1
|
Zhang N, Zang L. MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis. Assay Drug Dev Technol 2024; 22:217-228. [PMID: 38967602 DOI: 10.1089/adt.2024.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.
Collapse
Affiliation(s)
- Ningrong Zhang
- Department of Pharmacy, Ningbo Haishu People's Hospital, Ningbo, Republic of China
| | - Li Zang
- Department of Pharmacy, Ningbo Haishu People's Hospital, Ningbo, Republic of China
| |
Collapse
|
2
|
Kurasaka C, Nishizawa N, Ogino Y, Sato A. Anticancer sensitivity and biological aspect of 5-fluorouracil-resistant human colorectal cancer HCT116 cells in three-dimensional culture under high- and low-glucose conditions. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-11. [PMID: 38555594 DOI: 10.1080/15257770.2024.2332414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
5-Fluorouracil (5-FU) is a commonly used anticancer drug for colorectal cancer (CRC). Therefore, it is crucial to elucidate the mechanisms that contribute to 5-FU resistance. We established an acquired 5-FU resistant cell line, HCT116RF10, derived from CRC cells and investigated its energy metabolism as well as the underlying mechanism of 5-FU resistance. We examined the sensitivity to 5-FU and the formation of tumor spheres in parental HCT116 cells and 5-FU-resistant HCT116RF10 cells under 3D culture conditions at high-glucose (HG 25 mM) and low-glucose (LG 5.5 mM) concentrations. These results suggested that the tumor spheres of parental HCT116 cells displayed higher sensitivity to 5-FU under LG conditions than under HG conditions. HCT116RF10 tumor spheres exhibited comparable sensitivity to 5-FU under HG and LG conditions. Furthermore, under HG conditions, there was a marked decrease in extracellular lactate in the HCT116RF10 tumor sphere compared to that in the LG tumor sphere. Similarly, HCT116 tumor spheres showed decreased extracellular lactate levels under LG conditions compared to those grown under HG conditions. Moreover, the evidence reveals that the tumor spheres of HCT116RF10 and HCT116 cells exhibit disparate dependencies on energy metabolism, glycolysis, and mitochondrial respiration under both HG and LG conditions. These results have important clinical implications for overcoming 5-FU resistance and enhancing antitumor treatment strategies.
Collapse
Affiliation(s)
- Chinatsu Kurasaka
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Nana Nishizawa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
3
|
Chen Y, Mao X, Xu Y, Li L, Geng J, Dai T, Wang Q, Xue L, Tao L, Liu X. PTOV1-AS1 desensitizes colorectal cancer cells to 5-FU through depressing miR-149-5p to activate the positive feedback loop with Wnt/β-catenin pathway. Phytother Res 2024; 38:1313-1328. [PMID: 38194947 DOI: 10.1002/ptr.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/β-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/β-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/β-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yichen Xu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lin Li
- Department of Health, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Leilei Tao
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Medical Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
4
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Badr D, Fouad MA, Hussein M, Salem S, Zekri A, Shouman S. Rebound increase in microRNA levels at the end of 5-FU-based therapy in colorectal cancer patients. Sci Rep 2023; 13:14237. [PMID: 37648713 PMCID: PMC10469181 DOI: 10.1038/s41598-023-41030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Treatment with 5-fluorouracil (5-FU) based therapy is still used for colorectal cancer (CRC). Epigenetics has become a focus of study in cancer because of its reversibility besides its known regulatory functions. In this study, we will monitor the change in microRNAs (miRNAs) levels with 5-FU-based therapy at baseline and after 3 and 6 months of treatment to be correlated with their prognostic potential. The expression levels of 5 miRNAs, namely miRNA223-3p, miRNA20a-5p, miRNA17-5p, miRNA19a-3p, and miRNA7-5p, were measured in the peripheral blood of 77 CRC patients, along with the expression of 3 proteins PTEN, ERK, and EGFR. At baseline, CRC patients had significantly higher levels of circulating miRNAs than healthy controls. This level was reduced after 3 months of 5-FU-based therapy, then increased after 6 months significantly in responder patients compared to non-responders. MiRNA19a-3p showed that significant pattern of change in the subgroups of patients with high ERK, EGFR, and PTEN protein levels, and its 6 months level after 5-FU-based therapy showed significance for the hazard of increased risk of disease recurrence and progression.
Collapse
Affiliation(s)
- Doaa Badr
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mariam A Fouad
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center. 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Marwa Hussein
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem Salem
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdelrahman Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Li Y, Xu C, Zhu R, Shen L, Hu G, Tao K, Tao F, Lu Z, Zhang G. TIMP-2 as a predictive biomarker in 5-Fu-resistant colorectal cancer. J Cancer Res Clin Oncol 2023; 149:7235-7246. [PMID: 36905423 DOI: 10.1007/s00432-023-04670-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE This study aims to evaluate the value of tissue inhibitors of MMPs-2 (TIMP-2) to indicate 5-Fluorouracil (5-Fu) resistance status in colorectal cancer. METHODS The 5-Fu resistance of colorectal cancer cell lines was detected using Cell-Counting Kit-8 (CCK-8) and calculated using IC50. Enzyme-linked immunosorbent assay (ELISA) and real time-quantitative polymerase chain reaction (RT-qPCR) were used to detect TIMP-2 expression level in the culture supernatant and serum. Twenty-two colorectal cancer patients' TIMP-2 levels and clinical characteristics were analyzed before and after chemotherapy. Additionally, the patient-derived xenograft (PDX) model of 5-Fu resistance was used to evaluate the feasibility of TIMP-2 as a predictive biomarker of 5-Fu resistance. RESULTS Our experimental results display that TIMP-2 expression is elevated in colorectal cancer drug-resistant cell lines, and its expression level is closely related to 5-Fu resistance. Moreover, TIMP-2 in colorectal cancer patient serum undergoing 5-Fu-based chemotherapy could indicate their drug resistance status, and its efficacy is higher than CEA and CA19-9. Finally, PDX model animal experiments reveal that TIMP-2 can detect 5-Fu resistance in colorectal cancer earlier than tumor volume. CONCLUSION TIMP-2 is a good indicator of 5-Fu resistance in colorectal cancer. Monitoring the serum TIMP-2 level can help the clinician identify 5-Fu resistance in colorectal cancer patients earlier during chemotherapy.
