1
|
Lu X, Zhan X, Xia G, Wang F, Lv M, Liu R, Liu Y, Zi C, Li G, Wang R, Li J, Yuan F, Jia D. Improving Targeted Delivery and Antitumor Efficacy of TRAIL through Fusion with a B7H3-Antagonistic Affibody. Mol Pharm 2025; 22:284-294. [PMID: 39620978 DOI: 10.1021/acs.molpharmaceut.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive candidate for anticancer therapeutics due to its efficient pro-apoptotic activity against tumor cells and its well-tolerated safety profile. However, the in vivo antitumor efficacy of TRAIL is often limited by its poor tumor targeting capacity. Nowadays, the B7 homologue 3 (B7-H3) immune checkpoint has emerged as a promising target for tumor immunotherapy and drug delivery. Here, we report the achievement of tumor-targeted delivery of TRAIL by genetically fusing it with a B7H3-antagonistic affibody. The affibody-TRAIL fusion protein, named ACT, was easily expressed in Escherichia coli with a high yield and could form the active trimeric state. In vitro ACT showed significantly increased cellular binding to multiple B7H3-positive tumor cells and improved cytotoxicity by 2-3 times compared to the parent TRAIL. In vivo ACT demonstrated a 2.4-fold higher tumor uptake than TRAIL in mice bearing B7H3-positive A431 tumor grafts. More importantly, ACT exhibited significantly improved antitumor efficacy against tumors in vivo. In addition, ACT treatment did not cause body weight loss or histopathological changes in the major organs of mice, indicating its good safety profile. Overall, our findings demonstrate that targeting B7H3 to enhance TRAIL delivery is a viable approach to improve its therapeutic efficacy, and ACT may be a potential agent for targeted therapy of B7H3-positive tumors.
Collapse
Affiliation(s)
- Xiaomeng Lu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinyu Zhan
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Guozi Xia
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Feifei Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Mingjia Lv
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Renwei Liu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yuxue Liu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Chen Zi
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi 276034, China
| | - Guangyong Li
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Rui Wang
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jun Li
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Dianlong Jia
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Zhang Y, Wang L, Dong C, Zhuang Y, Hao G, Wang F. Licochalcone D exhibits cytotoxicity in breast cancer cells and enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis through upregulation of death receptor 5. J Biochem Mol Toxicol 2024; 38:e23757. [PMID: 38937960 DOI: 10.1002/jbt.23757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Anticancer strategies using natural products or derivatives are promising alternatives for cancer treatment. Here, we showed that licochalcone D (LCD), a natural flavonoid extracted from Glycyrrhiza uralensis Fisch, suppressed the growth of breast cancer cells, and was less toxic to MCF-10A normal breast cells. LCD-induced DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Furthermore, LCD potentiated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. Mechanistically, LCD was revealed to reduce survival protein expression and to upregulate death receptor 5 (DR5) expressions. Silencing DR5 blocked the ability of LCD to sensitize cells to TRAIL-mediated apoptosis. LCD increased CCAAT/enhancer-binding protein homologous protein (CHOP) expression in breast cancer cells. Knockdown of CHOP attenuated DR5 upregulation and apoptosis triggered by cotreatment with LCD and TRAIL. Furthermore, LCD suppressed the phosphorylation of extracellular signal-regulated kinase and promoted the phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 abolished the upregulation of DR5 and CHOP, and also attenuated LCD plus TRAIL-induced cleavage of poly(ADP-ribose) polymerase. Overall, our results show that LCD exerts cytotoxic effects on breast cancer cells and arguments TRAIL-mediated apoptosis by inhibiting survival protein expression and upregulating DR5 in a JNK/p38 MAPK-CHOP-dependent manner.
Collapse
Affiliation(s)
- Yunyun Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linlin Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chuxuan Dong
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yahui Zhuang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Fengze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
- Center Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
4
|
Shahlaei M, Asl SM, Derakhshani A, Kurek L, Karges J, Macgregor R, Saeidifar M, Kostova I, Saboury AA. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct 2024; 1301:137366. [DOI: 10.1016/j.molstruc.2023.137366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Mohammad Mirzapour M, Farshdousti Hagh M, Marofi F, Solali S, Alaei A. Investigating the synergistic potential of TRAIL and SAHA in inducing apoptosis in MOLT-4 cancer cells. Biochem Biophys Res Commun 2023; 676:13-20. [PMID: 37480688 DOI: 10.1016/j.bbrc.2023.05.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION T-cell acute lymphoblastic leukemia is characterized by its fast progression rate and high complications. TRAIL can be used to trigger apoptosis in cancer cells with minimal effects on normal cells, but most of cancer cells develop resistance to this agent through various mechanisms. HDAC inhibitors like SAHA can be used to make cancer cells more susceptible to TRAIL-induced apoptosis. In this study, this hypothesis was tested on MOLT-4 cancer cell line. MATERIALS AND METHODS The cells were divided into six groups including the control group, TRAIL 50 nM, TRAIL 100 nM, SAHA 2 μM, SAHA 2 μM + TRAIL 50 nM, and SAHA 2 μM + TRAIL 100 nM. Apoptosis was evaluated by flowcytometry after 24, 48 and 72 h. The expression levels of c-flip, DR4, DR5, CHOP, NF-κB, STAT3, Akt, and PI3K genes were investigated by quantitative real-time PCR. Data were analyzed using two-way variance analysis with Tukey's and Dunnett's multiple comparisons tests, and statistical significance was defined as having a p-value less than 0.05. RESULTS Groups exposed to the combination of SAHA with TRAIL demonstrated the maximum apoptosis in MOLT-4 cells by increasing the expression of DR4, DR5, and CHOP and decreasing the expression of c-flip, STAT3, PI3k, Akt, and NF-kB genes. CONCLUSION It can be concluded that SAHA increases the sensitivity of MOLT-4 cells to TRAIL-mediated apoptosis, which can be used as a strategy to overcome resistance to TRAIL in leukemic patients.
