1
|
Sadanandan J, Thomas S, Mathew IE, Huang Z, Blackburn SL, Tandon N, Lokhande H, McCrea PD, Bresnick EH, Dash PK, McBride DW, Harmanci A, Ahirwar LK, Jose D, Dienel AC, Zeineddine HA, Hong S, Kumar T P. Key epigenetic and signaling factors in the formation and maintenance of the blood-brain barrier. eLife 2024; 12:RP86978. [PMID: 39670988 PMCID: PMC11643625 DOI: 10.7554/elife.86978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator's histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Iny Elizabeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Zhen Huang
- Departments of Neurology & Neuroscience, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | | | - Pierre D McCrea
- Department of Genetics, TheUniversity of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public HealthMadisonUnited States
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Arif Harmanci
- UTHealth School of Biomedical InformaticsHoustonUnited States
| | - Lalit K Ahirwar
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Dania Jose
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Ari C Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| | - Peeyush Kumar T
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center McGovern Medical SchoolHoustonUnited States
| |
Collapse
|
2
|
Gökalp F. An investigation into the usage of black cumin derivatives against cancer and COVID-19 as the nature medicine. J Biomol Struct Dyn 2024:1-8. [PMID: 38197611 DOI: 10.1080/07391102.2024.2302942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Black cumin has been used as a spice and food preservative for years. Thymol, thymoquinone, thymohydroquinone and dihydrothymoquinone are the most important natural agents in black cumin. In order to determine the most active compound in black cumin the theoretical calculations have been carried out in different phases by using the density functional theory (DFT). The inhibition effect of black cumin derivatives on Histone deacetylase 2 (HDAC2) has been determined and supported the experimental studies without losing time and matter. The chemical activity, stability and solubility of the active substances in black cumin have been theoretically calculated. The chemical active compounds had been investigated in the black seeds when extracted with water. Their stability and polarity in blood and water are important parameters. HDAC2- dihydrothymoquinone interaction has been investigated. It has been determined that the active substances found in black cumin are very effective in protecting ACE2 against COVID-19 and by comparing the docking results of important receptors and selected ligands on COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faik Gökalp
- Department of Mathematics and Science Education, Education Faculty, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
- Faculty of Health Sciences, Iğdır University, Iğdır, Turkey
| |
Collapse
|
3
|
Rouya C, Yambire KF, Derbyshire ML, Alwaseem H, Tavazoie SF. Inter-organellar nucleic acid communication by a mitochondrial tRNA regulates nuclear metabolic transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558912. [PMID: 37790361 PMCID: PMC10542527 DOI: 10.1101/2023.09.21.558912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Efficient communication between mitochondria and the nucleus underlies homoeostatic metabolic control, though the involved mitochondrial factors and their mechanisms are poorly defined. Here, we report the surprising detection of multiple mitochondrial-derived transfer RNAs (mito-tRNAs) within the nuclei of human cells. Focused studies of nuclear-transported mito-tRNA-asparagine (mtAsn) revealed that its cognate charging enzyme (NARS2) is also present in the nucleus. MtAsn promoted interaction of NARS2 with histone deacetylase 2 (HDAC2), and repressed HDAC2 association with specific chromatin loci. Perturbation of this axis using antisense oligonucleotides promoted nucleotide biogenesis and enhanced breast cancer growth, and RNA and nascent transcript sequencing demonstrated specific alterations in the transcription of nuclear genes. These findings uncover nucleic-acid mediated communication between two organelles and the existence of a machinery for nuclear gene regulation by a mito-tRNA that restricts tumor growth through metabolic control. Highlights Multiple mitochondrial-derived tRNAs are detected in human cell nucleiMtAsn promotes binding between NARS2 and HDAC2Metabolic alterations driven by mtAsn impact cell proliferationMtAsn inhibition releases HDAC2 to bind and transcriptionally regulate multiple nuclear genes.
