1
|
Almouh M, Pakravan K, Ghazimoradi MH, Motamed R, Bakhshinejad B, Hassan ZM, Babashah S. Exosomes released by oxidative stress-induced mesenchymal stem cells promote murine mammary tumor progression through activating the STAT3 signaling pathway. Mol Cell Biochem 2024; 479:3375-3391. [PMID: 38349465 DOI: 10.1007/s11010-024-04934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/06/2024] [Indexed: 10/26/2024]
Abstract
Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H2O2)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H2O2-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Romina Motamed
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Mengyuan H, Aixue L, Yongwei G, Qingqing C, Huanhuan C, Xiaoyan L, Jiyong L. Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication. J Nanobiotechnology 2024; 22:604. [PMID: 39370518 PMCID: PMC11456251 DOI: 10.1186/s12951-024-02835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Collapse
Affiliation(s)
- He Mengyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li Aixue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Gu Yongwei
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Chai Qingqing
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Cai Huanhuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Liu Xiaoyan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liu Jiyong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
4
|
Zhang Y, Huo M, Li W, Zhang H, Liu Q, Jiang J, Fu Y, Huang C. Exosomes in tumor-stroma crosstalk: Shaping the immune microenvironment in colorectal cancer. FASEB J 2024; 38:e23548. [PMID: 38491832 DOI: 10.1096/fj.202302297r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is a multifaceted disease characterized by a complex interaction between tumor cells and the surrounding microenvironment. Within this intricate landscape, exosomes have emerged as pivotal players in the tumor-stroma crosstalk, influencing the immune microenvironment of CRC. These nano-sized vesicles, secreted by both tumoral and stromal cells, serve as molecular transporters, delivering a heterogeneous mix of biomolecules such as RNAs, proteins, and lipids. In the CRC context, exosomes exert dual roles: they promote tumor growth, metastasis, and immune escape by altering immune cell functions and activating oncogenic signaling pathways and offer potential as biomarkers for early CRC detection and treatment targets. This review delves into the multifunctional roles of exosomes in the CRC immune microenvironment, highlighting their potential implications for future therapeutic strategies and clinical outcomes.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Huo
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenchao Li
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changjun Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Lin J, Cai Y, Wang J, Liu R, Qiu C, Huang Y, Liu B, Yang X, Zhou S, Shen Y, Wang W, Zhu J. Transcriptome sequencing promotes insights on the molecular mechanism of SKP-SC-EVs mitigating denervation-induced muscle atrophy. Mol Biol Rep 2023; 51:9. [PMID: 38085347 DOI: 10.1007/s11033-023-08952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Complex pathophysiological changes accompany denervation-induced skeletal muscle atrophy, but no effective treatment strategies exist. Our previous study indicated that extracellular vesicles derived from skin-derived precursors-derived Schwann cells (SKP-SC-EVs) can effectively mitigate denervation-induced muscle atrophy. However, the specific molecular mechanism remains unclear. METHODS AND RESULTS In this study, we used bioinformatics methods to scrutinize the impact of SKP-SC-EVs on gene expression in denervation-induced skeletal muscle atrophy. We found that SKP-SC-EVs altered the expression of 358 genes in denervated skeletal muscles. The differentially expressed genes were predominantly participated in biological processes, including cell cycle, inflammation, immunity, and adhesion, and signaling pathways, such as FoxO and PI3K.Using the Molecular Complex Detection (MCODE) plugin, we identified the two clusters with the highest score: cluster 1 comprised 37 genes, and Cluster 2 consisted of 24 genes. Then, fifty hub genes were identified using CytoHubba. The intersection of Hub genes and genes obtained by MCODE showed that all 23 genes related to the cell cycle in Cluster 1 were hub genes, and 5 genes in Cluster 2 were hub genes and associated with inflammation. CONCLUSIONS Overall, the differentially expressed genes in denervated skeletal muscle following SKP-SC-EVs treatment are primarily linked to the cell cycle and inflammation. Consequently, promoting proliferation and inhibiting inflammation may be the critical process in which SKP-SC-EVs delay denervation-induced muscle atrophy. Our findings contribute to a better understanding of the molecular mechanism of SKP-SC-EVs delaying denervation-induced muscle atrophy, offering a promising new avenue for muscle atrophy treatment.
Collapse
Affiliation(s)
- Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Jian Wang
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
7
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Afkhami H, Mahmoudvand G, Fakouri A, Shadab A, Mahjoor M, Komeili Movahhed T. New insights in application of mesenchymal stem cells therapy in tumor microenvironment: pros and cons. Front Cell Dev Biol 2023; 11:1255697. [PMID: 37849741 PMCID: PMC10577325 DOI: 10.3389/fcell.2023.1255697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) are widely accepted as a useful tool for cell-based therapy of various diseases including malignancies. The therapeutic effects of MSCs are mainly attributed to their immunomodulatory and immunosuppressive properties. Despite the promising outcomes of MSCs in cancer therapy, a growing body of evidence implies that MSCs also show tumorigenic properties in the tumor microenvironment (TME), which might lead to tumor induction and progression. Owing to the broad-spectrum applications of MSCs, this challenge needs to be tackled so that they can be safely utilized in clinical practice. Herein, we review the diverse activities of MSCs in TME and highlight the potential methods to convert their protumorigenic characteristics into onco-suppressive effects.
Collapse
Affiliation(s)
- Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol 2023; 13:1149551. [PMID: 37287924 PMCID: PMC10242099 DOI: 10.3389/fonc.2023.1149551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
10
|
Sousa A, Coelho P, Leite F, Teixeira C, Rocha AC, Santos I, Baylina P, Fernandes R, Soares R, Costa R, Gomes A. Impact of umbilical cord mesenchymal stromal/stem cell secretome and cord blood serum in prostate cancer progression. Hum Cell 2023; 36:1160-1172. [PMID: 36806993 PMCID: PMC10110723 DOI: 10.1007/s13577-023-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Prostate cancer (PCa) is the second most common malignancy in men, and the fifth leading cause of death worldwide. Mesenchymal stromal/stem cells (MSC) have been identified in PCa, although contradictory effects in malignant transformation and tumor progression have been described. Since umbilical cord (UC) MSC and cord blood serum (CBS) are rich in numerous growth and anti-inflammatory factors, UC-MSC secretome and CBS are able to modulate tumor cell proliferation and survival as well as immunity and angiogenesis. In the present study, we address this relationship and investigate the influence of UC-MSC secretome and CBS on two human PCa cell lines (PC3 and LNCaP) and a normal epithelial prostate cell line (HPEpiC). Our results disclosed that upon exposure to UC-MSC-conditioned medium or CBS, both PC3 and LNCaP cells exhibited reduced viability, proliferation, and motility while non-malignant epithelial prostate cells were unaffected. These findings were corroborated by expression analysis of AKT/PI3K signaling pathway, p53 and interleukin genes. UC-MSC and CBS factors decreased the expression of growth-stimulating AKT and PI3K effectors and simultaneously up-regulated the expression of tumor-suppressor p53. Moreover, a more anti-inflammatory expression profile was found in both malignant PCa cell lines. Altogether, these results shed light into possible mechanisms by which UC-MSC and CBS reduce PCa progression, further reinforcing their potential use as novel therapeutic agents in PCa.