Collapse
Affiliation(s)
- Masoud Mohammad Mirzapour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Arsalan Alaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
El Yousfi Y, Mora-Molina R, López-Rivas A, Yerbes R. Role of the YAP/TAZ-TEAD Transcriptional Complex in the Metabolic Control of TRAIL Sensitivity by the Mevalonate Pathway in Cancer Cells. Cells 2023; 12:2370. [PMID: 37830584 PMCID: PMC10571597 DOI: 10.3390/cells12192370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Different studies have reported that inhibiting the mevalonate pathway with statins may increase the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), although the signaling mechanism leading to this sensitization remains largely unknown. We investigated the role of the YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex in the metabolic control of TRAIL sensitivity by the mevalonate pathway. We show that depleting nuclear YAP/TAZ in tumor cells, either via treatment with statins or by silencing YAP/TAZ expression with siRNAs, facilitates the activation of apoptosis by TRAIL. Furthermore, the blockage of TEAD transcriptional activity either pharmacologically or through the ectopic expression of a disruptor of the YAP/TAZ interaction with TEAD transcription factors, overcomes the resistance of tumor cells to the induction of apoptosis by TRAIL. Our results show that the mevalonate pathway controls cellular the FLICE-inhibitory protein (cFLIP) expression in tumor cells. Importantly, inhibiting the YAP/TAZ-TEAD signaling pathway induces cFLIP down-regulation, leading to a marked sensitization of tumor cells to apoptosis induction by TRAIL. Our data suggest that a combined strategy of targeting TEAD activity and selectively activating apoptosis signaling by agonists of apoptotic TRAIL receptors could be explored as a potential therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Younes El Yousfi
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, 41092 Seville, Spain; (Y.E.Y.); (R.M.-M.); (A.L.-R.)
| | - Rocío Mora-Molina
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, 41092 Seville, Spain; (Y.E.Y.); (R.M.-M.); (A.L.-R.)
| | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, 41092 Seville, Spain; (Y.E.Y.); (R.M.-M.); (A.L.-R.)
| | - Rosario Yerbes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, 41092 Seville, Spain; (Y.E.Y.); (R.M.-M.); (A.L.-R.)
- Medical Physiology and Biophysics Department, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS) (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013 Seville, Spain
| |
Collapse
|
7
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
8
|
Mehralizadeh H, Nazari A, Oruji F, Roostaie M, Hosseininozari G, Yazdani O, Esbati R, Roudini K. Cytokine sustained delivery for cancer therapy; special focus on stem cell- and biomaterial- based delivery methods. Pathol Res Pract 2023; 247:154528. [PMID: 37257247 DOI: 10.1016/j.prp.2023.154528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
As immune regulators, cytokines serve critical role as signaling molecules in response to danger, tissue damage, or injury. Importantly, due to their vital role in immunological surveillance, cytokine therapy has become a promising therapeutics for cancer therapy. Cytokines have, however, been used only in certain clinical settings. Two key characteristics of cytokines contribute to this clinical translational challenge: first, they are highly pleiotropic, and second, in healthy physiology, they are typically secreted and act very locally in tissues. Systemic administration of the cytokines can consequently result in serious side effects. Thus, scientists have sought various strategies to circumvent theses hurdles. Recent in vivo reports signify that cytokine delivery platforms can increase their safety and therapeutic efficacy in tumor xenografts. Meanwhile, cytokine delivery using multipotent stem cells, in particular mesenchymal stem/stromal cells (MSCs), and also a diversity of particles and biomaterials has demonstrated greater capability in this regards. Herein, we take a glimpse into the recent advances in cytokine sustained delivery using stem cells and also biomaterials to ease safe and effective treatments of a myriad of human tumors.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Oruji
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Minoo Roostaie
- School of Medicine, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Ghazaleh Hosseininozari
- Department of Cell and Molecular biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| | - Kamran Roudini
- Department of Internal Medicine, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
9
|
Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:78-102. [PMID: 37065863 PMCID: PMC10099604 DOI: 10.20517/cdr.2022.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells in vitro; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.
Collapse
Affiliation(s)
- Siri Chandana Gampa
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - Sireesha V. Garimella
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - SanthiLatha Pandrangi
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| |
Collapse
|
10
|
LoRusso P, Ratain MJ, Doi T, Rasco DW, de Jonge MJA, Moreno V, Carneiro BA, Devriese LA, Petrich A, Modi D, Morgan-Lappe S, Nuthalapati S, Motwani M, Dunbar M, Glasgow J, Medeiros BC, Calvo E. Eftozanermin alfa (ABBV-621) monotherapy in patients with previously treated solid tumors: findings of a phase 1, first-in-human study. Invest New Drugs 2022; 40:762-772. [PMID: 35467243 PMCID: PMC9035501 DOI: 10.1007/s10637-022-01247-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Eftozanermin alfa (eftoza), a second-generation tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL-R) agonist, induces apoptosis in tumor cells by activation of death receptors 4/5. This phase 1 dose-escalation/dose-optimization study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary activity of eftoza in patients with advanced solid tumors. Patients received eftoza 2.5-15 mg/kg intravenously on day 1 or day 1/day 8 every 21 days in the dose-escalation phase, and 1.25-7.5 mg/kg once-weekly (QW) in the dose-optimization phase. Dose-limiting toxicities (DLTs) were evaluated during the first treatment cycle to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D). Pharmacodynamic effects were evaluated in circulation and tumor tissue. A total of 105 patients were enrolled in the study (dose-escalation cohort, n = 57; dose-optimization cohort, n = 48 patients [n = 24, colorectal cancer (CRC); n = 24, pancreatic cancer (PaCA)]). In the dose-escalation cohort, seven patients experienced DLTs. MTD and RP2D were not determined. Most common treatment-related adverse events were increased alanine aminotransferase and aspartate aminotransferase levels, nausea, and fatigue. The one treatment-related death occurred due to respiratory failure. In the dose-optimization cohort, three patients (CRC, n = 2; PaCA, n = 1) had a partial response. Target engagement with regard to receptor saturation, and downstream apoptotic pathway activation in circulation and tumor were observed. Eftoza had acceptable safety, evidence of pharmacodynamic effects, and preliminary anticancer activity. The 7.5-mg/kg QW regimen was selected for future studies on the basis of safety findings, pharmacodynamic effects, and biomarker modulations. (Trial registration number: NCT03082209 (registered: March 17, 2017)).