Collapse
|
4
|
Beacon TH, Davie JR. Chicken Erythrocyte: Epigenomic Regulation of Gene Activity. Int J Mol Sci 2023; 24:ijms24098287. [PMID: 37175991 PMCID: PMC10179511 DOI: 10.3390/ijms24098287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The chicken genome is one-third the size of the human genome and has a similarity of sixty percent when it comes to gene content. Harboring similar genome sequences, chickens' gene arrangement is closer to the human genomic organization than it is to rodents. Chickens have been used as model organisms to study evolution, epigenome, and diseases. The chicken nucleated erythrocyte's physiological function is to carry oxygen to the tissues and remove carbon dioxide. The erythrocyte also supports the innate immune response in protecting the chicken from pathogens. Among the highly studied aspects in the field of epigenetics are modifications of DNA, histones, and their variants. In understanding the organization of transcriptionally active chromatin, studies on the chicken nucleated erythrocyte have been important. Through the application of a variety of epigenomic approaches, we and others have determined the chromatin structure of expressed/poised genes involved in the physiological functions of the erythrocyte. As the chicken erythrocyte has a nucleus and is readily isolated from the animal, the chicken erythrocyte epigenome has been studied as a biomarker of an animal's long-term exposure to stress. In this review, epigenomic features that allow erythroid gene expression in a highly repressive chromatin background are presented.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Jin J, Ren P, Li X, Zhang Y, Yang W, Ma Y, Lai M, Yu C, Zhang S, Zhang YL. Ovulatory signal-triggered chromatin remodeling in ovarian granulosa cells by HDAC2 phosphorylation activation-mediated histone deacetylation. Epigenetics Chromatin 2023; 16:11. [PMID: 37076890 PMCID: PMC10116676 DOI: 10.1186/s13072-023-00485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yinyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Chao Yu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
6
|
Xie Z, Tang J, Chen Z, Wei L, Chen J, Liu Q. Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK. Inflamm Res 2023; 72:553-576. [PMID: 36640195 PMCID: PMC9840168 DOI: 10.1007/s00011-022-01653-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated as a potential therapeutic agent in acute kidney injury (AKI). However, little is known about the mechanisms of action of BMSC-derived EVs in AKI. Based on this, our research was designed to investigate the mechanism behind BMSC-derived EVs controlling inflammation and pyroptosis during AKI. METHODS Peripheral blood from AKI patients was used for detection of microRNA (miR)-223-3p, HDAC2, and SNRK expression. An AKI rat model was established, and HK-2 cell injury was induced by lipopolysaccharide (LPS) to establish a cellular model. Co-culture with BMSC-derived EVs and/or gain- and loss-of-function assays were conducted in LPS-treated HK-2 to evaluate the functions of BMSCs-EVs, miR-223-3p, HDAC2, and SNRK. AKI rats were simultaneously injected with EVs and short hairpin RNAs targeting SNRK. The interactions among miR-223-3p, HDAC2, and SNRK were evaluated by RIP, ChIP, and dual-luciferase gene reporter assays. RESULTS Patients with AKI had low miR-223-3p and SNRK expression and high HDAC2 expression in peripheral blood. Mechanistically, miR-223-3p targeted HDAC2 to accelerate SNRK transcription. In LPS-treated HK-2 cells, BMSCs-EVs overexpressing miR-223-3p increased cell viability and diminished cell apoptosis, KIM-1, LDH, IL-1β, IL-6, TNF-α, NLRP3, ASC, cleaved caspase-1, and IL-18 expression, and GSDMD cleavage, which was nullified by HDAC2 overexpression or SNRK silencing. In AKI rats, BMSCs-EV-shuttled miR-223-3p reduced CRE and BUN levels, apoptosis, inflammation, and pyroptosis, which was abrogated by SNRK silencing. CONCLUSION Conclusively, BMSC-derived EV-encapsulated miR-223-3p mitigated AKI-induced inflammation and pyroptosis by targeting HDAC2 and promoting SNRK transcription.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Jun Tang
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lanji Wei
- Health Management Center, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Province Mawangdui Hospital, Changsha, 410016, Hunan, People's Republic of China
| | - Qin Liu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Liu H, Ngo NYN, Herzberger KF, Gummaraju M, Hilliard S, Chen CH. Histone deacetylases 1 and 2 target gene regulatory networks of nephron progenitors to control nephrogenesis. Biochem Pharmacol 2022; 206:115341. [PMID: 36356658 DOI: 10.1016/j.bcp.2022.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Our studies demonstrated the critical role of Histone deacetylases (HDACs) in the regulation of nephrogenesis. To better understand the key pathways regulated by HDAC1/2 in early nephrogenesis, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) of HDAC1/2 on isolated nephron progenitor cells (NPCs) from mouse E16.5 kidneys. Our analysis revealed that 11,802 (40.4%) of HDAC1 peaks overlap with HDAC2 peaks, further demonstrates the redundant role of HDAC1 and HDAC2 during nephrogenesis. Common HDAC1/2 peaks are densely concentrated close to the transcriptional start site (TSS). GREAT Gene Ontology analysis of overlapping HDAC1/2 peaks reveals that HDAC1/2 are associated with metanephric nephron morphogenesis, chromatin assembly or disassembly, as well as other DNA checkpoints. Pathway analysis shows that negative regulation of Wnt signaling pathway is one of HDAC1/2's most significant function in NPCs. Known motif analysis indicated that Hdac1 is enriched in motifs for Six2, Hox family, and Tcf family members, which are essential for self-renewal and differentiation of nephron progenitors. Interestingly, we found the enrichment of HDAC1/2 at the enhancer and promoter regions of actively transcribed genes, especially those concerned with NPC self-renewal. HDAC1/2 simultaneously activate or repress the expression of different genes to maintain the cellular state of nephron progenitors. We used the Integrative Genomics Viewer to visualize these target genes associated with each function and found that HDAC1/2 co-bound to the enhancers or/and promoters of genes associated with nephron morphogenesis, differentiation, and cell cycle control. Taken together, our ChIP-Seq analysis demonstrates that HDAC1/2 directly regulate the molecular cascades essential for nephrogenesis.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics, School of Medicine, Tulane University, United States.