Collapse
Affiliation(s)
- Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chuchu Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Renjun Zhu
- Department of Emergency, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gengyuan Hu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
- Medical School of Shaoxing University, The First Hospital Affiliated to Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Zengxin Lu
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
- Medical School of Shaoxing University, The First Hospital Affiliated to Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Guolin Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
7
|
Firouzjaei AA, Sharifi K, Khazaei M, Mohammadi-Yeganeh S, Aghaee-Bakhtiari SH. Screening and introduction of key cell cycle microRNAs deregulated in colorectal cancer by integrated bioinformatics analysis. Chem Biol Drug Des 2023; 102:137-152. [PMID: 37081586 DOI: 10.1111/cbdd.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men worldwide. Impaired cell cycle regulation leads to many cancers and is also approved in CRC. Therefore, cell cycle regulation is a critical therapeutic target for CRC. Furthermore, miRNAs have been discovered as regulators in a variety of cancer-related pathways. This study is designed to investigate how miRNAs and mRNAs interact to regulate the cell cycle in CRC patients. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Expression Omnibus (GEO), and Therapeutic Target Database (TTD), cell cycle-associated genes were identified and evaluated. Seven of the 22 differentially expressed genes (DEGs) implicated in the cell cycle in three GSEs (GSE24514, GSE10950, and GSE74604) were identified as potential therapeutic targets. Then, using PyRx software, we performed docking proteins with selected drugs. The results demonstrated that these drugs are appropriate molecules for targeting cell cycle DEGs. Tarbase, miRTarbase, miRDIP, and miRCancer databases were used to find miRNAs that target the indicated genes. The ability of these six miRNAs to impact the cell cycle in colorectal cancer may be concluded. These miRNAs were found to be downregulated in SW480 cells when compared to the normal tissue. Our data imply that a precise selection of bioinformatics tools can facilitate the identification of miRNAs that impact mRNA translation at different stages of the cell cycle. The candidates can be investigated more as targets for cell cycle arrest in cancers.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Gmeiner WH, Okechukwu CC. Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:257-272. [PMID: 37457133 PMCID: PMC10344727 DOI: 10.20517/cdr.2022.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 07/18/2023]
Abstract
The emergence of chemoresistant disease during chemotherapy with 5-Fluorouracil-based (5-FU-based) regimens is an important factor in the mortality of metastatic CRC (mCRC). The causes of 5-FU resistance are multi-factorial, and besides DNA mismatch repair deficiency (MMR-D), there are no widely accepted criteria for determining which CRC patients are not likely to be responsive to 5-FU-based therapy. Thus, there is a need to systematically understand the mechanistic basis for 5-FU treatment failure and an urgent need to develop new approaches for circumventing the major causes of 5-FU resistance. In this manuscript, we review mechanisms of 5-FU resistance with an emphasis on: (1) altered anabolic metabolism limiting the formation of the primary active metabolite Fluorodeoxyuridylate (5-Fluoro-2'-deoxyuridine-5'-O-monophosphate; FdUMP); (2) elevated expression or activity of the primary enzymatic target thymidylate synthase (TS); and (3) dysregulated programmed cell death as important causes of 5-FU resistance. Importantly, these causes of 5-FU resistance can potentially be overcome through the use of next-generation fluoropyrimidine (FP) polymers (e.g., CF10) that display reduced dependence on anabolic metabolism and more potent TS inhibitory activity.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Integrative Physiology and Pharmacology Graduate Program, Institution, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Charles Chidi Okechukwu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Wang C, Cui G, Wang D, Wang M, Chen Q, Wang Y, Lu M, Tang X, Yang B. Crosstalk of Oxidative Phosphorylation-Related Subtypes, Establishment of a Prognostic Signature and Immune Infiltration Characteristics in Colorectal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184503. [PMID: 36139663 PMCID: PMC9496738 DOI: 10.3390/cancers14184503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Oxidative phosphorylation (OXPHOS) plays an important role in the progression of colorectal adenocarcinoma (COAD). The aim of our study was to investigate the expression pattern of OXPHOS-related genes (ORGs), and an OXPHOS-related prognostic signature was constructed to classify COAD patients into high-risk and low-risk groups. Then, we analyzed the relationship between risk scores and tumor microenvironment, somatic mutation, and efficacy of immunotherapy and chemotherapy. Additionally, a nomogram was established by combining clinical features and risk scores, and its predictive ability was verified by receiver operating characteristics and calibration curves. Overall, the OXPHOS-related signature can be used as a reliable prognostic predictor of COAD patients. Abstract Oxidative phosphorylation (OXPHOS) is an emerging target in cancer therapy. However, the prognostic signature of OXPHOS in colorectal adenocarcinoma (COAD) remains non-existent. We comprehensively investigated the expression pattern of OXPHOS-related genes (ORGs) in COAD from public databases. Based on four ORGs, an OXPHOS-related prognostic signature was established in which COAD patients were assigned different risk scores and classified into two different risk groups. It was observed that the low-risk group had a better prognosis but lower immune activities including immune cells and immune-related function in the tumor microenvironment. Combining with relevant clinical features, a nomogram for clinical application was also established. Receiver operating characteristic (ROC) and calibration curves were constructed to demonstrate the predictive ability of this risk signature. Moreover, a higher risk score was significantly positively correlated with higher tumor mutation burden (TMB) and generally higher gene expression of immune checkpoint, N6-methyladenosine (m6A) RNA methylation regulators and mismatch repair (MMR) related proteins. The results also indicated that the high-risk group was more sensitive to immunotherapy and certain chemotherapy drugs. In conclusion, OXPHOS-related prognostic signature can be utilized to better understand the roles of ORGs and offer new perspectives for clinical prognosis and personalized treatment.
Collapse
Affiliation(s)
- Can Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Dan Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Min Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Qi Chen
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Yunshan Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Mengjie Lu
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Xinyi Tang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Bolin Yang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
- Correspondence:
| |
Collapse
|
10
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
11
|
Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HA, Sallam AAM, Doghish AS. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay - A review. Int J Biol Macromol 2022; 214:583-600. [PMID: 35768045 DOI: 10.1016/j.ijbiomac.2022.06.134] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the world's third most prevalent cancer and the main cause of cancer-related mortality. A lot of work has been put into improving CRC patients' clinical care, including the development of more effective methods and wide biomarkers variety for prognostic, and diagnostic purposes. MicroRNAs (miRNAs) regulate a variety of cellular processes and play a significant role in the CRC progression and spread via controlling their target gene expression by translation inhibition or mRNA degradation. Consequently, dysregulation and disruption in their function, miRNAs are linked to CRC malignant pathogenesis by controlling several cellular processes involved in the CRC. These cellular processes include increased proliferative and invasive capacity, cell cycle aberration, evasion of apoptosis, enhanced EMT, promotion of angiogenesis and metastasis, and decreased sensitivity to major treatments. The miRNAs control cellular processes in CRC via regulation of pathways such as Wnt/β-catenin signaling, PTEN/AKT/mTOR axis, KRAS, TGFb signaling, VEGFR, EGFR, and P53. Hence, the goal of this review was to review miRNA biogenesis and present an updated summary of oncogenic and tumor suppressor (TS) miRNAs and their potential implication in CRC pathogenesis and responses to chemotherapy and radiotherapy. We also summarise the biological importance and clinical applications of miRNAs in the CRC.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sarah Al-Saeed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sara Gamal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Asmaa El-Sayed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alshaimaa A Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia Waheed
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
12
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Narasimha M Beeraka
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Zhou F, Ding W, Mao Q, Jiang X, Chen J, Zhao X, Xu W, Huang J, Zhong L, Sun X. The regulation of hsacirc_004413 promotes proliferation and drug resistance of gastric cancer cells by acting as a competing endogenous RNA for miR-145-5p. PeerJ 2022; 10:e12629. [PMID: 35415017 PMCID: PMC8995023 DOI: 10.7717/peerj.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Background Whether circRAN, which acts as a microRNA sponge, plays a role in 5-fluorouracil (5-Fu) resistant gastric cancer has not been reported. In this study, a 5-Fu resistant cell line with an IC50 of 16.59 µM was constructed. Methods Using comparative analysis of circRNA in the transcriptomics of resistant and sensitive strains, 31 differentially expressed circRNAs were detected, and the microRNA interacting with them was predicted. Results Hsacirc_004413 was selected for verification in drug resistant and sensitive cells. By interfering with hsacirc_004413 using antisense RNA, the sensitivity of drug resistant cells to 5-Fu was significantly promoted, and the apoptosis and necrosis of the cells were significantly increased. In sensitive cells, inhibition by inhibitors enhanced the resistance of cells to 5-Fu. We hypothesize that hsacirc_004413 makes gastric cancer cells resistant to 5-Fu mainly through adsorption of miR-145-5p.
Collapse
Affiliation(s)
- Fusheng Zhou
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weiqun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiqi Mao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiaoyun Jiang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiajie Chen
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xianguang Zhao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weijia Xu
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiaxin Huang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Sun
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Yu Z, Guo J, Meng T, Ge L, Liu L, Wang H, Yang X. Bcl-xL DNAzymes promote radiosensitivity and chemosensitivity in colorectal cancer cells via enhancing apoptosis. BMC Pharmacol Toxicol 2022; 23:13. [PMID: 35123593 PMCID: PMC8817578 DOI: 10.1186/s40360-022-00553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background RNA-cleaving deoxyribozymes (DNAzymes) are catalytic deoxyribonucleic acid molecules that have become a promising new class of gene suppressors by binding and cleaving target mRNA. This study investigated whether DNAzymes targeting Bcl-xL enhanced the effectiveness of radiotherapy and chemotherapy in colorectal cancer (CRC) cells. Methods Two types of CRC cells, SW480 and SW837, were transfected with five DNAzymes. Cell viability, Bcl-xL expression and apoptosis were examined. SW480 xenograft model was used to examine the combined effects of Bcl-xL DNAzymes and 5-FU (or X-rays) on tumor growth. Results Three Bcl-xL DNAzymes, DT882, DT883, and DT884 were identified to be effective in suppressing Bcl-xL expression and causing cell apoptosis. Furthermore, DT882 combined with 5-FU or radiotherapy addictively promoted cell apoptosis and significantly inhibited the growth of SW480 xenografts in vivo. Conclusions These results suggest that Bcl-xL DNAzymes can enhance the radiosensitivity and chemosensitivity in CRC cells via inducing apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00553-x.