Collapse
Affiliation(s)
- André Sousa
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal
| | - Pedro Coelho
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,School of Health (ESS), Polytechnic of Porto, Porto, Portugal
| | - Fernanda Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Clinical Haematology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Catarina Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal
| | - Ana Catarina Rocha
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal
| | - Inês Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal
| | - Pilar Baylina
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal.,School of Health (ESS), Polytechnic of Porto, Porto, Portugal
| | - Ruben Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal.,FCS - Faculty of Health Sciences, HE-UFP, Hospital Escola - Universidade Fernando Pessoa, Porto, Portugal
| | - Raquel Soares
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Raquel Costa
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,LaBMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology, and Innovation Center, Polytechnic of Porto, Porto, Portugal
| | - Andreia Gomes
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Universidade do Porto, Porto, Portugal. .,Bebé Vida, Ciências Para a Vida, S.A, Av. da França 476, 4050-367, Porto, Portugal.
| |
Collapse
|
11
|
Zhang K, Li P, Jia Y, Liu M, Jiang J. Concise review: Current understanding of extracellular vesicles to treat neuropathic pain. Front Aging Neurosci 2023; 15:1131536. [PMID: 36936505 PMCID: PMC10020214 DOI: 10.3389/fnagi.2023.1131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Extracellular vesicles (EVs) including exosomes are vesicular vesicles with phospholipid bilayer implicated in many cellular interactions and have the ability to transfer multiple types of cargo to cells. It has been found that EVs can package various molecules including proteins and nucleic acids (DNA, mRNA, and noncoding RNA). The discovery of EVs as carriers of proteins and various forms of RNA, such as microRNAs (miRNA) and long noncoding RNAs (lncRNA), has raised great interest in the field of drug delivery. Despite the underlying mechanisms of neuropathic pain being unclear, it has been shown that uncontrolled glial cell activation and the neuroinflammation response to noxious stimulation are important in the emergence and maintenance of neuropathic pain. Many studies have demonstrated a role for noncoding RNAs in the pathogenesis of neuropathic pain and EVs may offer possibilities as carriers of noncoding RNAs for potential in neuropathic pain treatment. In this article, the origins and clinical application of EVs and the mechanism of neuropathic pain development are briefly introduced. Furthermore, we demonstrate the therapeutic roles of EVs in neuropathic pain and that this involve vesicular regulation of glial cell activation and neuroinflammation.
Collapse
|
12
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
13
|
MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm 2022; 627:122214. [PMID: 36152993 DOI: 10.1016/j.ijpharm.2022.122214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) are mostly responsible for the therapeutic effects of MSCs. To show the therapeutic effects of the human bone marrow MSC-derived exosomes (MSC-Exos) on colorectal cancer (CRC) and explore the molecular cross-talks between them, CRC cells were treated with the MSC-Exos. We found that MSC-Exos were enriched with miR-100 and miR-143, which effectively downregulated mTOR, Cyclin D1, K-RAS, HK2 while upregulated p-27 expression. All these effects were reversed by concurrent treatment with MSC-Exos and antagomiR-100, confirming that they were caused by exosomal transfer of miR-100 into recipient CRC cells. Moreover, exosomal miR-100 promoted endogenous miR-143 expression. The flow cytometry, MTT and trypan blue assays revealed that MSC-Exos could efficiently suppress proliferation and induce apoptosis of the CRC cells. Furthermore, wound healing, transwell migration and invasion assays confirmed their inhibitory effects on the migration and invasiveness of SW480 cells. We further confirmed these effects by analyzing the expression levels of epithelial to mesenchymal transition (EMT) factors and metastasis-related genes. Results showed that MSC-Exos significantly suppressed the expression of MMP2 and MMP9 (metastasis-related genes), SNAIL and TWIST (EMT-inducing transcription factors), Vimentin and N-cadherin (mesenchymal cell markers), whereas E-cadherin (epithelial cell marker) was remarkably up-regulated. Collectively, our data indicated that MSC-Exos could suppress proliferation, migration, invasion and metastasis while inducing the apoptosis of the CRC cells via miR-100/mTOR/miR-143 axis. Our findings highlight that MSC-Exo treatment as well as miR-100 restoration might be considered as potential therapeutic strategies for CRC.
Collapse
|
14
|
Parsaei H, Moosavifar MJ, Eftekharzadeh M, Ramezani R, Barati M, Mirzaei S, Nobakht M. Exosomes to control glioblastoma multiforme: Investigating the effects of mesenchymal stem cell-derived exosomes on C6 cells in vitro. Cell Biol Int 2022; 46:2028-2040. [PMID: 36098338 DOI: 10.1002/cbin.11884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is a common, aggressive, fast-growing tumor of the central nervous system that currently has no effective treatment. Although stem cell therapy has shown promising in vitro achievements, the blood-brain barrier (BBB) has always been a major hurdle to clinical success. To overcome this challenge, exosomes have been targeted as attractive drug delivery agents in numerous studies since they are small enough to enter the BBB. Furthermore, exosomes' characteristics and compositions are directly determined by the parent cell and these heritable traits affect their cell interactions. This article focuses on exosomes as an alternative to stem cell therapy to regulate glioma cell activity. Exosomes were isolated from rat bone marrow mesenchymal stem cells (rBMMSCs) by ultracentrifugation method and then characterized via western blot, dynamic light scattering, scanning, and transmission electron microscopy. Next, various concentrations of the exosomes were incubated with C6 cells and their effects at different time points were evaluated in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin/Pi assay results confirmed that the isolated exosomes cause cell death mostly through apoptosis, and a linear correlation was observed between exosomes' concentration and their cytotoxicity. Following that, the scratch test, colony formation test, and Transwell assay confirmed exosomes' significant impact on the migration and invasion behavior of C6 cells. For the first time, rBMMSC-derived exosomes have been used as a single treatment for GBM rather than in combination with other treatments or as a pharmaceutical carrier.
Collapse
Affiliation(s)
- Houman Parsaei
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mir Javad Moosavifar
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Ramezani
- Department of Family Therapy, Women Research Center, Alzahra University, Tehran, Iran
| | - Mahmood Barati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Mirzaei
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Nobakht
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Exosomes carrying immune checkpoints, a promising therapeutic approach in cancer treatment. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:183. [PMID: 36071295 DOI: 10.1007/s12032-022-01781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 10/14/2022]
Abstract
Exosomes are a subgroup of extracellular vesicles generated by distinct cells. Tumor-derived extracellular vesicles convey immunological checkpoint molecules. TEXs as critical mediators in tumor development, metastasis, and immune escape have recently become the focus of scientific research. Exosomes are involved in the regulation of the immune system. Exosomes interact with target cells in the tumor microenvironment, changing their function based on the cargo they contain. Exosomal immune checkpoints might be exploited to track tumor immune evasion, treatment response, and patient prognosis while enhancing tumor cell proliferation and spread. This review focuses on tumor-derived exosomes, their immunosuppressive effects in mice models, and their role in cancer immunotherapy. Exosomes are being studied as possible cancer vaccines, with numerous uses in tumor immunotherapy. Exosomes can carry chemotherapeutics, siRNA, and monoclonal antibodies. Exosomes produced by macrophages might be used to treat cancer. These and other clinical consequences provide new doors for cancer treatment.