Collapse
Affiliation(s)
| | | | - Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | - Victor Moreno
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Benedito A Carneiro
- Lifespan Cancer Institute, Cancer Center at Brown University, Providence, RI, USA
| | - Lot A Devriese
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain.
| |
Collapse
|
11
|
Mohammed RN, Khosravi M, Rahman HS, Adili A, Kamali N, Soloshenkov PP, Thangavelu L, Saeedi H, Shomali N, Tamjidifar R, Isazadeh A, Aslaminabad R, Akbari M. Anastasis: cell recovery mechanisms and potential role in cancer. Cell Commun Signal 2022; 20:81. [PMID: 35659306 PMCID: PMC9166643 DOI: 10.1186/s12964-022-00880-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis. Here, we noted recently known mechanisms of the anastasis process and underlying molecular mechanisms. Additionally, we summarize the consequences of anastatic mechanisms in the initiation and progress of malignancy, cancer cell metastasis, and drug resistance. Video Abstract
Collapse
|
12
|
Zhang J, Dong W, Ren Y, Wei D. SAC-TRAIL, a novel anticancer fusion protein: expression, purification, and functional characterization. Appl Microbiol Biotechnol 2022; 106:1511-1520. [PMID: 35133472 DOI: 10.1007/s00253-022-11807-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Recombinant protein pharmaceutical agents have been widely used for cancer treatment. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has broad-spectrum antitumor activity, its clinical applications are limited because most tumor cells eventually develop resistance to TRAIL-induced apoptosis through various pathways. Prostate apoptosis response-4 (Par-4) selectively induces apoptosis in cancer cells after binding to the cell surface receptor, GRP78. In this study, TRAIL was fused with the core domain of Par-4 (SAC) to produce a novel recombinant fusion protein. To obtain solubly expressed fusion protein, a small ubiquitin-related modifier (SUMO) was added to the N-terminus of the target protein. Cytotoxicity assays showed that the purified fusion protein exhibited more significant antitumor activity on cancer cells than that by native TRAIL. The connection order and linker sequence of the fusion proteins were optimized. In vitro cytotoxicity assay showed that the SAC-TRAIL fusion protein, which contained a flexible linker (G4S)3, optimally inhibited the proliferation of cancer cells. Immunofluorescence assays demonstrated that SAC-TRAIL could efficiently and specifically bind to cancer cells. Additionally, circular dichroism assays showed that the secondary structure of the recombinant protein with a flexible linker (G4S)3 has both a lower α-helix and higher random coiling, which facilitates the specific binding of SAC-TRAIL to the receptor. Collectively, these results suggest that the novel recombinant fusion protein SAC-(G4S)3-TRAIL is a potential therapeutic agent for cancer. KEY POINTS: • Improved tumor growth suppression and apoptosis induction potency of SAC-TRAIL. • Enhanced targeting selectivity of SAC-TRAIL in cancer cells. • Lower α-helix and higher random coiling in SAC-TRAIL with flexible linker (G4S)3.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Wanyuan Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
13
|
Huang CC, Cheng YC, Lin YC, Chou CH, Ho CT, Wang HK, Way TD. CSC-3436 sensitizes triple negative breast cancer cells to TRAIL-induced apoptosis through ROS-mediated p38/CHOP/death receptor 5 signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:2578-2588. [PMID: 34599545 DOI: 10.1002/tox.23372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) shows little or no toxicity in most normal cells and preferentially induces apoptosis in a variety of malignant cells. However, patients develop resistance to TRAIL, therefore, sensitizing agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are necessary. In this study, we investigated the effect of 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), an useful flavonoid, to overcome the TRAIL-resistant triple negative breast cancer (TNBC) cells. We found that CSC-3436 potentiated TRAIL-induced apoptosis in TRAIL-resistant TNBC cells and this correlated with the upregulation of death receptors (DR)-5 and down-regulation of decreased decoy receptor (DcR)-1 expression. When examined for its mechanism, we found that the decreased expression of anti-apoptotic proteins c-FLIPS/L, Bcl-Xl, Bcl-2, Survivin, and XIAP. CSC-3436 would increase the expression of Bax and promoted the cleavage of bid. In addition, the induction of DR5 by CSC-3436 was found to be dependent on the modulation of reactive oxygen species (ROS)/p38/C/EBP-homologous protein (CHOP) signaling pathways. Overall, our results indicated that CSC-3436 could potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and upregulation of DR5 via the ROS-mediated upregulation of CHOP protein.
Collapse
Affiliation(s)
- Chun-Chen Huang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Ching Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chun-Hung Chou
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Hao-Kuang Wang
- Department of Neurosurgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Razeghian E, Margiana R, Chupradit S, Bokov DO, Abdelbasset WK, Marofi F, Shariatzadeh S, Tosan F, Jarahian M. Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy. Front Med (Lausanne) 2021; 8:721174. [PMID: 34513882 PMCID: PMC8430327 DOI: 10.3389/fmed.2021.721174] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
Pro-inflammatory cytokines can effectively be used for tumor immunotherapy, affecting every step of the tumor immunity cycle. Thereby, they can restore antigen priming, improve the effector immune cell frequencies in the tumor microenvironment (TME), and eventually strengthen their cytolytic function. A renewed interest in the anticancer competencies of cytokines has resulted in a substantial promotion in the number of trials to address the safety and efficacy of cytokine-based therapeutic options. However, low response rate along with the high toxicity associated with high-dose cytokine for reaching desired therapeutic outcomes negatively affect their clinical utility. Recently, mesenchymal stem/stromal cells (MSCs) due to their pronounced tropism to tumors and also lower immunogenicity have become a promising vehicle for cytokine delivery for human malignancies. MSC-based delivery of the cytokine can lead to the more effective immune cell-induced antitumor response and provide sustained release of target cytokines, as widely evidenced in a myriad of xenograft models. In the current review, we offer a summary of the novel trends in cytokine immunotherapy using MSCs as a potent and encouraging carrier for antitumor cytokines, focusing on the last two decades' animal reports.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
15
|
Razeghian E, Suksatan W, Sulaiman Rahman H, Bokov DO, Abdelbasset WK, Hassanzadeh A, Marofi F, Yazdanifar M, Jarahian M. Harnessing TRAIL-Induced Apoptosis Pathway for Cancer Immunotherapy and Associated Challenges. Front Immunol 2021; 12:699746. [PMID: 34489946 PMCID: PMC8417882 DOI: 10.3389/fimmu.2021.699746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023] Open
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted rapidly evolving attention as a cancer treatment modality because of its competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL has revealed encouraging promise in preclinical reports in animal models as a cancer treatment option; however, the foremost constraint of the TRAIL therapy is the advancement of TRAIL resistance through a myriad of mechanisms in tumor cells. Investigations have documented that improvement of the expression of anti-apoptotic proteins and survival or proliferation involved signaling pathways concurrently suppressing the expression of pro-apoptotic proteins along with down-regulation of expression of TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic approach for overcoming TRAIL resistance is of paramount importance. Studies currently have shown that combined treatment with anti-tumor agents, ranging from synthetic agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to generate and deliver TRAIL can provide both targeted and continued delivery of this apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review, we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in tumor cells, and also discuss recent findings concerning the therapeutic efficacy of combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery using human MSCs and NPs to overcome tumor cells resistance to TRAIL.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Suleimanyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
16
|
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem 2021; 20:1398-1414. [PMID: 32324520 DOI: 10.2174/1871520620666200423071759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.