Collapse
|
15
|
Moosavy SH, Koochakkhani S, Barazesh M, Mohammadi S, Ahmadi K, Inchehsablagh BR, Kavousipour S, Eftekhar E, Mokaram P. In silico Analysis of Single Nucleotide Polymorphisms Associated with MicroRNA
Regulating 5-fluorouracil Resistance in Colorectal Cancer. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210930161618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the broad influence and reversible nature of microRNA (miRNA) on the
expression and regulation of target genes, researchers suggest that miRNAs and single nucleotide polymorphisms
(SNPs) in miRNA genes interfere with 5-fluorouracil (5-FU) drug resistance in colorectal
cancer chemotherapy.
Methods:
Computational assessment and cataloging of miRNA gene polymorphisms that target mRNA
transcripts directly or indirectly through regulation of 5-FU chemoresistance in CRC were screened out
by applying various universally accessible datasets such as miRNA SNP3.0 software.
Results:
1255 SNPs in 85 miRNAs affecting 5-FU resistance (retrieved from literature) were detected.
Computational analysis showed that 167 from 1255 SNPs alter microRNA expression levels leading to
inadequate response to 5-FU resistance in CRC. Among these 167 SNPs, 39 were located in the seed
region of 25/85 miRNA and were more critical than other SNPs. Has-miR-320a-5p with 4 SNP in seed
region was miRNA with the most number of SNPs. On the other hand, it has been identified that proteoglycan
in cancer, adherents junction, ECM-receptor interaction, Hippo signaling pathway, TGF-beta signaling
cascade, biosynthesis of fatty acid, and fatty acid metabolism were the most important pathways
targeted by these 85 predicted miRNAs.
Conclusion:
Our data suggest 39 SNPs in the seed region of 25 miRNAs as catalog in miRNA genes that
control the 5-FU resistance in CRC. These data also identify the most important pathways regulated by
miRNA.
Collapse
Affiliation(s)
- Seyed Hamid Moosavy
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad,
Iran
| | - Khadijeh Ahmadi
- Infection and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical
Science, Bandar Abbas, Iran
| | - Behnaz Rahnama Inchehsablagh
- Department of Physiology and Student Research Committee, Hormozgan University of
Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
16
|
Yang W, Wang Y, Tao C, Li Y, Cao S, Yang X. CRNDE silencing promotes apoptosis and enhances cisplatin sensitivity of colorectal carcinoma cells by inhibiting the Akt/mTORC1-mediated Warburg effect. Oncol Lett 2022; 23:70. [PMID: 35069879 PMCID: PMC8756419 DOI: 10.3892/ol.2022.13190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent gastrointestinal tumors worldwide, with a high mortality rate. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is upregulated in CRC and is involved in regulating the apoptosis, proliferation, and drug sensitivity of CRC cells. However, the specific underlying mechanisms remain to be elucidated. The aim of the present study was to investigate the effects of CRNDE on the Warburg effect in CRC cells, as well as the associated mechanisms. The expression of CRNDE in HCT-116 cells was overexpressed or silenced by transfection. Apoptosis, cisplatin sensitivity, the Warburg effect, and Akt/mTOR activation were evaluated. The results demonstrated that CRNDE inhibition decreased the proliferation and increased the apoptosis and cisplatin sensitivity of HCT-116 cells. In addition, CRNDE inhibition attenuated the Warburg effect in HCT-116 cells, as verified by a decrease in ATP production, lactic acid levels, glucose uptake, and the expression of Warburg effect-related enzymes (GLUT1, LDHA, HK2, and PKM2). CRNDE inhibition also suppressed the activity of the Akt/mTORC1 pathway, as demonstrated by the decreased phosphorylation of Akt, S6K, S6, and mTOR and the increased phosphorylation of 4EBP-1 and EIF-4E. The CRNDE overexpression-induced increase in ATP and lactic acid levels and glucose uptake in HCT-116 cells was reversed by Akt and mTOR inhibitors. These findings indicate that CRNDE silencing promotes apoptosis and enhances cisplatin sensitivity in colorectal carcinoma cells, which may be mediated by the regulation of the Warburg effect via the Akt/mTORC1 pathway. The present study thus provides a potential strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Wenyu Yang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yanchun Wang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Chunhui Tao
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yunhai Li
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shan Cao
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiqian Yang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
17
|
Hu S, Ma W, Wang J, Zhou Z, Ma Y, Zhang R, Du K, Zhang H, Sun M, Jiang X, Tu H, Tang X, Yao X, Chen P. Synthesis and biological activity of 1H-imidazo[4,5-f][1,10]phenanthroline as a potential antitumor agent with PI3K/AKT/mTOR signaling. Eur J Pharmacol 2022; 915:174514. [PMID: 34560078 DOI: 10.1016/j.ejphar.2021.174514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
1H-imidazo[4,5-f][1,10]phenanthroline (IPM713) is a type of tricyclic conjugated rigid planar structure with potential medical applications, but its anticancer activity has not yet been fully studied. In the present research, cells from seven different cancer types were used to study the anticancer effect, and IPM713 was found to inhibit the colorectal cancer cell line HCT116 most significantly, with a half maximal inhibitory concentration (IC50) of 1.7 μM. The mechanisms by which IPM713 exerts anti-colorectal cancer activity were studied. IPM713 blocked the cell cycle in G0/G1 phase and induced apoptosis by suppressing the PI3K/AKT/mTOR axis. In addition, an acute toxicity test showed that the median lethal dose (LD50) was above 5000 mg/kg. The findings of this research suggest that IPM713 can interfere with the PI3K/AKT/mTOR signaling pathway and might be a potential therapeutic candidate for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junyi Wang
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou, 325060, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengze Sun
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hongyuan Tu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoliang Tang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
18
|
TIMP-2 regulates 5-Fu resistance via the ERK/MAPK signaling pathway in colorectal cancer. Aging (Albany NY) 2022; 14:297-315. [PMID: 35022331 PMCID: PMC8791226 DOI: 10.18632/aging.203793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-Fu) is the first-line chemotherapeutic option for colorectal cancer. However, its efficacy is inhibited by drug resistance. Cytokines play an important role in tumor drug resistance, even though their mechanisms are largely unknown. Using a cytokine array, we established that tissue inhibitor metalloproteinase 2 (TIMP-2) is highly expressed in 5-Fu resistant colorectal cancer patients. Analysis of samples from 84 patients showed that elevated TIMP-2 expression levels in colorectal patients were correlated with poor prognostic outcomes. In a 5-Fu-resistant patient-derived xenograft (PDX) model, TIMP-2 was also found to be highly expressed. We established an autocrine mechanism through which elevated TIMP-2 protein levels sustained colorectal cancer cell resistance to 5-Fu by constitutively activating the ERK/MAPK signaling pathway. Inhibition of TIMP-2 using an anti-TIMP-2 antibody or ERK/MAPK inhibition by U0126 suppressed TIMP-2 mediated 5-Fu-resistance in CRC patients. In conclusion, a novel TIMP-2-ERK/MAPK mediated 5-Fu resistance mechanism is involved in colorectal cancer. Therefore, targeting TIMP-2 or ERK/MAPK may provide a new strategy to overcome 5-Fu resistance in colorectal cancer chemotherapy.