Collapse
|
16
|
Extracellular vesicles as an emerging drug delivery system for cancer treatment: Current strategies and recent advances. Biomed Pharmacother 2022; 153:113480. [DOI: 10.1016/j.biopha.2022.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
|
17
|
Wang J, Ma Y, Long Y, Chen Y. Extracellular Vesicle Derived From Mesenchymal Stem Cells Have Bidirectional Effects on the Development of Lung Cancer. Front Oncol 2022; 12:914832. [PMID: 35860555 PMCID: PMC9289533 DOI: 10.3389/fonc.2022.914832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stem cell is a kind of pluripotent cells with the ability of self-renewal and multi-directional differentiation, which exist in bone marrow, umbilical cord blood, umbilical cord tissue, placenta tissue, adipose tissue and so on. Extracellular vesicles are membranous lipid vesicles secreted by a variety of cells and widely present in body fluids, which contain proteins, mRNA, microRNA and other substances, and are an important medium of intercellular communication. At present, more and more evidence shows that mesenchymal stem cell-derived extracellular vesicles play an important role in the development of lung cancer. Regulating the levels of proteins, RNAs and other substances in MSC-EVs and then transplanting them into patients may be a new way to alleviate the development of lung cancer. We mainly introduce the role of extracellular vesicles derived from human umbilical cord mesenchymal stem cells, bone marrow mesenchymal stem cells and adipose mesenchymal stem cells in lung cancer, to provide new alternatives for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjiao Long
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yingjiao Long,
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Yang J, Zhang L. The roles and therapeutic approaches of MSC-derived exosomes in colorectal cancer. Clin Transl Oncol 2022; 24:959-967. [PMID: 35037237 DOI: 10.1007/s12094-021-02750-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in both men and women, accounting for 8% of all new cancer cases in both. CRC is typically diagnosed at advanced stages, which leads to a higher mortality rate. The 5-year survival rate for CRC is 64% in all cases and just 12% in metastatic cases. Mesenchymal stem cells (MSCs) are one of the most recent approaches for therapeutic interventions in cancer. MSCs have multiple properties, including paracrine signaling, immunologic functions, and the ability to migrate to the targeted tissue. MSCs can produce and secrete exosomes in tumor microenvironments. These exosomes can transfer compounds across tumor cells, stromal cells, fibroblasts, endothelial cells, and immune cells. Studies showed that modified MCS-derived exosomes have enhanced specificity, reduced immunogenicity, and better targeting capabilities in comparison to other frequently used delivery systems such as liposomes. Therefore, this study aimed to provide a comprehensive view of the role of natural MSC-derived exosomes in CRC, as well as the most current and prospective advancements in MSC-derived exosome therapeutic modifications.
Collapse
Affiliation(s)
- Jie Yang
- Anorectal, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, 050051, China.
| | - Liman Zhang
- Anorectal, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, 050051, China
| |
Collapse
|
19
|
崔 舒, 汤 帅, 丁 晓, 丁 刚. [Research Progress of Mesenchymal Stem Cells and Their Exosomes on Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:351-357. [PMID: 35599010 PMCID: PMC9127752 DOI: 10.3779/j.issn.1009-3419.2022.101.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
In China, malignant tumor is the main cause of death in both urban and rural areas. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential, self-renewal ability and good immunomodulatory properties. Exosomes, as important paracrine substances of MSCs, mediate information exchange and transmission between cells in tumor microenvironment and influence the occurrence and development of tumors. Recently, conflicting findings have been reported on the effects of MSCs and their exosomes on tumors. On the one hand, MSCs and their exosomes are tumorigenic and can target specific sites to inhibit tumor growth; On the other hand, there is also evidence that MSCs could affect tumor growth and migration as part of the tumor microenvironment. In this paper, we will review the relationship between MSCs and exosomes and tumorgenesis and development, as well as how MSCs and exosomes play different roles in tumorgenesis and development, in order to provide beneficial help for tumor diagnosis, prognosis and precise treatment.
.
Collapse
Affiliation(s)
- 舒悦 崔
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 帅 汤
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 晓玲 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 刚 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
20
|
Sarvar DP, Effatpanah H, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived extracellular vesicles: novel approach in hematopoietic stem cell transplantation. Stem Cell Res Ther 2022; 13:202. [PMID: 35578300 PMCID: PMC9109321 DOI: 10.1186/s13287-022-02875-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) play a crucial role in the regulation of hematopoiesis. These cells affect the process through direct cell–cell contact, as well as releasing various trophic factors and extracellular vehicles (EVs) into the bone marrow microenvironment. MSC-derived EVs (MSC-EVs) are prominent intercellular communication tolls enriched with broad-spectrum bioactive factors such as proteins, cytokines, lipids, miRNAs, and siRNAs. They mimic some effects of MSCs by direct fusion with hematopoietic stem cells (HSC) membranes in the bone marrow (BM), thereby affecting HSC fate. MSC-EVs are attractive scope in cell-free therapy because of their unique capacity to repair BM tissue and regulate proliferation and differentiation of HSCs. These vesicles modulate the immune system responses and inhibit graft-versus-host disease following hematopoietic stem cell transplantation (HSCT). Recent studies have demonstrated that MSC-EVs play an influential role in the BM niches because of their unprecedented capacity to regulate HSC fate. Therefore, the existing paper intends to speculate upon the preconditioned MSC-EVs as a novel approach in HSCT.
Collapse
Affiliation(s)
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front Immunol 2022; 13:865888. [PMID: 35464407 PMCID: PMC9021384 DOI: 10.3389/fimmu.2022.865888] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles: Pleiotropic Impacts on Breast Cancer Occurrence, Development, and Therapy. Int J Mol Sci 2022; 23:ijms23062927. [PMID: 35328347 PMCID: PMC8954385 DOI: 10.3390/ijms23062927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer (BC) is one of the most devastating cancers, with high morbidity and mortality, among the female population worldwide. In BC, mesenchymal stem cells (MSCs), as pluripotent stromal stem cells, play a significant role in TME formation and tumor progression. Recently, an increasing number of studies have demonstrated that extracellular vesicles (EVs) are essential for the crosstalk between MSCs and BC cells. MSC-derived EVs (MSC-EVs) can deliver a diversity of molecules, including lipids, proteins, and nucleic acids, etc., to target cells, and produce corresponding effects. Studies have demonstrated that MSC-EVs exert both inhibitory and promotive effects in different situations and different stages of BC. Meanwhile, MSC-EVs provide novel therapeutic options for BC, such as EVs as carriers for drug delivery. Therefore, in this review, we summarize the role of MSC-EVs in BC progression and application in clinical treatment, in the hope of providing a basis for further research.