Collapse
Affiliation(s)
- Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Safi A, Bastami M, Delghir S, Ilkhani K, Seif F, Alivand MR. miRNAs Modulate the Dichotomy of Cisplatin Resistance or Sensitivity in Breast Cancer: An Update of Therapeutic Implications. Anticancer Agents Med Chem 2021; 21:1069-1081. [PMID: 32885760 DOI: 10.2174/1871520620666200903145939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Cisplatin has a broad-spectrum antitumor activity and is widely used for the treatment of various malignant tumors. However, acquired or intrinsic resistance of cisplatin is a major problem for patients during the therapy. Recently, it has been reported Cancer Stem Cell (CSC)-derived drug resistance is a great challenge of tumor development and recurrence; therefore, the sensitivity of Breast Cancer Stem Cells (BCSCs) to cisplatin is of particular importance. Increasing evidence has shown that there is a relationship between cisplatin resistance/sensitivity genes and related miRNAs. It is known that dysregulation of relevant miRNAs plays a critical role in regulating target genes of cisplatin resistance/sensitivity in various pathways such as cellular uptake/efflux, Epithelial-Mesenchymal Transition (EMT), hypoxia, and apoptosis. Furthermore, the efficacy of the current chemotherapeutic drugs, including cisplatin, for providing personalized medicine, can be improved by controlling the expression of miRNAs. Thus, potential targeting of miRNAs can lead to miRNA-based therapies, which will help overcome drug resistance and develop more effective personalized anti-cancer and cotreatment strategies in breast cancer. In this review, we summarized the general understandings of miRNAregulated biological processes in breast cancer, particularly focused on the role of miRNA in cisplatin resistance/ sensitivity.
Collapse
Affiliation(s)
- Asma Safi
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delghir
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad R Alivand
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Induction of Apoptosis, Inhibition of MCL-1, and VEGF-A Expression Are Associated with the Anti-Cancer Efficacy of Magnolol Combined with Regorafenib in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13092066. [PMID: 33922992 PMCID: PMC8123296 DOI: 10.3390/cancers13092066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
While regorafenib was approved for the treatment of advanced HCC in 2017, with a partial response and survival benefit; other combination agents to facilitate the efficacy of regorafenib still need to be explored. Magnolol is a potential natural anti-tumor compound for many types of cancers. Combination indexes calculated on the basis of both in vitro and in vivo models have indicated a synergistic effect of the combination of regorafenib and magnolol. The overexpression of the VEGF-A protein significantly diminished regorafenib's inhibition of cell viability, while the transient knockdown of VEGF-A by siRNA effectively sensitized HCC cells to regorafenib. In addition, the inhibition of MCL-1 by siRNA combined with regorafenib allowed for a significantly greater inhibition of cell growth, compared to regorafenib alone. A lower protein expression level for VEGF-A and MCL-1 was found for the combination treatment of HCC in vitro and in vivo. A superior metastasis inhibition was also found in the combination group, as compared to the single-treatment groups, using a transwell assay, wound healing assay, and Western blotting. The caspase-dependent and -independent and DNA damage effects, as determined by flow cytometry and a comet assay, were increased by the combination therapy. Taken together, magnolol sensitized HCC to regorafenib, which was correlated with the reduction of VEGF-A and MCL-1 and the induction of apoptosis.
Collapse
|
19
|
Wang H, Geng C, Zhou H, Zhang Z, Chen W. Cyclopamine sensitizes multiple myeloma cells to circularly permuted TRAIL-induced apoptosis. Oncol Lett 2021; 21:295. [PMID: 33732371 DOI: 10.3892/ol.2021.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/27/2021] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a promising anti-myeloma drug prototype. The aim of the present study was to investigate the synergistic effects of cyclopamine and circularly permuted TRAIL (CPT) on the proliferation and apoptosis of multiple myeloma cells. The results showed that the inhibitory effects of cyclopamine on the proliferation of human myeloma RPMI-8226 and SKO-007 cells were weak. RPMI-8226 cells were sensitive to CPT; however, the proliferation of SKO-007 cells was not effectively inhibited by CPT. SKO-007 cells were thus considered resistant to cyclopamine and CPT and used for subsequent experiments. Treatment with a combination of cyclopamine and CPT significantly inhibited cell proliferation. Moreover, the Q value showed that cyclopamine combined with CPT could synergistically inhibit the proliferation of SKO-007 cells. Cyclopamine increased CPT-induced apoptosis in the SKO-007 cells and exhibited a synergistic induction of apoptosis when combined with CPT. Moreover, the combination of cyclopamine and CPT decreased the ratio of myeloma stem cells. Quantitative PCR showed that cyclopamine decreased the mRNA expression levels of GLI1/GLI2/GLI3 and increased the expression levels of death receptor 4. In conclusion, the present study showed that a combination of cyclopamine and CPT exhibited synergistic effects on the inhibition of proliferation and induction of apoptosis in myeloma cells.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chuanying Geng
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Huixing Zhou
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhiyao Zhang
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
20
|
Naimi A, Safaei S, Entezari A, Solali S, Hassanzadeh A. Knockdown of Enhancer of Zeste Homolog 2 Affects mRNA Expression of Genes Involved in the Induction of Resistance to Apoptosis in MOLT-4 Cells. Anticancer Agents Med Chem 2021; 20:571-579. [PMID: 32000648 DOI: 10.2174/1871520620666200130091955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Enhancer of Zeste Homolog 2 (EZH2) is a subunit of the polycomb repressive complex 2 that silences the gene transcription via H3K27me3. Previous studies have shown that EZH2 has an important role in the induction of the resistance against the Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis (TIA) in some leukemia cells. OBJECTIVE The aim of this study was to determine the effect of silencing EZH2 gene expression using RNA interference on the expression of death receptors 4 and 5 (DR4/5), Preferentially expressed Antigen in Melanoma (PRAME), and TRAIL human lymphoid leukemia MOLT-4 cells. METHODS Quantitative RT-PCR was used to detect the EZH2 expression and other candidate genes following the siRNA knockdown in MOLT-4 cells. The toxicity of the EZH2 siRNA was evaluated using Annexin V/PI assay following the transfection of the cells by 80 pM EZH2 siRNA at 48 hours. RESULTS Based on the flow-cytometry results, the EZH2 siRNA had no toxic effects on MOLT-4 cells. Also, the EZH2 inhibition increased the expression of DR4/5 but reduced the PRAME gene expression at the mRNA levels. Moreover, the EZH2 silencing could not change the TRAIL mRNA in the transfected cells. CONCLUSION Our results revealed that the down-regulation of EZH2 in MOLT-4 cells was able to affect the expression of important genes involved in the induction of resistance against TIA. Hence, we suggest that the silencing of EZH2 using RNA interference can be an effective and safe approach to help defeat the MOLT-4 cell resistance against TIA.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Science, Sabzevar, Iran.,Department of Medical Laboratory Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Entezari