Collapse
|
19
|
Passirani C, Vessières A, La Regina G, Link W, Silvestri R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist Updat 2021; 60:100788. [DOI: 10.1016/j.drup.2021.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
20
|
Wang J, Zhang X, Zhang J, Chen S, Zhu J, Wang X. Long noncoding RNA CRART16 confers 5-FU resistance in colorectal cancer cells by sponging miR-193b-5p. Cancer Cell Int 2021; 21:638. [PMID: 34844630 PMCID: PMC8628471 DOI: 10.1186/s12935-021-02353-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background The emergence of chemoresistance to 5-fluorouracil (5-FU)-based chemotherapy is the main cause of treatment failure in advanced and metastatic colorectal cancer (CRC) patients. Long noncoding RNAs (lncRNAs) have been reported to be involved in 5-FU resistance. Previously, we first detected that lncRNA cetuximab resistance-associated RNA transcript 16 (CRART16) could contribute to cetuximab resistance by upregulating V-Erb-B2 erythroblastic leukemia viral oncogene homologue 3 (ERBB3) expression by sponging miR-371a-5p in CRC cells. The current study aimed to explore the role of CRART16 in acquired 5-FU resistance in CRC cells and its possible mechanism. Methods Quantitative real-time PCR (RT-qPCR) was used to measure the expression levels of CRART16 in a 5-FU-resistant CRC cell subline (SW620/5-FU) and the parent cell line. Lentivirus transduction was performed to establish SW620 and Caco-2 cells stably overexpressing CRART16. Cell Counting Kit-8 (CCK-8) assays and colony formation assays were applied to measure cell chemosensitivity to 5-FU. Flow cytometric and immunofluorescence staining were adopted to assess cell apoptosis induced by 5-FU. The dual-luciferase reporter assay was used to validate the direct interactions between CRART16 and miR-193b-5p and between miR-193b-5p and high-mobility group AT-hook-2 (HMGA2). The expression levels of HMGA2, apoptosis-associated proteins and p-ERK were examined by western blotting. The statistical differences within any two groups were used Student’s t test. Results CRART16 was upregulated in SW620/5-FU cells. Overexpression of CRART16 reduced the sensitivity of CRC cells to 5-FU by attenuating apoptosis. In addition, CRART16 promoted 5-FU resistance by suppressing the expression of miR-193b-5p. Furthermore, CRART16 modulated the expression of HMGA2 by inhibiting miR-193b-5p and activated the MAPK signaling pathway. Conclusions CRART16 confers 5-FU resistance in CRC cells through the CRART16/miR-193b-5p/HMGA2/MAPK pathway.
Collapse
Affiliation(s)
- Jingui Wang
- Department of General Surgery, Peking University First Hospital, NO. 8 Xishiku Street, Xicheng, Beijing, 100034, People's Republic of China
| | - Xiaoqian Zhang
- Department of General Surgery, Peking University First Hospital, NO. 8 Xishiku Street, Xicheng, Beijing, 100034, People's Republic of China.,Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, No. 17, Panjiayuan Nanli, Chaoyang, Beijing, 100021, People's Republic of China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, NO. 8 Xishiku Street, Xicheng, Beijing, 100034, People's Republic of China
| | - Shangwen Chen
- Department of General Surgery, Peking University First Hospital, NO. 8 Xishiku Street, Xicheng, Beijing, 100034, People's Republic of China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, NO. 8 Xishiku Street, Xicheng, Beijing, 100034, People's Republic of China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, NO. 8 Xishiku Street, Xicheng, Beijing, 100034, People's Republic of China.
| |
Collapse
|
21
|
Tan XP, He Y, Huang YN, Zheng CC, Li JQ, Liu QW, He ML, Li B, Xu WW. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm (Beijing) 2021; 2:453-466. [PMID: 34766155 PMCID: PMC8554656 DOI: 10.1002/mco2.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies currently. Despite advances in drug development, the survival and response rates in CRC patients are still poor. In our previous study, a library comprised of 1056 bioactive compounds was used for screening of drugs that could suppress CRC. Lomerizine 2HCl, which is an approved prophylactic drug for migraines, was selected for our studies. The results of in vitro and in vivo assays suggested that lomerizine 2HCl suppresses cell growth and promotes apoptosis in CRC cells. Moreover, lomerizine 2HCl inhibits cell migration and invasion of CRC. RNA sequencing analysis and Western blotting confirmed that lomerizine 2HCl can inhibit cell growth, migration, and invasion through PI3K/AKT/mTOR signaling pathway and induces protective autophagy in CRC. Meanwhile, autophagy inhibition by 3‐methyladenine (3‐MA) increases lomerizine 2HCl‐induced cell apoptosis. Taken together, these results imply that lomerizine 2HCl is a potential anticancer agent, and the combination of lomerizine 2HCl and autophagy inhibitors may serve as a novel strategy to increase the antitumor efficacy of agents in the treatment of CRC.
Collapse
Affiliation(s)
- Xiang-Peng Tan
- MOE Key Laboratory of Tumor Molecular Biology National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology and The First Affiliated Hospital of Jinan University Jinan University Guangzhou China
| | - Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Yun-Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Can-Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Jun-Qi Li
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Qin-Wen Liu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| | - Ming-Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou China
| | - Wen-Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou China
| |
Collapse
|
22
|
Khandan-Nasab N, Askarian S, Mohammadinejad A, Aghaee-Bakhtiari SH, Mohajeri T, Kazemi Oskuee R. Biosensors, microfluidics systems and lateral flow assays for circulating microRNA detection: A review. Anal Biochem 2021; 633:114406. [PMID: 34619101 DOI: 10.1016/j.ab.2021.114406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short RNA sequences found in eukaryotic cells and they are involved in several diseases pathogenesis including different types of cancers, metabolic and cardiovascular disorders. Thus, miRNAs circulating in serum, plasma, and other body fluids are employed as biomarkers for diagnostic and prognostic purposes and in assessment of drug response. Thus, various methods have been developed for detection of miRNAs including northern blotting, reverse transcriptase polymerase chain reaction (RT-PCR), next-generation sequencing, microarray, and isothermal amplification that are recognized as traditional methods. Considering the importance of early diagnosis and treatment of miRNAs-related diseases, development of simple, one-step, sensitive methods is of great interest. Nowadays developing technologies including lateral flow assay, biosensors (optical and electrochemical) and microfluidic systems which are simple fast responding, user-friendly, and are enabled with visible detection have gained considerable attention. This review briefly discusses miRNAs detection' methods, with a particular focus on lateral flow assay, biosensors, and microfluidic systems as novel and practical procedures.
Collapse
Affiliation(s)
- Niloofar Khandan-Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Cui Z, Wang Q, Deng MH, Han QL. LncRNA HCG11 promotes 5-FU resistance of colon cancer cells through reprogramming glucose metabolism by targeting the miR-144-3p-PDK4 axis. Cancer Biomark 2021; 34:41-53. [PMID: 34542064 DOI: 10.3233/cbm-210212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Colorectal cancer (CRC), one of the most common human malignancies, is a leading cause of the cancer-related mortality. 5-FU is a first-line chemotherapeutic agent against CRC. Although CRC patients responded to 5-FU therapy initially, a part of patients succumbed to CRC due to the acquired drug resistance. Thus, investigating molecular mechanisms underlying chemoresistance will contribute to developing novel strategies against colorectal cancer. OBJECTIVE Accumulation evidence revealed pivotal roles of long non-coding RNAs (lncRNAs) in tumorigenesis and chemoresistance of CRC. However, the precise roles and molecular mechanisms of lncRNA-HCG11 in CRC remain unclear. This study aimed to investigate the biological roles and underlying mechanisms of HCG11 as well as its molecular targets in regulating the cellular metabolism processes, which facilitate the chemoresistance of CRC. METHODS AND RESULTS This study uncovers that HCG11 was significantly upregulated in CRC tumors tissues and cell lines. Moreover, HCG11 was elevated in 5-FU resistant CRC tumors. Silencing HCG11 inhibited colon cancer cell proliferation, migration, invasion and glucose metabolism and sensitized CRC cells to 5-FU. In addition, we detected increased HCG11 expression level and glucose metabolism in the established 5-FU resistant CRC cell line (DLD-1 5-FU Res). Furthermore, microRNA-microArray, RNA pull-down and luciferase assays demonstrated that HCG11 inhibited miR-144-3p which displays suppressive roles in colon cancer via sponging it to form a ceRNA network. We identified pyruvate dehydrogenase kinase 4 (PDK4), which is a glucose metabolism key enzyme, was directly targeted by miR-144-3p in CRC cells. Rescue studies validated that the miR-144-3p-inhibited glucose metabolism and 5-FU sensitization were through targeting PDK4. Finally, restoration of miR-144-3p in HCG11-overexpressing DLD-1 5-FU resistant cells successfully overcame the HCG11-faciliated 5-FU resistance via targeting PDK4. CONCLUSION In summary, this study reveals critical roles and molecular mechanisms of the HCG11-mediated 5-FU resistance through modulating the miR-144-3p-PDK4-glucose metabolism pathway in CRC.