Collapse
|
24
|
Goodarzi A, Valikhani M, Amiri F, Safari A. The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 2022; 20:21. [PMID: 35236376 PMCID: PMC8889655 DOI: 10.1186/s12964-022-00822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known as the issue in biology because of some unpredictable characteristics in the different microenvironments especially in their bone marrow niche. MSCs are used in the regenerative medicine because of their unique potentials for trans-differentiation, immunomodulation, and paracrine capacity. But, their pathogenic and pro-survival effects in tumors/cancers including hematologic malignancies are indisputable. MSCs and/or their derivatives might be involved in tumor growth, metastasis and drug resistance in the leukemias. One of important relationship is MSCs and hematologic malignancy-derived cells which affects markedly the outcome of disease. The communication between these two cells may be contact-dependent and/or contact-independent. In this review, we studied the crosstalk between MSCs and malignant hematologic cells which results the final feedback either the progression or suppression of blood cell malignancy. Video abstract.
Collapse
Affiliation(s)
- Alireza Goodarzi
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran
| | - Mohsen Valikhani
- Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran.
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
25
|
SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Antioxidants (Basel) 2021; 11:antiox11010066. [PMID: 35052570 PMCID: PMC8772917 DOI: 10.3390/antiox11010066] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/23/2022] Open
Abstract
Denervated muscle atrophy is a common clinical disease that has no effective treatments. Our previous studies have found that oxidative stress and inflammation play an important role in the process of denervated muscle atrophy. Extracellular vesicles derived from skin precursor-derived Schwann cells (SKP-SC-EVs) contain a large amount of antioxidants and anti-inflammatory factors. This study explored whether SKP-SC-EVs alleviate denervated muscle atrophy by inhibiting oxidative stress and inflammation. In vitro studies have found that SKP-SC-EVs can be internalized and caught by myoblasts to promote the proliferation and differentiation of myoblasts. Nutrient deprivation can cause myotube atrophy, accompanied by oxidative stress and inflammation. However, SKP-SC-EVs can inhibit oxidative stress and inflammation caused by nutritional deprivation and subsequently relieve myotube atrophy. Moreover, there is a remarkable dose-effect relationship. In vivo studies have found that SKP-SC-EVs can significantly inhibit a denervation-induced decrease in the wet weight ratio and myofiber cross-sectional area of target muscles. Furthermore, SKP-SC-EVs can dramatically inhibit highly expressed Muscle RING Finger 1 and Muscle Atrophy F-box in target muscles under denervation and reduce the degradation of the myotube heavy chain. SKP-SC-EVs may reduce mitochondrial vacuolar degeneration and autophagy in denervated muscles by inhibiting autophagy-related proteins (i.e., PINK1, BNIP3, LC3B, and ATG7). Moreover, SKP-SC-EVs may improve microvessels and blood perfusion in denervated skeletal muscles by enhancing the proliferation of vascular endothelial cells. SKP-SC-EVs can also significantly inhibit the production of reactive oxygen species (ROS) in target muscles after denervation, which indicates that SKP-SC-EVs elicit their role by upregulating Nrf2 and downregulating ROS production-related factors (Nox2 and Nox4). In addition, SKP-SC-EVs can significantly reduce the levels of interleukin 1β, interleukin-6, and tumor necrosis factor α in target muscles. To conclude, SKP-SC-EVs may alleviate the decrease of target muscle blood perfusion and passivate the activities of ubiquitin-proteasome and autophagy-lysosome systems by inhibiting oxidative stress and inflammatory response, then reduce skeletal muscle atrophy caused by denervation. This study not only enriches the molecular regulation mechanism of denervated muscle atrophy, but also provides a scientific basis for SKP-SC-EVs as a protective drug to prevent and treat muscle atrophy.
Collapse
|
26
|
Yassine S, Alaaeddine N. Mesenchymal Stem Cell Exosomes and Cancer: Controversies and Prospects. Adv Biol (Weinh) 2021; 6:e2101050. [PMID: 34939371 DOI: 10.1002/adbi.202101050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have displayed a novel therapeutic strategy for a wide range of diseases and conditions. Their secretome and exosome-based paracrine activity are considered as the main processes harboring their diverse therapeutic properties. Several investigations have examined the effects of MSC-derived exosomes on cancer growth, yet, controversial results have always emerged. Although MSC-derived exosomes are able to rigorously enforce the repression of cancer proliferation and progression, it is shown that MSCs exosomal activity displays numerous protumorigenic effects. This discrepancy over the dual effects of MSCs on cancer growth may be mediated by many factors including experimental design, stem cells origins, culture conditions, in addition to cancer-MSCs cross-talks. Despite the controversial effects of MSCs on carcinogenesis, scientists are able to overcome a number of obstacles by modifying MSCs to deliver antioncogenic miRNAs, anticancer drugs, and oncolytic viruses into tumor sites. This review discusses the controversial effects of MSC-derived exosomes on tumorigenesis, investigates the main causes that underlie this discrepancy, summarizes the pattern of engineered-MSCs, and finally highlights how future studies should advance the research in the field of MSCs-based cancer therapies in order to accelerate the transition from preclinical studies to clinical practice.
Collapse
Affiliation(s)
- Sirine Yassine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, 1100, Lebanon
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, 1100, Lebanon
| |
Collapse
|
27
|
Lu CH, Chen YA, Ke CC, Liu RS. Mesenchymal Stem Cell-Derived Extracellular Vesicle: A Promising Alternative Therapy for Osteoporosis. Int J Mol Sci 2021; 22:12750. [PMID: 34884554 PMCID: PMC8657894 DOI: 10.3390/ijms222312750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the chronic metabolic bone disease caused by the disturbance of bone remodeling due to the imbalance of osteogenesis and osteoclastogenesis. A large population suffers from osteoporosis, and most of them are postmenopausal women or older people. To date, bisphosphonates are the main therapeutic agents in the treatment of osteoporosis. However, limited therapeutic effects with diverse side effects caused by bisphosphonates hindered the therapeutic applications and decreased the quality of life. Therefore, an alternative therapy for osteoporosis is still needed. Stem cells, especially mesenchymal stem cells, have been shown as a promising medication for numerous human diseases including many refractory diseases. Recently, researchers found that the extracellular vesicles derived from these stem cells possessed the similar therapeutic potential to that of parental cells. To date, a number of studies demonstrated the therapeutic applications of exogenous MSC-EVs for the treatment of osteoporosis. In this article, we reviewed the basic back ground of EVs, the cargo and therapeutic potential of MSC-EVs, and strategies of engineering of MSC-EVs for osteoporosis treatment.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-An Chen
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
28
|
Application of Mesenchymal Stem Cells in Targeted Delivery to the Brain: Potential and Challenges of the Extracellular Vesicle-Based Approach for Brain Tumor Treatment. Int J Mol Sci 2021; 22:ijms222011187. [PMID: 34681842 PMCID: PMC8538190 DOI: 10.3390/ijms222011187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.
