1
|
Nadel J, Wang X, Saha P, Bongers A, Tumanov S, Giannotti N, Chen W, Vigder N, Chowdhury MM, da Cruz GL, Velasco C, Prieto C, Jabbour A, Botnar RM, Stocker R, Phinikaridou A. Molecular magnetic resonance imaging of myeloperoxidase activity identifies culprit lesions and predicts future atherothrombosis. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae004. [PMID: 38370393 PMCID: PMC10870993 DOI: 10.1093/ehjimp/qyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Aims Unstable atherosclerotic plaques have increased activity of myeloperoxidase (MPO). We examined whether molecular magnetic resonance imaging (MRI) of intraplaque MPO activity predicts future atherothrombosis in rabbits and correlates with ruptured human atheroma. Methods and results Plaque MPO activity was assessed in vivo in rabbits (n = 12) using the MPO-gadolinium (Gd) probe at 8 and 12 weeks after induction of atherosclerosis and before pharmacological triggering of atherothrombosis. Excised plaques were used to confirm MPO activity by liquid chromatography-tandem mass spectrometry (LC-MSMS) and to determine MPO distribution by histology. MPO activity was higher in plaques that caused post-trigger atherothrombosis than plaques that did not. Among the in vivo MRI metrics, the plaques' R1 relaxation rate after administration of MPO-Gd was the best predictor of atherothrombosis. MPO activity measured in human carotid endarterectomy specimens (n = 30) by MPO-Gd-enhanced MRI was correlated with in vivo patient MRI and histological plaque phenotyping, as well as LC-MSMS. MPO-Gd retention measured as the change in R1 relaxation from baseline was significantly greater in histologic and MRI-graded American Heart Association (AHA) type VI than type III-V plaques. This association was confirmed by comparing AHA grade to MPO activity determined by LC-MSMS. Conclusion We show that elevated intraplaque MPO activity detected by molecular MRI employing MPO-Gd predicts future atherothrombosis in a rabbit model and detects ruptured human atheroma, strengthening the translational potential of this approach to prospectively detect high-risk atherosclerosis.
Collapse
Affiliation(s)
- James Nadel
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
- Department of Cardiology, St Vincent’s Hospital, Sydney, NSW, Australia
- Department of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Xiaoying Wang
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Prakash Saha
- Academic Department of Surgery, Cardiovascular Division, King’s College London, London, UK
| | - André Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Sergey Tumanov
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicola Giannotti
- Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Weiyu Chen
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
| | - Niv Vigder
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
| | | | | | - Carlos Velasco
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Pontificia Universidad Católica de Chile, Institute for Biological and Medical Engineering, Santiago, Chile
| | - Andrew Jabbour
- Department of Cardiology, St Vincent’s Hospital, Sydney, NSW, Australia
- Department of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - René M Botnar
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Pontificia Universidad Católica de Chile, Institute for Biological and Medical Engineering, Santiago, Chile
- King’s BHF Centre of Research Excellence, London, UK
| | - Roland Stocker
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
| | - Alkystis Phinikaridou
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- King’s BHF Centre of Research Excellence, London, UK
| |
Collapse
|
2
|
Li X, Wang R, Zhang Y, Han S, Gan Y, Liang Q, Ma X, Rong P, Wang W, Li W. Molecular imaging of tumor-associated macrophages in cancer immunotherapy. Ther Adv Med Oncol 2022; 14:17588359221076194. [PMID: 35251314 PMCID: PMC8891912 DOI: 10.1177/17588359221076194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs), the most abundant inflammatory cell group in the tumor microenvironment, play an essential role in tumor immune regulation. The infiltration degree of TAMs in the tumor microenvironment is closely related to tumor growth and metastasis, and TAMs have become a promising target in tumor immunotherapy. Molecular imaging is a new interdisciplinary subject that combines medical imaging technology with molecular biology, nuclear medicine, radiation medicine, and computer science. The latest progress in molecular imaging allows the biological processes of cells to be visualized in vivo, which makes it possible to better understand the density and distribution of macrophages in the tumor microenvironment. This review mainly discusses the application of targeting TAM in tumor immunotherapy and the imaging characteristics and progress of targeting TAM molecular probes using various imaging techniques.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ruike Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yangnan Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Mulens-Arias V, Rojas JM, Barber DF. