer stem cells. Such three-dimensional models help mimic the in vivo tumor features, i.e., hypoxia and aggressiveness mechanisms as validated here by next-generation sequencing analysis, and are proposed for further alternative methods to in vivo studies.
Collapse
Affiliation(s)
- Aleksandra Filipiak-Duliban
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Center for Molecular Biophysics UPR 4301 CNRS, 45071, Orleans, France
| |
Collapse
|
44
|
Zhu X, Li Y, Yang Y, He Y, Gao M, Peng W, Wu Q, Zhang G, Zhou Y, Chen F, Bao J, Li W. Ordered micropattern arrays fabricated by lung-derived dECM hydrogels for chemotherapeutic drug screening. Mater Today Bio 2022; 15:100274. [PMID: 35601895 PMCID: PMC9114688 DOI: 10.1016/j.mtbio.2022.100274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022]
Abstract
Aims This study aims to evaluate ECM-coated micropattern arrays derived from decellularization of native porcine lungs as a novel three-dimensional cell culture platform. Methods ECM derived from decellularization of native porcine lungs was exploited to prepare hydrogels. Then, dECM-coated micropattern arrays were fabricated at four different diameters (50, 100, 150 and 200 μm) using polydimethylsiloxane (PDMS). Two lung cancer cell lines, A549 and H1299, were tested on a dECM-coated micropattern array as a novel culture platform for cell adhesion, distribution, proliferation, viability, phenotype expression, and drug screening to evaluate the cytotoxicity of paclitaxel, doxorubicin and cisplatin. Results The ECM derived from decellularization of native porcine lungs supported cell adhesion, distribution, viability and proliferation better than collagen I and Matrigel as the coated matrix on the surface. Moreover, the optimal diameter of the micropattern arrays was 100–150 μm, as determined by measuring the morphology, viability, proliferation and phenotype of the cancer cell spheroids. Cell spheroids of A549 and H1299 on dECM-coated micropattern arrays showed chemoresistance to anticancer drugs compared to that of the monolayer. The different distributions of HIF-1α, MCL-1 (in the center) and Ki-67 and MRP2 (in the periphery) of the spheroids demonstrated the good establishment of basal-lateral polarity and explained the chemoresistance phenomenon of spheroids. Conclusions This novel three-dimensional cell culture platform is stable and reliable for anticancer drug testing. Drug screening in dECM-coated micropattern arrays provides a powerful alternative to existing methods for drug testing and metabolic profiling in the drug discovery process. Lung dECM hydrogels can be used as a beneficial coating matrix for supporting cell adhesion, viability and proliferation. Ordered micropattern arrays provide a novel platform for spheroid formation, phenotype expression and drug screening. The heterogeneous distributions of the cancer spheroids established basal-lateral polarity and explained the chemoresistance.
Collapse
|
45
|
nurP28, a New-to-Nature Zein-Derived Peptide, Enhances the Therapeutic Effect of Docetaxel in Breast Cancer Monolayers and Spheroids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092824. [PMID: 35566175 PMCID: PMC9105272 DOI: 10.3390/molecules27092824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
The development of novel cancer therapeutic strategies has garnered increasing interest in cancer research. Among the therapeutic choices, chemosensitizers have shown exciting prospects. Peptides are an attractive alternative among the molecules that may be used as chemosensitizers. We rationally designed a new-to-nature peptide, nurP28, derived from the 22-kDa α-zein protein sequence (entry Q00919_MAIZE). The resultant sequence of the nurP28 peptide after the addition of arginine residues was LALLALLRLRRRATTAFIIP, and we added acetyl and amide groups at the N- and C-terminus, respectively, for capping. We evaluated the cytotoxicity of the nurP28 peptide alone and in combination with docetaxel in fibroblast monolayers and breast cancer monolayers and spheroids. Our results indicated that nurP28 is not cytotoxic to human fibroblasts or cancer cells. Nevertheless, when combined with 1 µM docetaxel, 3 ng/mL nurP28 induced equivalent (in MCF7 monolayers) and higher (in MCF7 spheroids) cytotoxic effects than 10-fold higher doses of docetaxel alone. These findings suggest that nurP28 may act as a chemosensitizer in breast cancer treatment. This study describes the enhancing “anti-cancer” effects of nurP28 in breast cancer 2D and 3D cultures treated with docetaxel. Further studies should explore the mechanisms underlying these effects and assess the clinical potential of our findings using animal models.