Collapse
|
29
|
Herman S, Fishel I, Offen D. Intranasal delivery of mesenchymal stem cells-derived extracellular vesicles for the treatment of neurological diseases. Stem Cells 2021; 39:1589-1600. [PMID: 34520591 DOI: 10.1002/stem.3456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Neurological disorders are diseases of the central nervous system (CNS), characterized by a progressive degeneration of cells and deficiencies in neural functions. Mesenchymal stem cells (MSCs) are a promising therapy for diseases and disorders of the CNS. Increasing evidence suggests that their beneficial abilities can be attributed to their paracrine secretion of extracellular vesicles (EVs). Administration of EVs that contain a mixture of proteins, lipids, and nucleic acids, resembling the secretome of MSCs, has been shown to mimic most of the effects of the parental cells. Moreover, the small size and safety profile of EVs provide a number of advantages over cell transplantation. Intranasal (IN) administration of EVs has been established as an effective and reliable way to bypass the blood-brain barrier (BBB) and deliver drugs to the CNS. In addition to pharmacological drugs, EVs can be loaded with a diverse range of cargo designed to modulate gene expression and protein functions in recipient cells, and lead to immunomodulation, neurogenesis, neuroprotection, and degradation of protein aggregates. In this review, we will explore the proposed physiological pathways by which EVs migrate through the nasal route to the CNS where they can actively target a region of injury or inflammation and exert their therapeutic effects. We will summarize the functional outcomes observed in animal models of neurological diseases following IN treatment with MSC-derived EVs. We will also examine key mechanisms that have been suggested to mediate the beneficial effects of EV-based therapy.
Collapse
Affiliation(s)
- Shay Herman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Idan Fishel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Ding Y, Mei W, Zheng Z, Cao F, Liang K, Jia Y, Wang Y, Liu D, Li J, Li F. Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p. Tissue Cell 2021; 73:101623. [PMID: 34543801 DOI: 10.1016/j.tice.2021.101623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Although human umbilical cord mesenchymal stem cells (hucMSCs) can contribute to the growth of tumors, including pancreatic ductal adenocarcinoma (PDAC), however, little is known about the exact mechanisms by which the exosomes secreted from hucMSCs (hucMSCs-exo) have an oncogenic effect on the physiopathology of PDAC. The effects of hucMSCs on tumor development are attributed to hucMSCs-exo, which deliver unique proteins and miRNAs to cancer cells. METHODS HucMSCs and exosomes were isolated and confirmed via transmission electron microscopy, nanoparticle tracking analysis and western blot. The nude mice were inoculated subcutaneously on both flanks with human pancreatic cancer Panc-1 cells (1 × 106), and hucMSCs-exo were directly administered via intratumoral injection once a day for three days each week. Cell proliferation assays were performed using a Cell Counting Kit-8 assay and the cell invasion assay was performed using Transwell assay. The miRNA data were predicted and analyzed by miRanda software. The analysis of the target genes of the miRNAs was proformed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. RESULTS Firstly, we observed that hucMSCs-exo promoted Panc-1 and BxPC3 cell growth by increasing proliferation and migration in vitro. Secondly, in a xenograft tumor model, hucMSCs-exo increased the growth of Panc-1 cells. Thirdly, high-throughput sequencing of hucMSCs-exo showed that hsa-miR-148a-3p, hsa-miR-100-5p, hsa-miR-143-3p, hsa-miR-21-5p and hsa-miR-92a-3p were highly expressed. For the five identified miRNAs, 1308 target genes were predicted by miRanda software. From the GO and KEGG analyses of the target genes of the identified miRNAs, it was found that the main GO function was the regulation of cellular glucuronidation, and the main KEGG metabolic pathway involved the metabolism of ascorbic acid and aldehyde acid. These processes are related to the occurrence and development of pancreatic cancer. Finally, we observed that miR-100-5p promoted Panc-1 and BxPC3 cell growth in vitro and in vivo. CONCLUSION Here, by utilizing exosomes secreted from hucMSCs, we systematically investigated the effects of hucMSCs-exo on PDAC growth in vitro and in vivo for the first time. Building on these results, we provided new insights into the role of hucMSCs-exo in the PDAC growth and revealed the attractive communication between hucMSCs and PDAC cells that occurs through MSCs-exosomes-miRNAs.
Collapse
Affiliation(s)
- Yixuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Zhi Zheng
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Yuting Wang
- Capital Medical University, Beijing, 100069, China
| | - Dachuan Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
31
|
Roles of Mesenchymal Stem Cell-Derived Exosomes in Cancer Development and Targeted Therapy. Stem Cells Int 2021; 2021:9962194. [PMID: 34335792 PMCID: PMC8289580 DOI: 10.1155/2021/9962194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Exosomes have emerged as a new drug delivery system. In particular, exosomes derived from mesenchymal stem cells (MSCs) have been extensively studied because of their tumor-homing ability and yield advantages. Considering that MSC-derived exosomes are a double-edged sword in the development, metastasis, and invasion of tumors, engineered exosomes have broad potential use. In this review, we focused on the latest development in the treatment of tumors using engineered and nonengineered MSC-derived exosomes (MSC-EXs). Nonengineered MSC-EXs exert an antitumor effect on several well-studied tumors by affecting tumor growth, angiogenesis, metastasis, and invasion. Furthermore, engineered exosomes have promising research prospects as drug-carrying tools for the transport of miRNAs, small-molecule drugs, and proteins. Although exosomes lack uniform standards in terms of definition, separation, and purification, they still have great research value because of their unique advantages, such as high biocompatibility and low toxicity. Future studies on MSC-EXs should elucidate the mechanisms underlying their anticancer effect and the safety of their application.
Collapse
|
32
|
Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: The role of mesenchymal stromal cells. Crit Rev Oncol Hematol 2021; 164:103416. [PMID: 34237436 DOI: 10.1016/j.critrevonc.2021.103416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most common oncological pathologies in women worldwide. While its early diagnosis has considerably improved, about 70 % of advanced patients develop bone metastases with a high mortality rate. Several authors demonstrated that primary breast cancer cells prepare their future metastatic niche -known as the pre-metastatic niche- to turn it into an "optimal soil" for colonization. The role of the different cellular components of the bone marrow/bone niche in bone metastasis has been well described. However, studying the changes that occur in this microenvironment before tumor cells arrival has become a novel research field. Therefore, the purpose of this review is to describe the current knowledge about the modulation of the normal bone marrow/bone niche by the primary breast tumor, in particular, highlighting the role of mesenchymal stem/stromal cells in transforming this soil into a pre-metastatic niche for breast cancer cells colonization.