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Huang Y, Wang S, Huang F, Zhang Q, Qin B, Liao L, Wang M, Wan H, Yan W, Chen D, Liu F, Jiang B, Ji D, Xia X, Huang J, Xiong K. c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway. Ann Anat 2021; 235:151672. [PMID: 33434657 DOI: 10.1016/j.aanat.2020.151672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, shows remarkable similarities to caspase-8, which plays a key role in the cleavage of gasdermin D (GSDMD). It has been reported that the oxygen-glucose deprivation/recovery (OGD/R) model and lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment could induce inflammation and pyroptosis. However, the regulatory role of c-FLIP in the pyroptotic death of retinal neurons is unclear. In this study, we hypothesized that c-FLIP might regulate retinal neuronal pyroptosis by GSDMD cleavage. To investigate this hypothesis, we induced retinal neuronal damage in vitro (OGD/R and LPS/ATP) and in vivo (acute high intraocular pressure [aHIOP]). Our results demonstrated that the three injuries triggered the up-regulation of pyroptosis-related proteins, and c-FLIP could cleave GSDMD to generate a functional N-terminal (NT) domain of GSDMD, causing retinal neuronal pyroptosis. In addition, c-FLIP knockdown in vivo ameliorated the already established visual impairment mediated by acute IOP elevation. Taken together, these findings revealed that decreased c-FLIP expression protected against pyroptotic death of retinal neurons possibly by inhibiting GSDMD-NT generation. Therefore, c-FLIP might provide new insights into the pathogenesis of pyroptosis-related diseases and help to elucidate new therapeutic targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha 410013, China
| | - Fei Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Bo Qin
- Department of Anatomy, Medical College of Hubei Polytechnic University, Huang shi 435003, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
22
|
Orlando N, Babini G, Chiusolo P, Valentini CG, De Stefano V, Teofili L. Pre-Exposure to Defibrotide Prevents Endothelial Cell Activation by Lipopolysaccharide: An Ingenuity Pathway Analysis. Front Immunol 2020; 11:585519. [PMID: 33343567 PMCID: PMC7744778 DOI: 10.3389/fimmu.2020.585519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Abstract
Defibrotide (DFB) effects on different endothelial cell pathways have been investigated focusing on a limited number of genes or molecules. This study explored the modulation of the gene expression profile of steady-state or lipopolysaccharide (LPS)-activated endothelial cells, following the DFB exposure. Starting from differentially regulated gene expression datasets, we utilized the Ingenuity Pathway Analysis (IPA) to infer novel information about the activity of this drug. We found that effects elicited by LPS deeply differ depending on cells were exposed to DFB and LPS at the same time, or if the DFB priming occurs before the LPS exposure. Only in the second case, we observed a significant down-regulation of various pathways activated by LPS. In IPA, the pathways most affected by DFB were leukocyte migration and activation, vasculogenesis, and inflammatory response. Furthermore, the activity of DFB seemed to be associated with the modulation of six key genes, including matrix-metalloproteinases 2 and 9, thrombin receptor, sphingosine-kinase1, alpha subunit of collagen XVIII, and endothelial-protein C receptor. Overall, our findings support a role for DFB in a wide range of diseases associated with an exaggerated inflammatory response of endothelial cells.
Collapse
Affiliation(s)
- Nicoletta Orlando
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Caterina Giovanna Valentini
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valerio De Stefano
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luciana Teofili
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
23
|
Song S, Tchkonia T, Jiang J, Kirkland JL, Sun Y. Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002611. [PMID: 33304768 PMCID: PMC7709980 DOI: 10.1002/advs.202002611] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Aging is a physiological decline in both structural homeostasis and functional integrity, progressively affecting organismal health. A major hallmark of aging is the accumulation of senescent cells, which have entered a state of irreversible cell cycle arrest after experiencing inherent or environmental stresses. Although cellular senescence is essential in several physiological events, it plays a detrimental role in a large array of age-related pathologies. Recent biomedical advances in specifically targeting senescent cells to improve healthy aging, or alternatively, postpone natural aging and age-related diseases, a strategy termed senotherapy, have attracted substantial interest in both scientific and medical communities. Challenges for aging research are highlighted and potential avenues that can be leveraged for therapeutic interventions to control aging and age-related disorders in the current era of precision medicine.
Collapse
Affiliation(s)
- Shuling Song
- Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of GerontologyBinzhou Medical UniversityYantaiShandong264003China
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMN55905USA
| | - Jing Jiang
- School of PharmacyBinzhou Medical UniversityYantaiShandong264003China
| | - James L. Kirkland
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMN55905USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of PharmacyBinzhou Medical UniversityYantaiShandong264003China
- Department of Medicine and VAPSHCSUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
24
|
Do novel treatment strategies enhance T cell-mediated Immunity: Opportunities and challenges in pancreatic cancer immunotherapy. Int Immunopharmacol 2020; 90:107199. [PMID: 33246828 DOI: 10.1016/j.intimp.2020.107199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Although immunotherapy is successful when included as component of treatment strategies for advanced cancers, data are insufficient for evaluating its efficacy for treating patients with pancreatic cancer (PC). PC is remarkably resistant to current immunotherapies because of its strongly immunosuppressive tumor microenvironment comprising immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells, which limit the efficacy of T cell infiltration. Thus, the ability to achieve robust and durable intrinsic T cell efficacy may represent the key for improving patients' outcomes. Recent studies show that the efficacy of immunotherapy for treating PC will be significantly improved when combined with novel treatment strategies. This review summarizes the latest research in this rapidly progressing area and provides an overview of how current therapies enhance T cell-mediated immunotherapies that employ immune checkpoint inhibitors, cytokines, cell receptor modulators, tumor microenvironment regulators, vaccines, and gene-targeted immunotherapies. We highlight novel discoveries, which promise to guide future management of PC, and clinical trials aimed to increase the overall survival rate of patients with PC.