Collapse
|
24
|
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S. Mutual Prodrugs of 5-Fluorouracil: From a Classic Chemotherapeutic Agent to Novel Potential Anticancer Drugs. ChemMedChem 2021; 16:3496-3512. [PMID: 34415107 PMCID: PMC9290623 DOI: 10.1002/cmdc.202100473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad‐spectrum chemotherapeutics available for clinical use today, 5‐fluorouracil (5‐FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5‐FU‐based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
25
|
Chalabi-Dchar M, Fenouil T, Machon C, Vincent A, Catez F, Marcel V, Mertani HC, Saurin JC, Bouvet P, Guitton J, Venezia ND, Diaz JJ. A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer 2021; 3:zcab032. [PMID: 34409299 PMCID: PMC8364333 DOI: 10.1093/narcan/zcab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat patients with solid tumours, such as colorectal and pancreatic cancers. Colorectal cancer (CRC) is the second leading cause of cancer-related death and half of patients experience tumour recurrence. Used for over 60 years, 5-FU was long thought to exert its cytotoxic effects by altering DNA metabolism. However, 5-FU mode of action is more complex than previously anticipated since 5-FU is an extrinsic source of RNA modifications through its ability to be incorporated into most classes of RNA. In particular, a recent report highlighted that, by its integration into the most abundant RNA, namely ribosomal RNA (rRNA), 5-FU creates fluorinated active ribosomes and induces translational reprogramming. Here, we review the historical knowledge of 5-FU mode of action and discuss progress in the field of 5-FU-induced RNA modifications. The case of rRNA, the essential component of ribosome and translational activity, and the plasticity of which was recently associated with cancer, is highlighted. We propose that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and ultimately to relapse.
Collapse
Affiliation(s)
- Mounira Chalabi-Dchar
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Tanguy Fenouil
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Christelle Machon
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Anne Vincent
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Frédéric Catez
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Hichem C Mertani
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Jean-Christophe Saurin
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Philippe Bouvet
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Jérôme Guitton
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Nicole Dalla Venezia
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France
| |
Collapse
|
26
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat 2021; 57:100770. [PMID: 34175687 DOI: 10.1016/j.drup.2021.100770] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.
Collapse
Affiliation(s)
- Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
28
|
Yaghoubi N, Avval FZ, Khazaei M, Sahebkar A, Aghaee-Bakhtiari SH. High Diagnostic and Prognostic Value of miRNAs Compared with the Carcinoembryonic Antigen as a Traditional Tumor Marker. Anticancer Agents Med Chem 2021; 22:206-214. [PMID: 34102990 DOI: 10.2174/1871520621666210608094908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
A significant challenge in cancer detection and treatment is early diagnosis and accurate prognosis of the disease that enables effective therapies and interventions to improve the patient's condition. Up to now, many parts of research have tended to focus on the carcinoembryonic antigen (CEA) to detect cancers and estimate the survival rates of patients with multiple cancer types, including colorectal, breast, non-small cell lung, and pancreas cancer. Limited sensitivity and specificity of this traditional tumor marker make it an inappropriate biomarker to diagnose cancer, especially in the early stages, while several lines of research have introduced miRNAs as reliable indicators of tumor initiation, development, and therapy response. Indeed, miRNAs have unique properties that provide considerable benefits, such as discriminating benign diseases from malignancies, prediction of cancer possibility and progress, checking sensitivity to treatment, and initial detection of tumors. This review summarizes the relationships between miRNAs and CEA, the diagnostic significance of CEA in combination with miRNAs, and the distinct advantages of miRNAs over CEA as tumor biomarkers. Advancement in our current understanding of miRNAs is essential to discover new and effective biomarkers for diagnostic, prognostic, and therapeutic goals of cancer patients.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
29
|
Bae JA, Bae WK, Kim SJ, Ko YS, Kim KY, Park SY, Yu YH, Kim EA, Chung IJ, Kim H, Ha HH, Kim KK. A new KSRP-binding compound suppresses distant metastasis of colorectal cancer by targeting the oncogenic KITENIN complex. Mol Cancer 2021; 20:78. [PMID: 34039363 PMCID: PMC8152081 DOI: 10.1186/s12943-021-01368-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background Distant metastasis is the major cause of death in patients with colorectal cancer (CRC). Previously, we identified KITENIN as a metastasis-enhancing gene and suggested that the oncogenic KITENIN complex is involved in metastatic dissemination of KITENIN-overexpressing CRC cells. Here, we attempted to find substances targeting the KITENIN complex and test their ability to suppress distant metastasis of CRC. Methods We screened a small-molecule compound library to find candidate substances suppressing the KITENIN complex in CRC cells. We selected a candidate compound and examined its effects on the KITENIN complex and distant metastasis through in vitro assays, a molecular docking model, and in vivo tumor models. Results Among several compounds, we identified DKC1125 (Disintegrator of KITENIN Complex #1125) as the best candidate. DKC1125 specifically suppressed KITENIN gain of function. After binding KH-type splicing regulatory protein (KSRP), DKC1125 degraded KITENIN and Dvl2 by recruiting RACK1 and miRNA-124, leading to the disintegration of the functional KITENIN–KSRP–RACK1–Dvl2 complex. A computer docking model suggested that DKC1125 specifically interacted with the binding pocket of the fourth KH-domain of KSRP. KITENIN-overexpressing CRC cells deregulated certain microRNAs and were resistant to 5-fluorouracil, oxaliplatin, and cetuximab. DKC1125 restored sensitivity to these drugs by normalizing expression of the deregulated microRNAs, including miRNA-124. DKC1125 effectively suppressed colorectal liver metastasis in a mouse model. Interestingly, the combination of DKC1125 with 5-fluorouracil suppressed metastasis more effectively than either drug alone. Conclusion DKC1125 targets the KITENIN complex and could therefore be used as a novel therapeutic to suppress liver metastasis in CRC expressing high levels of KITENIN. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01368-w.
Collapse
Affiliation(s)
- Jeong A Bae
- Department of Pharmacology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| | - Sung Jin Kim
- Department of Pharmacology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea
| | - Yoo-Seung Ko
- Department of Pharmacology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea
| | - Keon Young Kim
- Department of Pharmacology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Jungangro 225, Sunchon, 57922, South Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Jungangro 225, Sunchon, 57922, South Korea
| | - Eun Ae Kim
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Ik Joo Chung
- Department of Hematology-Oncology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Jungangro 225, Sunchon, 57922, South Korea.
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Jungangro 225, Sunchon, 57922, South Korea.