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment. Front Immunol 2021; 12:693709. [PMID: 34177955 PMCID: PMC8221395 DOI: 10.3389/fimmu.2021.693709] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has enhanced the interest in studying them as theranostic agents over recent years. As IONPs begin to be used for different biomedical applications, it is important to know how they affect the immune system and its different cell types, especially their interaction with the macrophages that are involved in their clearance. How immune cells respond to therapeutic interventions can condition the systemic and local tissue response, and hence, the final therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the immune response, especially in cancer immunotherapy. The biological effects of IONPs may be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species (ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are driven by the nanoparticle coating, for example, through cell membrane receptor engagement. Indeed, exploiting these properties of IONPs could lead to the development of innovative therapies. In this review, after a presentation of the elements that make up the tumor immunological microenvironment, we will review and discuss what is currently known about the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage polarization and reprogramming. Consequently, we will discuss the implications of these findings in the context of plausible therapeutic scenarios for cancer immunotherapy.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA)-CSIC, Valdeolmos, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Merinopoulos I, Gunawardena T, Stirrat C, Cameron D, Eccleshall SC, Dweck MR, Newby DE, Vassiliou VS. Diagnostic Applications of Ultrasmall Superparamagnetic Particles of Iron Oxide for Imaging Myocardial and Vascular Inflammation. JACC Cardiovasc Imaging 2021; 14:1249-1264. [PMID: 32861658 DOI: 10.1016/j.jcmg.2020.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
Cardiac magnetic resonance (CMR) is at the forefront of noninvasive methods for the assessment of myocardial anatomy, function, and most importantly tissue characterization. The role of CMR is becoming even more significant with an increasing recognition that inflammation plays a major role for various myocardial diseases such as myocardial infarction, myocarditis, and takotsubo cardiomyopathy. Ultrasmall superparamagnetic particles of iron oxide (USPIO) are nanoparticles that are taken up by monocytes and macrophages accumulating at sites of inflammation. In this context, USPIO-enhanced CMR can provide valuable additional information regarding the cellular inflammatory component of myocardial and vascular diseases. Here, we will review the recent diagnostic applications of USPIO in terms of imaging myocardial and vascular inflammation, and highlight some of their future potential.
Collapse
Affiliation(s)
- Ioannis Merinopoulos
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Tharusha Gunawardena
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Colin Stirrat
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; C.J. Gorter Centre for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Simon C Eccleshall
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom.
| |
Collapse
|
5
|
Toczek J, Boodagh P, Sanzida N, Ghim M, Salarian M, Gona K, Kukreja G, Rajendran S, Wei L, Han J, Zhang J, Jung JJ, Graham M, Liu X, Sadeghi MM. Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics 2021; 11:5876-5888. [PMID: 33897887 PMCID: PMC8058712 DOI: 10.7150/thno.55106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Inflammation plays a major role in the pathogenesis of several vascular pathologies, including abdominal aortic aneurysm (AAA). Evaluating the role of inflammation in AAA pathobiology and potentially outcome in vivo requires non-invasive tools for high-resolution imaging. We investigated the feasibility of X-ray computed tomography (CT) imaging of phagocytic activity using nanoparticle contrast agents to predict AAA outcome. Methods: Uptake of several nanoparticle CT contrast agents was evaluated in a macrophage cell line. The most promising agent, Exitron nano 12000, was further characterized in vitro and used for subsequent in vivo testing. AAA was induced in Apoe-/- mice through angiotensin II (Ang II) infusion for up to 4 weeks. Nanoparticle biodistribution and uptake in AAA were evaluated by CT imaging in Ang II-infused Apoe-/- mice. After imaging, the aortic tissue was harvested and used from morphometry, transmission electron microscopy and gene expression analysis. A group of Ang II-infused Apoe-/- mice underwent nanoparticle-enhanced CT imaging within the first week of Ang II infusion, and their survival and aortic external diameter were evaluated at 4 weeks to address the value of vessel wall CT enhancement in predicting AAA outcome. Results: Exitron nano 12000 showed specific uptake in macrophages in vitro. Nanoparticle accumulation was observed by CT imaging in tissues rich in mononuclear phagocytes. Aortic wall enhancement was detectable on delayed CT images following nanoparticle administration and correlated with vessel wall CD68 expression. Transmission electron microscopy ascertained the presence of nanoparticles in AAA adventitial macrophages. Nanoparticle-induced CT enhancement on images obtained within one week of AAA induction was predictive of AAA outcome at 4 weeks. Conclusions: By establishing the feasibility of CT-based molecular imaging of phagocytic activity in AAA, this study links the inflammatory signal on early time point images to AAA evolution. This readily available technology overcomes an important barrier to cross-sectional, longitudinal and outcome studies, not only in AAA, but also in other cardiovascular pathologies and facilitates the evaluation of modulatory interventions, and ultimately upon clinical translation, patient management.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Parnaz Boodagh