Collapse
|
25
|
Maiese A, De Matteis A, Bolino G, Turillazzi E, Frati P, Fineschi V. Hypo-Expression of Flice-Inhibitory Protein and Activation of the Caspase-8 Apoptotic Pathways in the Death-Inducing Signaling Complex Due to Ischemia Induced by the Compression of the Asphyxiogenic Tool on the Skin in Hanging Cases. Diagnostics (Basel) 2020; 10:diagnostics10110938. [PMID: 33198065 PMCID: PMC7696535 DOI: 10.3390/diagnostics10110938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
The FLICE-inhibitory protein (c-FLIPL) (55 kDa) is expressed in numerous tissues and most abundantly in the kidney, skeletal muscles and heart. The c-FLIPL has a region of homology with caspase-8 at the carboxy-terminal end which allows the molecule to assume a tertiary structure similar to that of caspases-8 and -10. Consequently, c-FLIPL acts as a negative inhibitor of caspase-8, preventing the processing and subsequent release of the pro-apoptotic molecule active form. The c-FLIP plays as an inhibitor of apoptosis induced by a variety of agents, such as tumor necrosis factor (TNF), T cell receptor (TCR), TNF-related apoptosis inducing ligand (TRAIL), Fas and death receptor (DR). Increased expression of c-FLIP has been found in many human malignancies and shown to be involved in resistance to CD95/Fas and TRAIL receptor-induced apoptosis. We wanted to verify an investigative protocol using FLIP to make a differential diagnosis between skin sulcus with vitality or non-vital skin sulcus in hanged subjects and those undergoing simulated hanging (suspension of the victim after murder). The study group consisted of 21 cases who died from suicidal hanging. The control group consisted of traumatic or natural deaths, while a third group consisted of simulated hanging cases. The reactions to the Anti-FLIP Antibody (Abcam clone-8421) was scored for each section with a semi-quantitative method by means of microscopic observation carried out with confocal microscopy and three-dimensional reconstruction. The results obtained allow us to state that the skin reaction to the FLIP is extremely clear and precise, allowing a diagnosis of unequivocal vitality and a very objective differentiation with the post-mortal skin sulcus.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Giorgio Bolino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
| | - Paola Frati
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Vittorio Fineschi
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
- Correspondence:
| |
Collapse
|
26
|
Hassanzadeh A, Naimi A, Hagh MF, Saraei R, Marofi F, Solali S. Kaempferol Improves TRAIL-Mediated Apoptosis in Leukemia MOLT-4 Cells by the Inhibition of Anti-apoptotic Proteins and Promotion of Death Receptors Expression. Anticancer Agents Med Chem 2020; 19:1835-1845. [PMID: 31364517 DOI: 10.2174/1871520619666190731155859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the Tumor Necrosis Factor (TNF) superfamily, which stimulates apoptosis in a wide range of cancer cells through binding to Death Receptors 4 and 5 (DR4/5). Nevertheless, TRAIL has noticeable anti-cancer abilities; some cancer cells acquire resistance to TRAIL, and consequently, its potential for inducing apoptosis in target cells is strongly diminished. Acute lymphoblastic leukemia MOLT-4 cell line is one of the most resistant cells to TRAIL that developed resistance to TRAIL through different pathways. TRAIL plus kaempferol was used to eliminate the resistance of the MOLT-4 cells to TRAIL. MATERIALS AND METHODS Firstly, IC50 for kaempferol (95μM) was determined by using the MTT assay. Secondly, the viability of the MOLT-4 cells was assayed by FACS after Annexin V/PI staining, following treatment with TRAIL (50 and 100nM) and kaempferol (95μM) alone and in combination. Finally, the expression levels of the candidate genes involved in resistance to TRAIL were assayed by real-time PCR technique. RESULTS Kaempferol plus TRAIL induced apoptosis robustly in MOLT-4 cells at 12, 24 and 48 hours after treatment. Additionally, it was found that kaempferol could inhibit the expression of c-FLIP, X-IAP, cIAP1/2, FGF-8 and VEGF-beta, and conversely augment the expression of DR4/5 in MOLT-4 cells. CONCLUSION It is suggested that co-treatment of MOLT-4 cells with TRAIL plus kaempferol is a practical and attractive approach to eliminate cancers' resistance to TRAIL by inhibition of the intracellular anti-apoptotic proteins, upregulation of DR4/5 and also by suppression of the VEGF-beta (VEGFB) and FGF-8 expressions.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid F Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raedeh Saraei
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Lee SH, Moon HJ, Lee YS, Kang CD, Kim SH. Potentiation of TRAIL‑induced cell death by nonsteroidal anti‑inflammatory drug in human hepatocellular carcinoma cells through the ER stress‑dependent autophagy pathway. Oncol Rep 2020; 44:1136-1148. [PMID: 32705218 PMCID: PMC7388578 DOI: 10.3892/or.2020.7662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed primary liver malignancy. The limited success with relapse of the disease in HCC therapy is frequently associated with the acquired resistance to anticancer drugs. To develop a strategy and design for overcoming the resistance of HCC cells to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death, we evaluated the efficacy of a non-steroidal anti-inflammatory drug (NSAID) in combination with TRAIL against TRAIL-resistant HCC cells expressing a high level of CD44. We revealed by MTT and western blotting, respectively, that celecoxib (CCB), an NSAID, and 2,5-dimethyl celecoxib (DMC), a non-cyclooxygenase (COX)-2 inhibitor analog of CCB, were able to sensitize TRAIL-resistant HCC cells to TRAIL, implicating a COX-independent mechanism. CCB dose-dependently enhanced LC3-II and reduced p62 levels through AMPK activation and inhibition of the Akt/mTOR pathway and upregulated expression of ATF4/CHOP, leading to activation of endoplasmic reticulum (ER) stress-dependent autophagy. The TRAIL sensitization capacity of CCB in TRAIL-resistant HCC cells was abrogated by an ER stress inhibitor. In addition, we also revealed by flow cytometry and western blotting, respectively, that accelerated downregulation of TRAIL-mediated c-FLIP expression, DR5 activation and CD44 degradation/downregulation by NSAID resulted in activation of caspases and poly(ADP-ribose) polymerase (PARP), leading to the sensitization of TRAIL-resistant HCC cells to TRAIL and thereby reversal of TRAIL resistance. From these results, we propose that NSAID in combination with TRAIL may improve the antitumor activity of TRAIL in TRAIL-resistant HCC, and this approach may serve as a novel strategy that maximizes the therapeutic efficacy of TRAIL for clinical application.