Collapse
|
33
|
Li S, Yan G, Yue M, Wang L. Extracellular vesicles-derived microRNA-222 promotes immune escape via interacting with ATF3 to regulate AKT1 transcription in colorectal cancer. BMC Cancer 2021; 21:349. [PMID: 33794833 PMCID: PMC8017736 DOI: 10.1186/s12885-021-08063-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunotherapy has been recently established as a new direction for the treatment of colorectal cancer (CRC), a gastrointestinal cancer. In this investigation, we aimed to expound how the posttranscriptional regulation modulated by microRNA-222 (miR-222) from mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) affected the AKT pathway and the immune escape in CRC. METHODS CRC cell malignant phenotype, including proliferation, migration, invasion, and apoptosis, was firstly detected after co-culture with MSC-EVs. miRNAs with differential changes in CRC cells before and after EVs treatment were filtered by microarray analysis. miR-222 was then downregulated to examine its role in CRC cells in response to EVs. Cells were implanted in mice to induce xenograft tumors, and infiltrating T cells was assessed by immunohistochemistry. The mRNA microarray was used to screen target genes, followed by rescue experiments. ChIP and western blot were conducted to validate the downstream biomolecule of ATF3. RESULTS After treatment of CRC cells with MSC-EVs, the expression of miR-222 was upregulated, and cell activity was increased. Inhibition of miR-222 decreased CRC malignant aggressiveness in vitro and reduced tumorigenesis and immune escape in vivo. miR-222 targeted and bound to ATF3. Downregulation of ATF3 enhanced CRC cell malignant aggressiveness, tumorigenic capacity and immune escape. Mechanistically, ATF3 inhibited AKT1 transcription and mediated the AKT pathway. CONCLUSION MSC-EVs carry miR-222 to promote CRC cell malignant aggressiveness and immune escape. miR-222 targets and binds to ATF3, which inhibits AKT1 transcriptional activity and thereby mediates the AKT pathway.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
34
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
35
|
Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery. Pharm Res 2021; 38:179-197. [PMID: 33604783 DOI: 10.1007/s11095-021-02988-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-enclosed vesicles and act like 'messages in a bottle' in cell-cell communication by transporting their cargoes to recipient cells. Small EVs (sEVs, < 200 nm) are highly researched recently and have been harnessed as novel delivery systems for the treatment of various diseases, including neurodegenerative disorders, cardiovascular diseases, and most importantly cancer primarily because of their non-immunogenicity, tissue penetration and cell-tropism. This review will first provide a comprehensive overview of sEVs regarding the current understanding on their properties, biogenesis, new classification by the ISEV, composition, as well as their roles in cancer development (thereby called "oncosomes"). The primary focus will be given to the current state of sEVs as natural nanocarriers for cancer drug delivery, the technologies and challenges involved in sEV isolation and characterization, therapeutic cargo loading, and surface modification to enhance tumor-targeting. We will also provide examples of sEV products under clinical trials. Furthermore, the current challenges as well as the advance in "sEV mimetics" to address some of the sEVs limitations is briefly discussed. We seek to advance our understanding of sEVs to unlock their full potential as superior drug delivery vehicles in cancer therapy.
Collapse
|
36
|
Hsieh CC, Hsu SC, Yao M, Huang DM. CD9 Upregulation-Decreased CCL21 Secretion in Mesenchymal Stem Cells Reduces Cancer Cell Migration. Int J Mol Sci 2021; 22:ijms22041738. [PMID: 33572290 PMCID: PMC7915477 DOI: 10.3390/ijms22041738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs' CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: ; Tel.: +886-37-246-166 (ext. 38105)
| |
Collapse
|
37
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
38
|
Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics. Int J Mol Sci 2020; 22:ijms22010014. [PMID: 33374978 PMCID: PMC7792591 DOI: 10.3390/ijms22010014] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.
Collapse
|
39
|
Feng K, Ma R, Zhang L, Li H, Tang Y, Du G, Niu D, Yin D. The Role of Exosomes in Thyroid Cancer and Their Potential Clinical Application. Front Oncol 2020; 10:596132. [PMID: 33335859 PMCID: PMC7736410 DOI: 10.3389/fonc.2020.596132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of thyroid cancer (TC) is rapidly increasing worldwide. The diagnostic accuracy and dynamics of TC need to be improved, and traditional treatments are not effective enough for patients with poorly differentiated thyroid cancer. Exosomes are membrane vesicles secreted specifically by various cells and are involved in intercellular communication. Recent studies have shown that exosomes secreted by TC cells contribute to tumor progression, angiogenesis and metastasis. Exosomes in liquid biopsies can reflect the overall molecular information of tumors, and have natural advantages in diagnosing TC. Exosomes also play an important role in tumor therapy due to their special physicochemical properties. TC patients will benefit as more exosome patterns are discovered. In this review, we discuss the role of TC-derived exosomes in tumorigenesis and development, and describe the application of exosomes in the diagnosis and treatment of TC.
Collapse
Affiliation(s)
- Kaixiang Feng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lele Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Yifeng Tang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Gongbo Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongpeng Niu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| |
Collapse
|
40
|
Jia Z, Zhu H, Sun H, Hua Y, Zhang G, Jiang J, Wang X. Adipose Mesenchymal Stem Cell-Derived Exosomal microRNA-1236 Reduces Resistance of Breast Cancer Cells to Cisplatin by Suppressing SLC9A1 and the Wnt/β-Catenin Signaling. Cancer Manag Res 2020; 12:8733-8744. [PMID: 33061571 PMCID: PMC7519869 DOI: 10.2147/cmar.s270200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence has noted the versatile functions of mesenchymal stem cell-derived exosomes (MSC-Exos) in cancer control. This work aims to probe to function of adipose MSC-Exos (adMSC-Exos) in drug-resistance of breast cancer (BC) cells to cisplatin (DDP) and the molecules involved. METHODS Parental and DDP-resistant BC cell lines MCF-7 and MDA-MB-231 were used. All cells were pre-treated with adMSC-Exos. Then, the viability and apoptosis of cells after DDP treatment were determined. Differentially expressed miRNAs after adMSC-exo treatment were screened out. Rescue experiments were conducted by pre-transfecting miR-1236 inhibitor into adMSCs, and the role of miR-1236 in DDP sensitivity was determined. Targeting mRNAs of miR-1236 were predicted by bioinformatics analysis. Altered SLC9A1 expression was administrated to evaluate its function in DDP resistance. RESULTS The adMSC-Exos notably increased the sensitivity of either parental or DDP-resistant BC cells to DDP. SLC9A1 was notably highly expressed in DDP-resistant cells but inhibited following adMSC-exo administration. Importantly, miR-1236, which could directly bind to SLC9A1 and suppress its expression, was confirmed as an enriched miRNA in adMSC-Exos. Either inhibition of miR-1236 or upregulation of SLC9A1 blocked the pro-sensitize roles of adMSC-Exos. In addition, the Wnt/β-catenin pathway activity was suppressed by adMSC-Exos but recovered by SLC9A1. CONCLUSION This study evidenced that adMSC-Exos carry miR-1236 to increase sensitivity of BC cells to DDP with the involvement of SLC9A1 downregulation and Wnt/β-catenin inactivation. This finding may offer novel insights into treatment for drug-resistant BC.
Collapse
Affiliation(s)
- Zhongming Jia
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| | - Huamin Zhu
- Department of Medical Ultrasonics, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| | - Hongguang Sun
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| | - Guoqiang Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| | - Jingru Jiang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou256603, Shandong, People’s Republic of China
| |
Collapse
|
41
|
Guo Q, Yan J, Song T, Zhong C, Kuang J, Mo Y, Tan J, Li D, Sui Z, Cai K, Zhang J. microRNA-130b-3p Contained in MSC-Derived EVs Promotes Lung Cancer Progression by Regulating the FOXO3/NFE2L2/TXNRD1 Axis. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:132-146. [PMID: 33575477 PMCID: PMC7851484 DOI: 10.1016/j.omto.2020.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to explore the molecular mechanism by which mesenchymal stem cells (MSCs) mediate lung cancer progression. Extracellular vesicles (EVs) were isolated from transfected or untransfected MSCs, and were co-cultured with lung cancer cells with/without microRNA-130b-3p (miR-130b-3p) inhibitor, mimic, overexpression plasmids of FOXO3/NFE2L2, or shRNAs. CCK-8 assay, colony formation, transwell assay, and flow cytometry were carried out to determine the biological functioning of lung cancer cells. Furthermore, FOXO3, Keap1, NFE2L2, and TXNRD1 expression was determined by qRT-PCR and western blot analysis. A tumor xenograft mouse model was used to determine role of EVs-miR-130b-3p and its target FOXO3 in lung cancer progression in vivo. miR-130b-3p was highly expressed in lung cancer tissues and MSC-derived EVs. Moreover, the MSC-derived EVs transferred miR-130b-3p to lung cancer cells to promote cell proliferation, migration, and invasion while repress cell apoptosis. miR-130b-3p directly targeted FOXO3, and FOXO3 elevated Keap1 expression to downregulate NFE2L2, thus inhibiting TXNRD1. FOXO3 overexpression or silencing of NFE2L2 or TXNRD1 diminished lung cancer cell proliferation, invasion, and migration but enhanced apoptosis. EV-delivered miR-130b-3p or FOXO3 silencing promoted lung cancer progression in vivo. In summary, MSC-derived EVs with upregulated miR-130b-3p suppressed FOXO3 to block the NFE2L2/TXNRD1 pathway, thus playing an oncogenic role in lung cancer progression.