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Nowshin Sanzida
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mean Ghim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Saranya Rajendran
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Linyan Wei
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Morven Graham
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Xinran Liu
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| |
Collapse
|
6
|
Weiler S, Nairz M. TAM-ing the CIA-Tumor-Associated Macrophages and Their Potential Role in Unintended Side Effects of Therapeutics for Cancer-Induced Anemia. Front Oncol 2021; 11:627223. [PMID: 33842333 PMCID: PMC8027083 DOI: 10.3389/fonc.2021.627223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer-induced anemia (CIA) is a common consequence of neoplasia and has a multifactorial pathophysiology. The immune response and tumor treatment, both intended to primarily target malignant cells, also affect erythropoiesis in the bone marrow. In parallel, immune activation inevitably induces the iron-regulatory hormone hepcidin to direct iron fluxes away from erythroid progenitors and into compartments of the mononuclear phagocyte system. Moreover, many inflammatory mediators inhibit the synthesis of erythropoietin, which is essential for stimulation and differentiation of erythroid progenitor cells to mature cells ready for release into the blood stream. These pathophysiological hallmarks of CIA imply that the bone marrow is not only deprived of iron as nutrient but also of erythropoietin as central growth factor for erythropoiesis. Tumor-associated macrophages (TAM) are present in the tumor microenvironment and display altered immune and iron phenotypes. On the one hand, their functions are altered by adjacent tumor cells so that they promote rather than inhibit the growth of malignant cells. As consequences, TAM may deliver iron to tumor cells and produce reduced amounts of cytotoxic mediators. Furthermore, their ability to stimulate adaptive anti-tumor immune responses is severely compromised. On the other hand, TAM are potential off-targets of therapeutic interventions against CIA. Red blood cell transfusions, intravenous iron preparations, erythropoiesis-stimulating agents and novel treatment options for CIA may interfere with TAM function and thus exhibit secondary effects on the underlying malignancy. In this Hypothesis and Theory, we summarize the pathophysiological hallmarks, clinical implications and treatment strategies for CIA. Focusing on TAM, we speculate on the potential intended and unintended effects that therapeutic options for CIA may have on the innate immune response and, consequently, on the course of the underlying malignancy.
Collapse
Affiliation(s)
- Stefan Weiler
- National Poisons Information Centre, Tox Info Suisse, Associated Institute of the University of Zurich, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
8
|
Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018; 310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Iron oxide (IO) nanocolloids are being increasingly used to image cellular contribution to neuroinflammation using MRI, as these particles are capable of labeling circulating cells with phagocytic activity, allowing to assess cell trafficking from the blood to neuroinflammation sites. The use of IOs relies on the natural phagocytic properties of immune cells, allowing their labeling either in vitro or directly in vivo, following intravenous injection. Despite concerns on the specificity of the latter approach, the widespread availability and relatively low cost of these techniques, coupled to a sensitivity that allows to reach single cell detection, have promoted their use in several preclinical and clinical studies. In this review, we discuss the results of currently available preclinical and clinical IO-enhanced MRI studies of immune cell trafficking in neuroinflammation, examining the specificity of the existing findings, in view of the different possible mechanisms underlying IO accumulation in the brain. From this standpoint, we assess the implications of the temporal and spatial differences in the enhancement pattern of IOs, compared to gadolinium-based contrast agents, a clinically established MRI marker blood-brain barrier breakdown. While concerns on the specificity of cell labeling obtained using the in-vivo labeling approach still need to be fully addressed, these techniques have indeed proved able to provide additional information on neuroinflammatory phenomena, as compared to conventional Gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Lorenzo Ugga
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
| |
Collapse
|