Collapse
Affiliation(s)
- Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| |
Collapse
|
28
|
Obaidi I, Cassidy H, Ibáñez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T. Curcumin Sensitizes Kidney Cancer Cells to TRAIL-Induced Apoptosis via ROS Mediated Activation of JNK-CHOP Pathway and Upregulation of DR4. BIOLOGY 2020; 9:E92. [PMID: 32370057 PMCID: PMC7284747 DOI: 10.3390/biology9050092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ismael Obaidi
- NIBRT|National Institute for Bioprocessing, Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., A94 X099 Dublin, Ireland
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Hilary Cassidy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Verónica Ibáñez Gaspar
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Jasmin McCaul
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Melinda Halász
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Alison L. Reynolds
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- UCD School of Veterinary Medicine, Rm 232, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Breandan N. Kennedy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| |
Collapse
|
29
|
Artykov AA, Belov DA, Shipunova VO, Trushina DB, Deyev SM, Dolgikh DA, Kirpichnikov MP, Gasparian ME. Chemotherapeutic Agents Sensitize Resistant Cancer Cells to the DR5-Specific Variant DR5-B more Efficiently than to TRAIL by Modulating the Surface Expression of Death and Decoy Receptors. Cancers (Basel) 2020; 12:cancers12051129. [PMID: 32365976 PMCID: PMC7280987 DOI: 10.3390/cancers12051129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
TRAIL is considered a promising antitumor agent because it causes apoptosis of transformed cells without affecting normal cells. However, many types of tumors are cytokine resistant, and combination therapy with various chemotherapeutic drugs is being developed to overcome the resistance. We have demonstrated that the combination of TRAIL with doxorubicin, bortezomib, and panobinostat dramatically reduced the viability of TRAIL-resistant A549 and HT-29 cells. Chemotherapy even more efficiently sensitized cells to the DR5-specific mutant variant of TRAIL DR5-B, which does not have an affinity for decoy receptors. Bortezomib and doxorubicin greatly enhanced the surface expression of the death receptors DR5 and DR4, while panobinostat increased expression of DR5 and suppressed expression of DR4 in both cell lines. All drugs increased surface expression of the decoy receptors DcR1 and DcR2. Unlike the combined treatment, if the cells were pretreated with chemotherapy for 24 h, the cytotoxic activity of TRAIL was less pronounced, while sequential treatment of cells enhanced the effectiveness of DR5-B. The same results were obtained with agonistic anti-DR5 antibodies. Thus, the effectiveness of TRAIL was rather limited due to changes in the ratio of death and decoy receptors and DR5-specific agonists may be preferred in combination antitumor therapy regimens.
Collapse
Affiliation(s)
- Artem A. Artykov
- Department of Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.A.); (D.A.B.); (D.A.D.); (M.P.K.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry A. Belov
- Department of Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.A.); (D.A.B.); (D.A.D.); (M.P.K.)
| | - Victoria O. Shipunova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (S.M.D.)
| | - Daria B. Trushina
- Department of X-ray and Synchrotron Research, A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Sergey M. Deyev
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (S.M.D.)
| | - Dmitry A. Dolgikh
- Department of Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.A.); (D.A.B.); (D.A.D.); (M.P.K.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.A.); (D.A.B.); (D.A.D.); (M.P.K.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marine E. Gasparian
- Department of Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.A.); (D.A.B.); (D.A.D.); (M.P.K.)
- Correspondence: ; Tel.: +7-905-515-7494
| |
Collapse
|
30
|
Lin L, Ding D, Xiao X, Li B, Cao P, Li S. Trametinib potentiates TRAIL-induced apoptosis via FBW7-dependent Mcl-1 degradation in colorectal cancer cells. J Cell Mol Med 2020; 24:6822-6832. [PMID: 32352219 PMCID: PMC7299726 DOI: 10.1111/jcmm.15336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Trametinib is a MEK1/2 inhibitor and exerts anticancer activity against a variety of cancers. However, the effect of Trametinib on colorectal cancer (CRC) is not well understood. In the current study, our results demonstrate the ability of sub-toxic doses of Trametinib to enhance TRAIL-mediated apoptosis in CRC cells. Our findings also indicate that Trametinib and TRAIL activate caspase-dependent apoptosis in CRC cells. Moreover, Mcl-1 overexpression can reduce apoptosis in CRC cells treated with Trametinib with or without TRAIL. We further demonstrate that Trametinib degrades Mcl-1 through the proteasome pathway. In addition, GSK-3β phosphorylates Mcl-1 at S159 and promotes Mcl-1 degradation. The E3 ligase FBW7, known to polyubiquitinate Mcl-1, is involved in Trametinib-induced Mcl-1 degradation. Taken together, these results provide the first evidence that Trametinib enhances TRAIL-mediated apoptosis through FBW7-dependent Mcl-1 ubiquitination and degradation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Ding
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoguang Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Penglong Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijun Li
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
Changes in the Concentration of Markers Participating in the Regulation of the Apoptosis Receptor Pathway Involving Soluble Tumour Necrosis Factor Ligand inducing Apoptosis (sTRAIL) and Osteoprotegerin (OPG) in the Serum of Women with Ovarian Cancer-Participation in Pathogenesis or a Possible Clinical Use? Cells 2020; 9:cells9030612. [PMID: 32143328 PMCID: PMC7140464 DOI: 10.3390/cells9030612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Due to the ability to selectively induce apoptosis in cancer cells, the most interesting target for clinical research is the tumour necrosis factor ligand inducing apoptosis (TRAIL), which binds specific receptors, including osteoprotegerin (OPG). The aim of the study was to analyse the concentration of soluble TRAIL (sTRAIL) and OPG in the serum of women with serous or mucinous ovarian cancer, taking into account different levels of cancer histological differentiation. The group included 97 women with the diagnosed Cystadenocarcinoma papillare serosum IIIc and Cystadenocarcinoma mucinosum IIIc. Concentrations of parameters were measured by ELISA. Analysis of the obtained results showed a statistically significantly higher concentration of sTRAIL and OPG in the serum of women with ovarian serous and mucinous cancer compared to the control group (p < 0.0001). Statistical significance was found between sTRAIL and OPG concentration in G1 and G3 serous cancer (p < 0.01) and in OPG mucinous cancer between G1 and G3 (p < 0.01) and G2 and G3 (p < 0.01). An important role in the pathogenesis of ovarian cancer is played by disorders of the apoptosis process involving the sTRAIL/OPG system, which are associated with the histological type and the degree of histological differentiation of the tumour. Determining the concentration of tested parameters in combination with other markers may be useful in the future in the diagnosis of ovarian cancer, but that requires further research.