Collapse
Affiliation(s)
- Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China.,Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jun Yan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Tieniu Song
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Chenghua Zhong
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Yijun Mo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Zesen Sui
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| |
Collapse
|
42
|
Zhao R, Chen X, Song H, Bie Q, Zhang B. Dual Role of MSC-Derived Exosomes in Tumor Development. Stem Cells Int 2020; 2020:8844730. [PMID: 32963552 PMCID: PMC7499322 DOI: 10.1155/2020/8844730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/08/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a class of adult stem cells derived from the mesoderm. They can self-renew, have multidirectional differentiation potential, and can differentiate into a variety of mesenchymal tissues. MSCs can produce a large number of exosomes, which can mediate information exchange and transmission between cells in the tumor microenvironment under conditions of rest or stress. Recent studies have reported conflicting findings regarding the effect of MSC-derived exosomes on tumors. Some studies have suggested that MSC-derived exosomes can promote tumor growth and metastasis, but others have reported that they can inhibit tumor cell growth. Here, we investigate the two sides of the debate regarding the effect of MSC-derived exosomes on tumors and analyze the reasons for the divergent findings.
Collapse
Affiliation(s)
- Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Microbiology, Qingdao University Life Science College, Qingdao, Shandong, China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Hui Song
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
43
|
Liu D, Dong Z, Wang J, Tao Y, Sun X, Yao X. The existence and function of mitochondrial component in extracellular vesicles. Mitochondrion 2020; 54:122-127. [PMID: 32861876 DOI: 10.1016/j.mito.2020.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Intercellular transfer of mitochondria and mitochondrial components through extracellular vesicles (EVs), including microvesicles and exosomes, is an area of intense interest. The cargos that are carried by EVs define their biological activities. Mitochondria are in charge of bioenergetics and maintenance of cell viability. Increasing evidences indicate the presence of intact mitochondria or mitochondrial components in EVs, which raises many questions, how they are engulfed into EVs and what do they do? Here, we present what is currently known about the presence and function of various mitochondrial constituent in EVs. We also review current understanding about how and why mitochondrial components are encapsulated into EVs.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116011, China
| | - Zhanchen Dong
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Jinling Wang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Ye Tao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China.
| |
Collapse
|
44
|
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:146. [PMID: 32195233 PMCID: PMC7062641 DOI: 10.3389/fbioe.2020.00146] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
The cells secrete extracellular vesicles (EV) that may have an endosomal origin, or from evaginations of the plasma membrane. The former are usually called exosomes, with sizes ranging from 50 to 100 nm. These EV contain a lipid bilayer associated to membrane proteins. Molecules such as nucleic acids (DNA, mRNA, miRNA, lncRNA, etc.) and proteins may be stored inside. The EV composition depends on the producer cell type and its physiological conditions. Through them, the cells modify their microenvironment and the behavior of neighboring cells. That is accomplished by transferring factors that modulate different metabolic and signaling pathways. Due to their properties, EV can be applied as a diagnostic and therapeutic tool in medicine. The mesenchymal stromal cells (MSC) have immunomodulatory properties and a high regenerative capacity. These features are linked to their paracrine activity and EV secretion. Therefore, research on exosomes produced by MSC has been intensified for use in cell-free regenerative medicine. In this area, the use of EV for the treatment of chronic skin ulcers (CSU) has been proposed. Such sores occur when normal healing does not resolve properly. That is usually due to excessive prolongation of the inflammatory phase. These ulcers are associated with aging and diseases, such as diabetes, so their prevalence is increasing with the one of such latter disease, mainly in developed countries. This has very important socio-economic repercussions. In this review, we show that the application of MSC-derived EV for the treatment of CSU has positive effects, including accelerating healing and decreasing scar formation. This is because the EV have immunosuppressive and immunomodulatory properties. Likewise, they have the ability to activate the angiogenesis, proliferation, migration, and differentiation of the main cell types involved in skin regeneration. They include endothelial cells, fibroblasts, and keratinocytes. Most of the studies carried out so far are preclinical. Therefore, there is a need to advance more in the knowledge about the conditions of production, isolation, and action mechanisms of EV. Interestingly, their potential application in the treatment of CSU opens the door for the design of new highly effective therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba, Spain
| |
Collapse
|
45
|
D’Agnelli S, Gerra MC, Bignami E, Arendt-Nielsen L. Exosomes as a new pain biomarker opportunity. Mol Pain 2020; 16:1744806920957800. [PMID: 32909507 PMCID: PMC7493250 DOI: 10.1177/1744806920957800] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are extracellular microvesicles implicated in intercellular communication with ability to transfer cargo molecules, including protein, lipids, and nucleic acids, at both close and distant target sites. It has been shown that exosomes are implicated in physiological and pathological processes. In recent years, the interest on exosomes' role in many pain states has increased. Their involvements in pain processes have been demonstrated by studies on different chronic pain diseases, both inflammatory and neuropathic, such as osteoarthritis, rheumatoid arthritis, inflammatory bowel diseases, neurodegenerative pathologies, complex regional pain syndrome, and peripheral nerve injury. Animal and clinical studies investigated exosomes-based treatments, showing their ability to improve painful symptoms with fewer side effects, with potential immunoprotective and anti-inflammatory effect. Specific molecular patterns characterize exosomes' cargo according to the cellular origin, epigenetic modifications, environmental state, and stressor factors. Therefore, the identification of specific cargo's profile associated to pain states may lead to recognize specific pathological states and to consider the use of exosomes as biomarkers of diseases. Furthermore, exosomes' ability to transfer information and their presence in many accessible biological fluids suggest a potential use as novel non-invasive therapeutic tools in pain field.