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Baekseoro 160, Dong-Ku, Gwangju, 61469, South Korea.
| |
Collapse
|
30
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Anti-tumor Activity of Propofol: A Focus on MicroRNAs. Curr Cancer Drug Targets 2021; 20:104-114. [PMID: 31657687 DOI: 10.2174/1568009619666191023100046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs are endogenous, short, non-coding RNAs with the length as low as 20 to 25 nucleotides. These RNAs are able to negatively affect the gene expression at the post-transcriptional level. It has been demonstrated that microRNAs play a significant role in cell proliferation, cell migration, cell death, cell differentiation, infection, immune response, and metabolism. Besides, the dysfunction of microRNAs has been observed in a variety of cancers. So, modulation of microRNAs is of interest in the treatment of disorders. OBJECTIVE The aim of the current review is to investigate the modulatory effect of propofol on microRNAs in cancer therapy. METHODS This review was performed at PubMed, SCOPUS and Web of Science data-bases using keywords "propofol', "microRNA", "cancer therapy", "propofol + microRNA" and "propofol + miR". RESULTS It was found that propofol dually down-regulates/upregulates microRNAs to exert its antitumor activity. In terms of oncogenesis microRNAs, propofol exert an inhibitory effect, while propofol significantly enhances the expression of oncosuppressor microRNAs. CONCLUSION It seems that propofol is a potential modulator of microRNAs and this capability can be used in the treatment of various cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
31
|
Moradi-Marjaneh R, Asgharzadeh F, Khordad E, Marjaneh MM. The Clinical Impact of Quantitative Cell-free DNA, KRAS, and BRAF Mutations on Response to Anti-EGFR Treatment in Patients with Metastatic Colorectal Cancer. Curr Pharm Des 2021; 27:942-952. [PMID: 33030125 DOI: 10.2174/1381612826666201007163116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common leading causes of cancer death in the world. Although EGFR inhibitors have established efficacy in metastatic colorectal cancer (mCRC), some patients do not respond to this treatment. The EGFR inhibitors' failure and acquired resistance are partly due to KRAS and BRAF mutations. Thus, prognostic biomarkers that help to select eligible patients are highly in demand. To improve patient selection, assessment of mutational status in circulating cell free DNA (cfDNA), which possibly represents the dynamicity of tumor genetic status better than tumor tissue, could be advantageous. This review summarizes the current knowledge of the prognostic value of cfDNA in patients with mCRC treated with EGFR inhibitors with emphasis on the clinical importance of identification of KRAS and BRAF mutations.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Khordad
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | |
Collapse
|
32
|
Ahmadi Z, Mohammadinejad R, Roomiani S, Afshar EG, Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J Pharmacopuncture 2021; 24:1-13. [PMID: 33833895 PMCID: PMC8010425 DOI: 10.3831/kpi.2021.24.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/19/2019] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Flavonoids consist a wide range of naturally occurring compounds which are exclusively found in different fruits and vegetables. These medicinal herbs have a number of favourable biological and therapeutic activities such as antioxidant, neuroprotective, renoprotective, anti-inflammatory, anti-diabetic and anti-tumor. Troxerutin, also known as vitamin P4, is a naturally occurring flavonoid which is isolated from tea, coffee and cereal grains as well as vegetables. It has a variety of valuable pharmacological and therapeutic activities including antioxidant, anti-inflammatory, anti-diabetic and anti-tumor. These pharmacological impacts have been demonstrated in in vitro and in vivo studies. Also, clinical trials have revealed the efficacy of troxerutin for management of phlebocholosis and hemorrhoidal diseases. In the present review, we focus on the therapeutic effects and biological activities of troxerutin as well as its molecular signaling pathways.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
33
|
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM, Nigam M. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83:109995. [PMID: 33785398 DOI: 10.1016/j.cellsig.2021.109995] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
The discovery of micro RNAs (miRNA) in cancer has opened up new vistas for researchers in recent years. Micro RNAs area set of small, endogenous, highly conserved, non-coding RNAs that control the expression of about 30% genes at post-transcriptional levels. Typically, microRNAs impede the translation and stability of messenger RNAs (mRNA), control genes associated with cellular processes namely inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Compelling findings revealed that miRNA mutations or disruption correspond to diverse human cancers and suggest that miRNAs can function as tumor suppressors or oncogenes. Here we summarize the literature on these master regulators in clinical settings from last three decades as both abrupt cancer therapeutics and as an approach to sensitize tumors to chemotherapy. This review highlights (I) the prevailing perception of miRNA genomics, biogenesis, as well as function; (II) the significant advancements in regulatory mechanisms in the expression of carcinogenic genes; and (III) explains, how miRNA is utilized as a diagnostic and prognostic biomarker for the disease stage indicating survival as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mridul Budakoti
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Abhay Shikhar Panwar
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Diksha Molpa
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | | | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| |
Collapse
|
34
|
Chu H, Han N, Xu J. CMPK1 Regulated by miR-130b Attenuates Response to 5-FU Treatment in Gastric Cancer. Front Oncol 2021; 11:637470. [PMID: 33816278 PMCID: PMC8013733 DOI: 10.3389/fonc.2021.637470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) remains a major world-wide challenge, especially in Asian countries. Chemotherapy with 5-fluorouracil (5-FU) and cisplatin is used as the first-line treatment and development of chemoresistance is a major cause of progression. UMP/CMP kinase is responsible for the phosphorylation of the ribonucleotide metabolite 5-fluoro-5′-monophosphate (FUMP) in 5-FU metabolic process, and recognized as a key step in the conversion of 5-FU to cytotoxic metabolites. Our bioinformatics analysis and molecular experiments demonstrated that high expression of CMPK1 was associated with prolonged survival and response to 5-FU treatment in GC samples. Further analysis demonstrated that miR-130b as a key epigenetic regulator of CMPK1, and miR-130b-mediated attenuation of CMPK1 resulted in resistance of gastric cancer cells to DNA damage and cell death after treatment with 5-FU. Rescue experiments with augmented CMPK1 expression abolished the effect of miR-130b demonstrating the key function of this miRNA in this pathway. Thus, this newly identified miR-130b-CMPK1 axis suggests a potentially new chemotherapeutic strategy for improved response to 5-FU therapy.
Collapse
Affiliation(s)
- Huaizhu Chu
- Department of Oncological Surgery, Qinghai Provincial People's Hospital, Xining, China
| | - Nahui Han
- Department of Pain Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Jianguo Xu
- Department of Oncological Surgery, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
35
|
Zhang YH, Cui SX, Wan SB, Wu SH, Qu XJ. Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation. Acta Pharmacol Sin 2021; 42:460-469. [PMID: 32647340 PMCID: PMC8027438 DOI: 10.1038/s41401-020-0460-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), the backbone of most sphingolipids, activating S1P receptors (S1PRs) and the downstream G protein signaling has been implicated in chemoresistance. In this study we investigated the role of S1PR2 internalization in 5-fluorouracil (5-FU) resistance in human colorectal cancer (CRC). Clinical data of randomly selected 60 CRC specimens showed the correlation between S1PR2 internalization and increased intracellular uracil (P < 0.001). Then we explored the regulatory mechanisms in CRC model of villin-S1PR2-/- mice and CRC cell lines. We showed that co-administration of S1P promoted S1PR2 internalization from plasma membrane (PM) to endoplasmic reticulum (ER), thus blunted 5-FU efficacy against colorectal tumors in WT mice, compared to that in S1PR2-/- mice. In HCT116 and HT-29 cells, application of S1P (10 μM) empowered S1PR2 to internalize from PM to ER, thus inducing 5-FU resistance, whereas the specific S1PR2 inhibitor JTE-013 (10 μM) effectively inhibited S1P-induced S1PR2 internalization. Using Mag-Fluo-AM-labeling [Ca2+]ER and LC-ESI-MS/MS, we revealed that internalized S1PR2 triggered elevating [Ca2+]ER levels to activate PERK-eLF2α-ATF4 signaling in HCT116 cells. The activated ATF4 upregulated RNASET2-mediated uracil generation, which impaired exogenous 5-FU uptake to blunt 5-FU therapy. Overall, this study reveals a previously unrecognized mechanism of 5-FU resistance resulted from S1PR2 internalization-upregulated uracil generation in colorectal cancer, and provides the novel insight into the significance of S1PR2 localization in predicting the benefit of CRC patients from 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu-Xiang Cui
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Sheng-Biao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Shu-Hua Wu
- Department of Pathology, Hospital of Binzhou Medical University, Binzhou 264003, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
36
|
Imedio L, Cristóbal I, Rubio J, Santos A, Rojo F, García-Foncillas J. MicroRNAs in Rectal Cancer: Functional Significance and Promising Therapeutic Value. Cancers (Basel) 2020; 12:E2040. [PMID: 32722203 PMCID: PMC7464102 DOI: 10.3390/cancers12082040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
It is well-known that microRNAs (miRNAs) are critical mediators of initiation and disease progression in many human cancers. Rectal cancer is a highly prevalent tumor, accounting for around one third of newly diagnosed colorectal cancers. The usefulness of miRNAs as clinical biomarkers predictive of the outcome and response to chemoradiotherapy has been well-reported for rectal cancer. However, the existing literature on their functional and therapeutic impact needs to be put in context to clarify their role in disease pathogenesis. Therfore, this review is focused on the functional relevance of miRNAs as key regulators of signaling pathways in rectal cancer and their potential therapeutic value as novel molecular targets in this disease.