Collapse
|
46
|
Zhong Z, Wang J, Tian J, Deng X, Balayan A, Sun Y, Xiang Y, Guan J, Schimelman J, Hwang H, You S, Wu X, Ma C, Shi X, Yao E, Deng SX, Chen S. Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment. Biomaterials 2022; 282:121391. [PMID: 35101743 PMCID: PMC10162446 DOI: 10.1016/j.biomaterials.2022.121391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022]
Abstract
Pterygium is an ocular surface disorder with high prevalence that can lead to vision impairment. As a pathological outgrowth of conjunctiva, pterygium involves neovascularization and chronic inflammation. Here, we developed a 3D multicellular in vitro pterygium model using a digital light processing (DLP)-based 3D bioprinting platform with human conjunctival stem cells (hCjSCs). A novel feeder-free culture system was adopted and efficiently expanded the primary hCjSCs with homogeneity, stemness and differentiation potency. The DLP-based 3D bioprinting method was able to fabricate hydrogel scaffolds that support the viability and biological integrity of the encapsulated hCjSCs. The bioprinted 3D pterygium model consisted of hCjSCs, immune cells, and vascular cells to recapitulate the disease microenvironment. Transcriptomic analysis using RNA sequencing (RNA-seq) identified a distinct profile correlated to inflammation response, angiogenesis, and epithelial mesenchymal transition in the bioprinted 3D pterygium model. In addition, the pterygium signatures and disease relevance of the bioprinted model were validated with the public RNA-seq data from patient-derived pterygium tissues. By integrating the stem cell technology with 3D bioprinting, this is the first reported 3D in vitro disease model for pterygium that can be utilized for future studies towards personalized medicine and drug screening.
Collapse
Affiliation(s)
- Zheng Zhong
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Tian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Alis Balayan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA; School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiaao Guan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Henry Hwang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaokang Wu
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chao Ma
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaoao Shi
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Xing F, Ai N, Huang S, Jiang C, Mughal MJ, Ge W, Wang G, Deng CX. An In Vivo Fluorescence Resonance Energy Transfer-Based Imaging Platform for Targeted Drug Discovery and Cancer Therapy. Front Bioeng Biotechnol 2022; 10:839078. [PMID: 35237583 PMCID: PMC8884137 DOI: 10.3389/fbioe.2022.839078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 01/28/2023] Open
Abstract
In the present study, an efficient in vivo drug screening platform is established based on FRET technique. We transfected cancer cells with FRET-based caspase-3 (C3) sensor and validated the cell lines by detecting the change in FRET signal caused by the in vitro drug-induced cell apoptosis. Furthermore, the C3 expressing cancer cells were then injected into zebrafish embryos and nude mice to establish the corresponding in vivo xenograft models. We found that cancer cell lines expressing C3 were effective in detecting cell death following drug treatment, including the detection of the tipping point of apoptosis. The drug-induced cell apoptosis was also observed in both zebrafish embryos and nude mice xenograft models. Overall, the FRET-based platform, through in vivo imaging, is potentially useful to improve drug screening efficiency.
Collapse
Affiliation(s)
- Fuqiang Xing
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China,Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, China,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shigao Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Guanyu Wang
- Department of Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, China,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Guanyu Wang, ; Chu-Xia Deng,
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China,*Correspondence: Guanyu Wang, ; Chu-Xia Deng,
| |
Collapse
|
48
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
49
|
Dekker LJM, Verheul C, Wensveen N, Leenders W, Lamfers MLM, Leenstra S, Luider TM. Effects of the IDH1 R132H Mutation on the Energy Metabolism: A Comparison between Tissue and Corresponding Primary Glioma Cell Cultures. ACS OMEGA 2022; 7:3568-3578. [PMID: 35128264 PMCID: PMC8811756 DOI: 10.1021/acsomega.1c06121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/24/2021] [Indexed: 05/03/2023]
Abstract
The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes, appropriate glioma models are required that accurately mimic in vivo metabolism. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap-frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma primary cell cultures. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as three-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Cassandra Verheul
- Department of Neurosurgery, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Nicky Wensveen
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - William Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Theo M Luider
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
50
|
Tsuruwaka Y, Shimada E. Reprocessing seafood waste: challenge to develop aquatic clean meat from fish cells. NPJ Sci Food 2022; 6:7. [PMID: 35087061 PMCID: PMC8795430 DOI: 10.1038/s41538-021-00121-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Fish consumption has been increasing worldwide as per capita consumption of fish rises along with population growth. At the same time, overfishing is increasing all over the world, causing enormous damage to the ecosystem. There is an urgent need to secure sustainable fishery resources to meet the expanding demand for fish. The present study focused on the cells obtained from fish fins, which were often discarded as food waste, and which had the potential to change their morphology with simple treatments, creating the possibility of processing fish fin cells into clean meat (i.e., meat produced in vitro; artificial, lab-cultured meat using tissue engineering techniques). The fin-derived fibroblast-like cells demonstrated an interesting characteristic; changing the sera or culture media supported differentiation of the fibroblast-like cells to various cell morphologies, such as neurofilaments and adipocytes, etc., without genetic manipulation. Furthermore, it was possible to culture the cells in multi-layered and three-dimensional forms that were suitable for processing and shaping. Taking advantage of the cells' characteristics, 'aquatic clean meat' was produced successfully at the prototype stage. Our results suggest that fish fins, which are often treated as waste material, thus, are easy to procure, simple to process, and could be used to create a sustainable food resource.
Collapse
Affiliation(s)
- Yusuke Tsuruwaka
- Cellevolt, Niigata, Japan. .,Institute for Advanced Biosciences, Keio University, Yamagata, Japan. .,Marine Bioresource Exploration Research Team, Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.
| | - Eriko Shimada
- Cellevolt, Niigata, Japan. .,Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. .,Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|