Collapse
|
32
|
Lim B, Greer Y, Lipkowitz S, Takebe N. Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox. Cancers (Basel) 2019; 11:cancers11081087. [PMID: 31370269 PMCID: PMC6721450 DOI: 10.3390/cancers11081087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Evasion from apoptosis is an important hallmark of cancer cells. Alterations of apoptosis pathways are especially critical as they confer resistance to conventional anti-cancer therapeutics, e.g., chemotherapy, radiotherapy, and targeted therapeutics. Thus, successful induction of apoptosis using novel therapeutics may be a key strategy for preventing recurrence and metastasis. Inhibitors of anti-apoptotic molecules and enhancers of pro-apoptotic molecules are being actively developed for hematologic malignancies and solid tumors in particular over the last decade. However, due to the complicated apoptosis process caused by a multifaceted connection with cross-talk pathways, protein–protein interaction, and diverse resistance mechanisms, drug development within the category has been extremely challenging. Careful design and development of clinical trials incorporating predictive biomarkers along with novel apoptosis-inducing agents based on rational combination strategies are needed to ensure the successful development of these molecules. Here, we review the landscape of currently available direct apoptosis-targeting agents in clinical development for cancer treatment and update the related biomarker advancement to detect and validate the efficacy of apoptosis-targeted therapies, along with strategies to combine them with other agents.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yoshimi Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Early Clinical Trials Development, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Safa AR, Kamocki K, Saadatzadeh MR, Bijangi-Vishehsaraei K. c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer's Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target. BIOMARKERS JOURNAL 2019; 5:4. [PMID: 32352084 PMCID: PMC7189798 DOI: 10.36648/2472-1646.5.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - Krzysztof Kamocki
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - M Reza Saadatzadeh
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
34
|
Rezapour S, Hosseinzadeh E, Marofi F, Hassanzadeh A. Epigenetic-based therapy for colorectal cancer: Prospect and involved mechanisms. J Cell Physiol 2019; 234:19366-19383. [PMID: 31020647 DOI: 10.1002/jcp.28658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.
Collapse
Affiliation(s)
- Saleheh Rezapour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Importance of TRAIL Molecular Anatomy in Receptor Oligomerization and Signaling. Implications for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040444. [PMID: 30934872 PMCID: PMC6521207 DOI: 10.3390/cancers11040444] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
(TNF)-related apoptosis-inducing ligand (TRAIL) is able to activate the extrinsic apoptotic pathway upon binding to DR4/TRAIL-R1 and/or DR5/TRAIL-R2 receptors. Structural data indicate that TRAIL functions as a trimer that can engage three receptor molecules simultaneously, resulting in receptor trimerization and leading to conformational changes in TRAIL receptors. However, receptor conformational changes induced by the binding of TRAIL depend on the molecular form of this death ligand, and not always properly trigger the apoptotic cascade. In fact, TRAIL exhibits a much stronger pro-apoptotic activity when is found as a transmembrane protein than when it occurs as a soluble form and this enhanced biological activity is directly linked to its ability to cluster TRAIL receptors in supra-molecular structures. In this regard, cells involved in tumor immunosurveillance, such as activated human T cells, secrete endogenous TRAIL as a transmembrane protein associated with lipid microvesicles called exosomes upon T-cell reactivation. Consequently, it seems clear that a proper oligomerization of TRAIL receptors, which leads to a strong apoptotic signaling, is crucial for inducing apoptosis in cancer cells upon TRAIL treatment. In this review, the current knowledge of oligomerization status of TRAIL receptors is discussed as well as the implications for cancer treatment when using TRAIL-based therapies.
Collapse
|
36
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Park SH, Kim JL, Jeong S, Kim BR, Na YJ, Jo MJ, Yun HK, Jeong YA, Kim DY, Kim BG, You S, Oh SC, Lee DH. Codium fragile F2 sensitize colorectal cancer cells to TRAIL-induced apoptosis via c-FLIP ubiquitination. Biochem Biophys Res Commun 2018; 508:1-8. [PMID: 30409427 DOI: 10.1016/j.bbrc.2018.10.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
This study demonstrates that combined treatment with subtoxic doses of Codium extracts (CE), a flavonoid found in many fruits and vegetables, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces apoptosis in TRAIL-resistant colorectal cancer (CRC) cells. Effective induction of apoptosis by combined treatment with CE and TRAIL was not blocked by Bcl-xL overexpression, which is known to confer resistance to various chemotherapeutic agents. While TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in various CRC cells treated with TRAIL alone, co-treatment with CE efficiently recovered TRAIL-induced caspase activation. We observed that CE treatment of CRC cells did not change the expression of anti-apoptotic proteins and pro-apoptotic proteins, including death receptors (DR4 and DR5). However, CE treatment markedly reduced the protein level of the short form of the cellular FLICE-inhibitory protein (c-FLIPS), an inhibitor of caspase-8, via proteasome-mediated degradation. Collectively, these observations show that CE recovers TRAIL sensitivity in various CRC cells via down-regulation of c-FLIPS.
Collapse
Affiliation(s)
- Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Dae Yeong Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Bu Gyeom Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea
| | - Sang Cheul Oh
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea; Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| | - Dae-Hee Lee
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea; Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| |
Collapse
|