| | - Nguyen Yen Nhi Ngo
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Kyra F Herzberger
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Manasi Gummaraju
- Department of Pediatrics, School of Medicine, Tulane University, United States; School of Arts and Science, Washington University in St. Louis, United States
| | - Sylvia Hilliard
- Department of Pediatrics, School of Medicine, Tulane University, United States
| | - Chao-Hui Chen
- Department of Pediatrics, School of Medicine, Tulane University, United States
| |
Collapse
|
8
|
Pan L, Niu Z, Gao Y, Wang L, Liu Z, Liu J, Sun J, Pei H. Silencing of CREB Inhibits HDAC2/TLR4/NF-κB Cascade to Relieve Severe Acute Pancreatitis-Induced Myocardial Injury. Inflammation 2021; 44:1565-1580. [PMID: 33725236 DOI: 10.1007/s10753-021-01441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/06/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
The purpose of the present study is to investigate the role of CREB in cardiomyocytes proliferation in regulation of HDAC2-dependent TLR4/NF-κB pathway in severe acute pancreatitis (SAP)-induced myocardial injury. The SAP rat model was developed by injecting sodium touracholate into SD rats and then infected with lentivirus vectors expressing sh-CREB in the presence/absence of LPS. The pathological alterations of rat pancreatic and cardiac tissues were observed by HE staining. TUNEL assay was used to study apoptosis of cardiomyocytes. Next, the loss- and gain-function assay was conducted in LPS-induced myocardial injury cardiomyocytes to define the roles of CREB, HDAC2, and TLR4 in cardiomyocyte proliferation, apoptosis, inflammation, and myocardial injury in vitro. ChIP assay was used to study the enrichment of CREB bound to HDAC2 promoter. RT-qPCR and Western blot analysis were used to detect the expressions of related mRNA and proteins in the NF-κB pathway, respectively. CREB was found to be overexpressed in both SAP tissues and cells. CREB directly bound to the promoter of HDAC2 and activated its expression. Overexpressed CREB or HDAC2 inhibited proliferation and promoted apoptosis of cardiomyocytes. Suppression of CREB inhibited the HDAC2/TLR4/NF-κB cascade to promote proliferation and inhibit apoptosis of cardiomyocytes. The in vitro results were validated in vivo experiments. Coherently, suppression of CREB can inhibit HDAC2/TLR4/NF-κB cascade to promote cardiomyocyte proliferation, thus ameliorating SAP-induced myocardial injury.
Collapse
Affiliation(s)
- Longfei Pan
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China.