Collapse
Affiliation(s)
- Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria C Gerra
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
46
|
Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci 2019; 20:ijms20236016. [PMID: 31795332 PMCID: PMC6929174 DOI: 10.3390/ijms20236016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular profile of liquid biopsies is emerging as an alternative to tissue biopsies in the clinical management of malignant diseases. In colorectal cancer, significant liquid biopsy-based biomarkers have demonstrated an ability to discriminate between asymptomatic cancer patients and healthy controls. Furthermore, this non-invasive approach appears to provide relevant information regarding the stratification of tumors with different prognoses and the monitoring of treatment responses. This review focuses on the tumor microenvironment components which are detected in blood samples of colorectal cancer patients and might represent potential biomarkers. Exosomes released by tumor and stromal cells play a major role in the modulation of cancer progression in the primary tumor microenvironment and in the formation of an inflammatory pre-metastatic niche. Stromal cells-derived exosomes are involved in driving mechanisms that promote tumor growth, migration, metastasis, and drug resistance, therefore representing substantial signaling mediators in the tumor-stroma interaction. Besides, recent findings of specifically packaged exosome cargo in Cancer-Associated Fibroblasts of colorectal cancer patients identify novel exosomal biomarkers with potential clinical applicability. Furthermore, additional different signals emitted from the tumor microenvironment and also detectable in the blood, such as soluble factors and non-tumoral circulating cells, arise as novel promising biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of these factors is still limited, and studies are in their infancy. However, innovative strategies aiming at the inhibition of tumor progression by systemic exosome depletion, exosome-mediated circulating tumor cell capturing, and exosome-drug delivery systems are currently being studied and may provide considerable advantages in the near future.
Collapse
Affiliation(s)
- Mercedes Herrera
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Vanesa García-Barberán
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| | - Cristina Peña
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| |
Collapse
|
47
|
Biswas S, Mandal G, Roy Chowdhury S, Purohit S, Payne KK, Anadon C, Gupta A, Swanson P, Yu X, Conejo-Garcia JR, Bhattacharyya A. Exosomes Produced by Mesenchymal Stem Cells Drive Differentiation of Myeloid Cells into Immunosuppressive M2-Polarized Macrophages in Breast Cancer. THE JOURNAL OF IMMUNOLOGY 2019; 203:3447-3460. [PMID: 31704881 DOI: 10.4049/jimmunol.1900692] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 12/25/2022]
Abstract
Tumor-associated macrophages are major contributors to malignant progression and resistance to immunotherapy, but the mechanisms governing their differentiation from immature myeloid precursors remain incompletely understood. In this study, we demonstrate that exosomes secreted by human and mouse tumor-educated mesenchymal stem cells (MSCs) drive accelerated breast cancer progression by inducing differentiation of monocytic myeloid-derived suppressor cells into highly immunosuppressive M2-polarized macrophages at tumor beds. Mechanistically, MSC-derived exosomes but not exosomes from tumor cells contain TGF-β, C1q, and semaphorins, which promote myeloid tolerogenic activity by driving PD-L1 overexpression in both immature myelomonocytic precursors and committed CD206+ macrophages and by inducing differentiation of MHC class II+ macrophages with enhanced l-Arginase activity and IL-10 secretion at tumor beds. Accordingly, administration of tumor-associated murine MSC-derived exosomes accelerates tumor growth by dampening antitumor immunity, and macrophage depletion eliminates exosome-dependent differences in malignant progression. Our results unveil a new role for MSC-derived exosomes in the differentiation of myeloid-derived suppressor cells into macrophages, which governs malignant growth.
Collapse
Affiliation(s)
- Subir Biswas
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, India.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Gunjan Mandal
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, India.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Sougata Roy Chowdhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Suman Purohit
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Carmen Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Arnab Gupta
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Kolkata 700063, India
| | - Patricia Swanson
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, DE 19713; and
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - José R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612;
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, India;
| |
Collapse
|
48
|
Shojaei S, Koleini N, Samiei E, Aghaei M, Cole LK, Alizadeh J, Islam MI, Vosoughi A, Albokashy M, Butterfield Y, Marzban H, Xu F, Thliveris J, Kardami E, Hatch GM, Eftekharpour E, Akbari M, Hombach‐Klonisch S, Klonisch T, Ghavami S. Simvastatin increases temozolomide‐induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J 2019; 287:1005-1034. [DOI: 10.1111/febs.15069] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shahla Shojaei
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Navid Koleini
- Institute of Cardiovascular Sciences St‐Boniface Hospital Albrechtsen Research Centre Winnipeg Canada
- Department of Physiology and Pathophysiology Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Ehsan Samiei
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Mahmoud Aghaei
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Department of Clinical Biochemistry School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Laura K. Cole
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Md Imamul Islam
- Regenerative Medicine Program Spinal Cord Research Centre Department of Physiology and Pathophysiology University of Manitoba Winnipeg Canada
| | - Amir‐reza Vosoughi
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Mohammed Albokashy
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Yaron Butterfield
- Genome Sciences Centre BC Cancer Vancouver Canada
- Patient Advocate and Research Committee Brain Tumour Foundation of Canada Ottawa Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Fred Xu
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - James Thliveris
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Institute of Cardiovascular Sciences St‐Boniface Hospital Albrechtsen Research Centre Winnipeg Canada
| | - Grant M. Hatch
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program Spinal Cord Research Centre Department of Physiology and Pathophysiology University of Manitoba Winnipeg Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Sabine Hombach‐Klonisch
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute in Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute in Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg Canada
- Biology of Breathing Children Hospital Research Institute of Manitoba Max Rady College of Medicine Rady Faculty of Health Sciences Winnipeg Canada
- Health Policy Research Center Institute of Health Shiraz University of Medical Sciences Iran
| |
Collapse
|
49
|
Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6458237. [PMID: 31531362 PMCID: PMC6719277 DOI: 10.1155/2019/6458237] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Although significant advances have been made in synthetic nerve conduits and surgical techniques, complete regeneration following peripheral nerve injury (PNI) remains far from optimized. The repair of PNI is a highly heterogeneous process involving changes in Schwann cell phenotypes, the activation of macrophages, and the reconstruction of the vascular network. At present, the efficacy of MSC-based therapeutic strategies for PNI can be attributed to paracrine secretion. Exosomes, as a product of paracrine secretion, are considered to be an important regulatory mediator. Furthermore, accumulating evidence has demonstrated that exosomes from mesenchymal stem cells (MSCs) can shuttle bioactive components (proteins, lipids, mRNA, miRNA, lncRNA, circRNA, and DNA) that participate in almost all of the abovementioned processes. Thus, MSC exosomes may represent a novel therapeutic tool for PNI. In this review, we discuss the current understanding of MSC exosomes related to peripheral nerve repair and provide insights for developing a cell-free MSC therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
50
|
Tian W, Liu S, Li B. Potential Role of Exosomes in Cancer Metastasis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4649705. [PMID: 31355262 PMCID: PMC6634128 DOI: 10.1155/2019/4649705] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
High cancer mortality is attributed to metastasis to a large extent. However, cancer metastasis remains devoid of dynamic monitoring and early prevention in terms of current advances in diagnostic means and therapeutic modalities. Meanwhile, studies have shown that reciprocal crosstalk among cells via exosomes plays a critical role in maintaining normal physiological state or triggering disease progression, including cancer metastasis. Therefore, in this review, we focus on the latest literature (primarily from 2018) to summarize action mechanisms and experimental studies of exosomes in cancer metastasis and put forward some problems as well as new outlooks of these studies.
Collapse
Affiliation(s)
- Wenjuan Tian
- Department of Clinical Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shanshan Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Burong Li
- Department of Clinical Laboratory, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| |
Collapse
|