Collapse
Affiliation(s)
- Laura Imedio
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS- Fundación Jiménez Díaz-UAM, E-28040 Madrid, Spain; (L.I.); (J.R.); (A.S.)
- Translational Oncology Division, Oncohealth Institute, IIS- Fundación Jiménez Díaz-Universidad Autonoma de Madrid (UAM), E-28040 Madrid, Spain
| | - Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS- Fundación Jiménez Díaz-UAM, E-28040 Madrid, Spain; (L.I.); (J.R.); (A.S.)
- Translational Oncology Division, Oncohealth Institute, IIS- Fundación Jiménez Díaz-Universidad Autonoma de Madrid (UAM), E-28040 Madrid, Spain
| | - Jaime Rubio
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS- Fundación Jiménez Díaz-UAM, E-28040 Madrid, Spain; (L.I.); (J.R.); (A.S.)
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, E-28040 Madrid, Spain
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS- Fundación Jiménez Díaz-UAM, E-28040 Madrid, Spain; (L.I.); (J.R.); (A.S.)
- Translational Oncology Division, Oncohealth Institute, IIS- Fundación Jiménez Díaz-Universidad Autonoma de Madrid (UAM), E-28040 Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS- Fundación Jiménez Díaz-UAM, E-28040 Madrid, Spain;
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS- Fundación Jiménez Díaz-UAM, E-28040 Madrid, Spain; (L.I.); (J.R.); (A.S.)
- Translational Oncology Division, Oncohealth Institute, IIS- Fundación Jiménez Díaz-Universidad Autonoma de Madrid (UAM), E-28040 Madrid, Spain
- Medical Oncology Department, University Hospital “Fundación Jiménez Díaz”, UAM, E-28040 Madrid, Spain
| |
Collapse
|
37
|
Zhou C, Kong W, Ju T, Xie Q, Zhai L. MiR-185-3p mimic promotes the chemosensitivity of CRC cells via AQP5. Cancer Biol Ther 2020; 21:790-798. [PMID: 32588739 DOI: 10.1080/15384047.2020.1761238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies showed that microRNAs (miRNAs) are important regulators in drug resistance. The current study investigated the role of miR-185-3p and its predicted target gene AQP5 in 5-FU-insensitive colorectal cancer (CRC) cells. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and Spearman's correlation analysis were conducted to determine the correlation of expression levels of miR-185-3p and AQP5 from CRC tissues. HCT-116 and HCT-8 cells were treated by gradient concentration of 5-FU to construct 5-FU-resistant CRC model. The inhibition and viability of 5-FU-resistant cells were detected by MTT assay, and cell migration and invasion ability were determined by wound healing and transwell assay. The expressions of miR-185-3p and AQP5 were measured by qRT-PCR. StarBase and dual-luciferase reporter assay were used to predict and confirm the interaction between miR-185-3p and AQP5. Further experiments were performed to explore the function of miR-185-3p in 5-FU-resistant cells through regulating aquaporin-5 (AQP5). The levels of EMT-associated markers and AQP5 were determined by conducting Western Blot and qRT-PCR. RESULTS We found that 5-FU-resistant CRC cells showed a lower inhibition rate, and higher migration and invasion abilities. MiR-185-3p was low-expressed in CRC tissues and 5-FU-resistance cells, and it targeted and regulated the expression of AQP5, which was found up-regulated in CRC and 5-FU-resistance CRC cells (r = -0.29, P < .05). Furthermore, miR-185-3p mimic enhanced the chemo-sensitivity of 5-FU-resistant cells, while overexpressed AQP5 reversed such an effect produced by miR-185-3p mimic. CONCLUSION MiR-185-3p mimic enhances the chemosensitivity of CRC cells via AQP5. Our research provides a potential therapeutic target for 5-FU-resistant CRC cells.
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Tongfa Ju
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Qi Xie
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| | - Lulu Zhai
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang Province, China
| |
Collapse
|
38
|
Deng X, Chen Y, Liu Z, Xu J. MiR-124-3p.1 Sensitizes Ovarian Cancer Cells to Mitochondrial Apoptosis Induced by Carboplatin. Onco Targets Ther 2020; 13:5375-5386. [PMID: 32606755 PMCID: PMC7294572 DOI: 10.2147/ott.s242342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Carboplatin is a platinum-based chemotherapeutic drug that is commonly used as a treatment for ovarian cancer. However, high doses and repeated use of carboplatin usually reduce the sensitivity of cancer cells to the drug. There is an urgent need to develop strategies to increase the sensitivity of ovarian cancer cells to carboplatin. Materials and Methods Quantitative reverse-transcriptase real-time PCR was used to detect miR-124-3p.1 levels in ovarian cancer tissues and cell lines. Transfection with miR-124-3p.1 and caveolin-1 (CAV1) was used for gain-of-function experiments. Western blot and immunoprecipitation assays were performed to evaluate the expression and function of CAV1, AKT, Bad, and Bcl-xl. Flow cytometry analysis was used to measure the apoptosis rates of SKOV3 and A2780 cells. Results Expression levels of miR-124-3p.1 were decreased in ovarian cancer tissues and cell lines. Furthermore, overexpression of miR-124-3p.1 enhanced carboplatin-induced apoptotic cell death of ovarian cancer cell lines. Regarding the mechanism of this effect, we showed that CAV1 was the target of miR-124-3p.1 in ovarian cancer. Overexpression of miR-124-3p.1 suppressed the expression of CAV1, thereby reducing the activation of AKT and phosphorylation of Bad. As a result, the function of Bcl-xl was inhibited and carboplatin-induced mitochondrial apoptosis was enhanced. Conclusion miR-124-3p.1 sensitizes carboplatin-induced mitochondrial apoptosis through suppression of CAV1 in ovarian cancer. Increasing miR-124-3p.1 expression may represent a novel strategy to improve carboplatin sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Xiaohong Deng
- Department of Gynecology, Northwest Women and Children's Hospital, Xi'an City, Shanxi Province 710061, People's Republic of China
| | - Yi Chen
- Department of Surgery, Affiliated Hospital of Xi'an Jiao Tong University, Chang'an District Hospital, Xi'an City, Shanxi Province 710119, People's Republic of China
| | - Zhao Liu
- Department of Surgery, Xi'an Chest Hospital, Xi'an TB and Thoracic Tumor Hospital, Xi'an City, Shanxi Province 710100, People's Republic of China
| | - Jingning Xu
- Department of Obstetrics and Gynecology, Northwest Women and Children's Hospital, Xi'an City, Shanxi Province 710061, People's Republic of China
| |
Collapse
|
39
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
40
|
Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat 2020; 49:100671. [DOI: 10.1016/j.drup.2019.100671] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
41
|
Gasiulė S, Dreize N, Kaupinis A, Ražanskas R, Čiupas L, Stankevičius V, Kapustina Ž, Laurinavičius A, Valius M, Vilkaitis G. Molecular Insights into miRNA-Driven Resistance to 5-Fluorouracil and Oxaliplatin Chemotherapy: miR-23b Modulates the Epithelial–Mesenchymal Transition of Colorectal Cancer Cells. J Clin Med 2019; 8:E2115. [PMID: 31810268 PMCID: PMC6947029 DOI: 10.3390/jcm8122115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Although treatment of colorectal cancer with 5-florouracil and oxaliplatin is widely used, it is frequently followed by a relapse. Therefore, there is an urgent need for profound understanding of chemotherapy resistance mechanisms as well as the profiling of predictive markers for individualized treatment. In this study, we identified the changes in 14 miRNAs in 5-fluouracil and 40 miRNAs in oxaliplatin-resistant cell lines by miRNA sequencing. The decrease in miR-224-5p expression in the 5-fluorouracil-resistant cells correlated with drug insensitivity due to its overexpression-induced drug-dependent apoptosis. On the other hand, the miR-23b/27b/24-1 cluster was overexpressed in oxaliplatin-resistant cells. The knockout of miR-23b led to the partial restoration of oxaliplatin susceptibility, showing the essential role of miR-23b in the development of drug resistance by this cluster. Proteomic analysis identified target genes of miR-23b and showed that endothelial-mesenchymal transition (EMT) was implicated in oxaliplatin insensibility. Data revealed that EMT markers, such as vimentin and SNAI2, were expressed moderately higher in the oxaliplatin-resistant cells and their expression increased further in the less drug-resistant cells, which had miR-23b knockout. This establishes that the balance of EMT contributes to the drug resistance, showing the importance of the miR-23b-mediated fine-tuning of EMT in oxaliplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Stasė Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Nadezda Dreize
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Raimundas Ražanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Laurynas Čiupas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| | - Žana Kapustina
- Thermo Fisher Scientific Baltics, Vilnius LT-02241, Lithuania;
| | - Arvydas Laurinavičius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius LT-08406, Lithuania;
- Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (N.D.); (A.K.)