| | - Zequn Niu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanxia Gao
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Liming Wang
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhong Liu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Liu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Jiangli Sun
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Honghong Pei
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
9
|
Transcriptionally Active Chromatin-Lessons Learned from the Chicken Erythrocyte Chromatin Fractionation. Cells 2021; 10:cells10061354. [PMID: 34070759 PMCID: PMC8226759 DOI: 10.3390/cells10061354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
The chicken erythrocyte model system has been valuable to the study of chromatin structure and function, specifically for genes involved in oxygen transport and the innate immune response. Several seminal features of transcriptionally active chromatin were discovered in this system. Davie and colleagues capitalized on the unique features of the chicken erythrocyte to separate and isolate transcriptionally active chromatin and silenced chromatin, using a powerful native fractionation procedure. Histone modifications, histone variants, atypical nucleosomes (U-shaped nucleosomes) and other chromatin structural features (open chromatin) were identified in these studies. More recently, the transcriptionally active chromosomal domains in the chicken erythrocyte genome were mapped by combining this chromatin fractionation method with next-generation DNA and RNA sequencing. The landscape of histone modifications relative to chromatin structural features in the chicken erythrocyte genome was reported in detail, including the first ever mapping of histone H4 asymmetrically dimethylated at Arg 3 (H4R3me2a) and histone H3 symmetrically dimethylated at Arg 2 (H3R2me2s), which are products of protein arginine methyltransferases (PRMTs) 1 and 5, respectively. PRMT1 is important in the establishment and maintenance of chicken erythrocyte transcriptionally active chromatin.
Collapse
|
10
|
Liu YR, Wang JQ, Huang ZG, Chen RN, Cao X, Zhu DC, Yu HX, Wang XR, Zhou HY, Xia Q, Li J. Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review). Int J Mol Med 2021; 48:131. [PMID: 34013366 PMCID: PMC8136123 DOI: 10.3892/ijmm.2021.4964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases are responsible for histone acetylation, while histone deacetylases (HDACs) counteract histone acetylation. An unbalanced dynamic between histone acetylation and deacetylation may lead to aberrant chromatin landscape and chromosomal function. HDAC2, a member of class I HDAC family, serves a crucial role in the modulation of cell signaling, immune response and gene expression. HDAC2 has emerged as a promising therapeutic target for liver disease by regulating gene transcription, chromatin remodeling, signal transduction and nuclear reprogramming, thus receiving attention from researchers and clinicians. The present review introduces biological information of HDAC2 and its physiological and biochemical functions. Secondly, the functional roles of HDAC2 in liver disease are discussed in terms of hepatocyte apoptosis and proliferation, liver regeneration, hepatocellular carcinoma, liver fibrosis and non-alcoholic steatohepatitis. Moreover, abnormal expression of HDAC2 may be involved in the pathogenesis of liver disease, and its expression levels and pharmacological activity may represent potential biomarkers of liver disease. Finally, research on selective HDAC2 inhibitors and non-coding RNAs relevant to HDAC2 expression in liver disease is also reviewed. The aim of the present review was to improve understanding of the multifunctional role and potential regulatory mechanism of HDAC2 in liver disease.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhao-Gang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruo-Nan Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dong-Chun Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Xia Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiu-Rong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Yun Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Li
- The Key Laboratory of Anti‑inflammatory Immune Medicines, School of Pharmacy, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
11
|
Pham T, Liao R, Labaer J, Guo J. Multiplexed In Situ Protein Profiling with High-Performance Cleavable Fluorescent Tyramide. Molecules 2021; 26:molecules26082206. [PMID: 33921211 PMCID: PMC8070642 DOI: 10.3390/molecules26082206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the composition, function and regulation of complex cellular systems requires tools that quantify the expression of multiple proteins at their native cellular context. Here, we report a highly sensitive and accurate protein in situ profiling approach using off-the-shelf antibodies and cleavable fluorescent tyramide (CFT). In each cycle of this method, protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and CFT. Subsequently, the fluorophores are efficiently cleaved by mild chemical reagents, which simultaneously deactivate HRP. Through reiterative cycles of protein staining, fluorescence imaging, fluorophore cleavage, and HRP deactivation, multiplexed protein quantification in single cells in situ can be achieved. We designed and synthesized the high-performance CFT, and demonstrated that over 95% of the staining signals can be erased by mild chemical reagents while preserving the integrity of the epitopes on protein targets. Applying this method, we explored the protein expression heterogeneity and correlation in a group of genetically identical cells. With the high signal removal efficiency, this approach also enables us to accurately profile proteins in formalin-fixed paraffin-embedded (FFPE) tissues in the order of low to high and also high to low expression levels.
Collapse
Affiliation(s)
| | | | | | - Jia Guo
- Correspondence: ; Tel.: +1-480-727-2096
| |
Collapse
|
12
|
Liao R, Mondal M, Nazaroff CD, Mastroeni D, Coleman PD, Labaer J, Guo J. Highly Sensitive and Multiplexed Protein Imaging With Cleavable Fluorescent Tyramide Reveals Human Neuronal Heterogeneity. Front Cell Dev Biol 2021; 8:614624. [PMID: 33585449 PMCID: PMC7874177 DOI: 10.3389/fcell.2020.614624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The ability to comprehensively profile proteins in intact tissues in situ is crucial for our understanding of health and disease. However, the existing methods suffer from low sensitivity and limited sample throughput. To address these issues, here we present a highly sensitive and multiplexed in situ protein analysis approach using cleavable fluorescent tyramide and off-the-shelf antibodies. Compared with the current methods, this approach enhances the detection sensitivity and reduces the imaging time by 1-2 orders of magnitude, and can potentially detect hundreds of proteins in intact tissues at the optical resolution. Applying this approach, we studied protein expression heterogeneity in a population of genetically identical cells, and performed protein expression correlation analysis to identify co-regulated proteins. We also profiled >6,000 neurons in a human formalin-fixed paraffin-embedded (FFPE) hippocampus tissue. By partitioning these neurons into varied cell clusters based on their multiplexed protein expression profiles, we observed different sub-regions of the hippocampus consist of neurons from distinct clusters.
Collapse
Affiliation(s)
- Renjie Liao
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Manas Mondal
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Christopher D. Nazaroff
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Diego Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
- L.J. Roberts Center for Alzheimer's Research, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Paul D. Coleman
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States
- L.J. Roberts Center for Alzheimer's Research, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Ferioli M, Zauli G, Maiorano P, Milani D, Mirandola P, Neri LM. Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol 2019; 234:14852-14864. [PMID: 30767204 DOI: 10.1002/jcp.28304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The genetic heritage for decades has been considered to respond only to gene promoters or suppressors, with specific roles for oncogenes or tumor-suppressor genes. Epigenetics is progressively attracting increasing interest because it has demonstrated the capacity of these regulatory processes to regulate the gene expression without modifying gene sequence. Several factors may influence epigenetics, such as lifestyles including food selection. A role for physical exercise is emerging in the epigenetic regulation of gene expression. In this review, we resume physiological and pathological implications of epigenetic modification induced by the physical activity (PA). Inflammation and cancer mechanisms, immune system, central nervous system, and the aging process receive benefits due to PA through epigenetic mechanisms. Thus, the modulation of epigenetic processes by physical exercise positively influences prevention, development, and the course of inflammatory and cancer diseases, as well as neurodegenerative illnesses. This growing field of studies gives rise to a new role for PA as an option in prevention strategies and to integrate pharmacological therapeutic treatments.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Maiorano
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Sello CT, Liu C, Sun Y, Msuthwana P, Hu J, Sui Y, Chen S, Zhou Y, Lu H, Xu C, Sun Y, Liu J, Li S, Yang W. De Novo Assembly and Comparative Transcriptome Profiling of Anser anser and Anser cygnoides Geese Species' Embryonic Skin Feather Follicles. Genes (Basel) 2019; 10:genes10050351. [PMID: 31072014 PMCID: PMC6562822 DOI: 10.3390/genes10050351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Geese feather production and the quality of downy feathers are additional economically important traits in the geese industry. However, little information is available about the molecular mechanisms fundamental to feather formation and the quality of feathers in geese. This study conducted de novo transcriptome sequencing analysis of two related geese species using the Illumina 4000 platform to determine the genes involved in embryonic skin feather follicle development. A total of 165,564,278 for Anser anser and 144,595,262 for Anser cygnoides clean reads were generated, which were further assembled into 77,134 unigenes with an average length of 906 base pairs in Anser anser and 66,041 unigenes with an average length of 922 base pairs in Anser cygnoides. To recognize the potential regulatory roles of differentially expressed genes (DEGs) during geese embryonic skin feather follicle development, the obtained unigenes were annotated to Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis. In both species, GO and KOG had shown similar distribution patterns during functional annotation except for KEGG, which showed significant variation in signaling enrichment. Anser asnser was significantly enriched in the calcium signaling pathway, whereas Anser cygnoides was significantly enriched with glycerolipid metabolism. Further analysis indicated that 14,227 gene families were conserved between the species, among which a total of 20,715 specific gene families were identified. Comparative RNA-Seq data analysis may reveal inclusive knowledge to assist in the identification of genetic regulators at a molecular level to improve feather quality production in geese and other poultry species.
Collapse
Affiliation(s)
- Cornelius Tlotliso Sello
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Chang Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun 130118, China.
| | - Petunia Msuthwana
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Shaokang Chen
- Beijing General Station of Animal Husbandry, Beijing 100107, China.
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hongtao Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Chenguang Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yue Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jing Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Shengyi Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|