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania; (S.G.); (R.R.); (L.Č.); (V.S.)
| |
Collapse
|
42
|
Cheng X, Huang Z, Long D, Jin W. BET inhibitor bromosporine enhances 5-FU effect in colorectal cancer cells. Biochem Biophys Res Commun 2019; 521:840-845. [PMID: 31708100 DOI: 10.1016/j.bbrc.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022]
Abstract
Treatment of colorectal cancer (CRC) remains a challenge because of the lack of effective early treatment strategies and high incidence of relapse. 5-Fluorouracil (5-FU) is a typical CRC treatment. Bromosporine is an innovative bromodomain and extraterminal domain (BET) inhibitor. We investigated if CRC could be targeted by the combination of 5-FU and bromosporine in a synergistic manner in vivo and in vitro. Our findings shown that the combination treatment inhibits cell viability, formation of colonies, increased apoptosis and cell cycle arrest at G0-G1. In addition, the expression level of BRD4 was high in HCT116 cells exposed to 5-FU that showed lower apoptosis against the parental cells. Moreover, the 5-FU-resistance was reversed significantly by BRD4 knockdown or inhibition. The drug combination showed increased activity against tumor than individual drug exposure in the xenograft model. In conclusion, this work serves as a basic clinical evaluation of 5-FU and bromosporine as an effective therapeutic approach for CRC.
Collapse
Affiliation(s)
- Xueyuan Cheng
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai People's Hospital, Beihai, 536000, Guangxi Zhuang, China
| | - Zhong Huang
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai People's Hospital, Beihai, 536000, Guangxi Zhuang, China
| | - Di Long
- Department of General Surgery, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi Zhuang, China.
| | - Wei Jin
- Department of General Surgery, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi Zhuang, China
| |
Collapse
|
43
|
Rezaei S, Mahjoubin Tehran M, Sahebkar A, Jalili A, Aghaee‐Bakhtiari SH. Androgen receptor‐related micro RNAs in prostate cancer and their role in antiandrogen drug resistance. J Cell Physiol 2019; 235:3222-3234. [DOI: 10.1002/jcp.29275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Mahjoubin Tehran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | |
Collapse
|
44
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
45
|
Rafieenia F, Abbaszadegan MR, Poursheikhani A, Razavi SMS, Jebelli A, Molaei F, Aghaee‐Bakhtiari SH. In silico evidence of high frequency of miRNA‐related SNPs in Esophageal Squamous Cell Carcinoma. J Cell Physiol 2019; 235:966-978. [DOI: 10.1002/jcp.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Rafieenia
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch Mashhad Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Bioinformatics Research Group Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
46
|
Moradi Marjaneh R, Khazaei M, Ferns GA, Avan A, Aghaee-Bakhtiari SH. MicroRNAs as potential therapeutic targets to predict responses to oxaliplatin in colorectal cancer: From basic evidence to therapeutic implication. IUBMB Life 2019; 71:1428-1441. [PMID: 31322820 DOI: 10.1002/iub.2108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with poor prognosis. Oxaliplatin-based chemotherapy is an important treatment for CRC; however, the cells develop resistance to therapy. The mechanisms underlying oxaliplatin resistance are complex and unclear. There is increasing evidence that microRNAs (miRNAs) (i.e., miR-34a, miR-143, miR-153, miR-27a, miR-218, and miR-520) play an essential role in tumorigenesis and chemotherapy resistance, by targeting various cellular and molecular pathways (i.e., PI3K/Akt/Wnt, EMT, p53, p21, and ATM) that are involved in the pathogenesis of CRC. Identifying the miRNAs that are involved in chemo-resistance, and their function, may help as a potential therapeutic option for treatment of CRC or as potential prognostic biomarker. Here, we summarized the clinical impact of miRNAs that have critical roles in the development of resistance to oxaliplatin in CRC.
Collapse
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Perso Falmer, Brighton, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Yao W, Zhu S, Li P, Zhang S. Large tumor suppressor kinase 2 overexpression attenuates 5-FU-resistance in colorectal cancer via activating the JNK-MIEF1-mitochondrial division pathway. Cancer Cell Int 2019; 19:97. [PMID: 31011291 PMCID: PMC6460675 DOI: 10.1186/s12935-019-0812-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background 5-Fluorouracil (5-FU) is a standard treatment for colorectal cancer, but most patients develop 5-FU resistance. Here, we conducted experiments to identify an effective approach to augment 5-FU-based treatment in colorectal cancer in vitro. Methods SW480 cells were in the present study and treated with 5-FU. Besides, LATS2 adenovirus vectors were infected into SW480 cells. Western blotting, immunofluorescence and ELISA were used to evaluate cell death and mitochondrial function. Pathway blocker was used to verify the role of MAPK-JNK pathway in SW480 cell death. Results An obvious drop in large tumor suppressor kinase 2 (LATS2) expression was observed in SW480 cells after treatment with 5-FU. In addition, upregulation of LATS2 expression through infection with LATS2 adenovirus further increased the reduction of SW480 cell viability induced by 5-FU. Functional exploration showed that 5-FU treatment suppressed mitochondrial membrane potential, enhanced cyt-c release into the nucleus, induced an oxidative injury environment by promoting ROS production, and eventually upregulated Bax-related mitochondrial apoptosis. Besides, LATS2 overexpression in combination with 5-FU treatment further perturbed mitochondrial homeostasis, and this effect was achieved by elevating mitochondrial division. Mechanistically, LATS2 overexpression and 5-FU co-treatment amplified mitochondrial division by upregulating MIEF1 expression in a manner dependent on MAPK-JNK axis. Knockdown of MIEF1 using an siRNA-mediated loss of function assay and/or inhibition of the MAPK-JNK pathway using the specific inhibitor SP600125 abolished LATS2/5-FU-mediated deleterious effects on mitochondrial performance and SW480 cell viability. Conclusions In light of the above findings, LATS2 downregulation could be a potential mechanism of low response to 5-FU treatment. Overexpression of LATS2 to further disrupt mitochondrial function via the JNK-MIEF1 signalling pathway might be a method to optimize 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Weilong Yao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, No. 95, Yong'an Road, Xicheng District, Beijing, 100050 People's Republic of China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, No. 95, Yong'an Road, Xicheng District, Beijing, 100050 People's Republic of China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, No. 95, Yong'an Road, Xicheng District, Beijing, 100050 People's Republic of China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, No. 95, Yong'an Road, Xicheng District, Beijing, 100050 People's Republic of China
| |
Collapse
|