1
|
Qin M, Chen Y, Wang X, Zhang X, Pan X. Dexmedetomidine induces IL-10 secretion by B lymphocytes in the peripheral blood of patients with hepatocellular carcinoma. Immunobiology 2024; 229:152842. [PMID: 39154383 DOI: 10.1016/j.imbio.2024.152842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND/AIM To investigate the distribution of subpopulations of peripheral blood B lymphocytes in individuals with hepatocellular carcinoma (HCC), and to evaluate the effect of dexmedetomidine (DEX) on B lymphocyte differentiation in patients with HCC in vitro. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from the HCC group and the healthy group, and the distribution of peripheral blood B-lymphocyte subpopulations in the two groups was examined by Flow Cytometry (FCM). B lymphocytes extracted from the peripheral blood of the HCC group were divided into D0, D1, D2 and D4 groups according to the different dose of DEX in the culture medium (0 μM, 1 μM, 2 μM and 4 μM). After 72 h of in vitro culture, FCM was used to detect differences in the percentage of apoptotic B lymphocytes and the percentage of B lymphocytes that can express interleukin 10(IL-10) and transforming growth factor-β (TGF-β) in each group. RESULTS In contrast to the healthy group, the HCC group exhibited a statistically significant increase in the proportion of CD19 + CD73 + B lymphocyte subpopulation (P<0.05). In the in vitro culture experiment, the differences in apoptosis of B lymphocytes and the percentage of TGF-β expression in each group were not statistically significant; When compared to the control group, there was a significant increase in the percentage of B lymphocytes expressing IL-10 across the D1, D2, and D4 groups (P<0.05). CONCLUSION The peripheral blood of HCC patients is characterized by an elevated presence of CD19 + CD73 + B lymphocyte subpopulations; DEX may have an immunosuppressive effect by promoting IL-10 secretion from peripheral blood B lymphocytes of HCC patients.
Collapse
Affiliation(s)
- Miaomiao Qin
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Yining Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxin Wang
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiaobao Zhang
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China.
| | - Xiongxiong Pan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Sun BY, Yang ZF, Wang ZT, Liu G, Zhou C, Zhou J, Fan J, Gan W, Yi Y, Qiu SJ. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma. World J Surg Oncol 2023; 21:90. [PMID: 36899373 PMCID: PMC9999525 DOI: 10.1186/s12957-023-02970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND CD73 promotes progression in several malignancies and is considered as a novel immune checkpoint. However, the function of CD73 in intrahepatic cholangiocarcinoma (ICC) remains uncertain. In this study, we aim to investigate the role of CD73 in ICC. METHODS Multi-omics data of 262 ICC patients from the FU-iCCA cohort were analyzed. Two single-cell datasets were downloaded to examine the expression of CD73 at baseline and in response to immunotherapy. Functional experiments were performed to explore the biological functions of CD73 in ICC. The expression of CD73 and HHLA2 and infiltrations of CD8 + , Foxp3 + , CD68 + , and CD163 + immune cells were evaluated by immunohistochemistry in 259 resected ICC samples from Zhongshan Hospital. The prognostic value of CD73 was assessed by Cox regression analysis. RESULTS CD73 correlated with poor prognosis in two ICC cohorts. Single-cell atlas of ICC indicated high expression of CD73 on malignant cells. TP53 and KRAS gene mutations were more frequent in patients with high CD73 expression. CD73 promoted ICC proliferation, migration, invasion, and epithelial-mesenchymal transition. High CD73 expression was associated with a higher ratio of Foxp3 + /CD8 + tumor-infiltrating lymphocytes (TILs) and CD163 + /CD68 + tumor-associated macrophages (TAMs). A positive correlation between CD73 and CD44 was observed, and patients with high CD73 expression showed elevated expression of HHLA2. CD73 expression in malignant cells was significantly upregulated in response to immunotherapy. CONCLUSIONS High expression of CD73 is associated with poor prognosis and a suppressive tumor immune microenvironment in ICC. CD73 could potentially be a novel biomarker for prognosis and immunotherapy in ICC.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Gan
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Zhou Y, Jiang D, Chu X, Yan M, Qi H, Wu X, Tang Y, Dai Y. High expression of CD73 contributes to poor prognosis of clear-cell renal cell carcinoma by promoting cell proliferation and migration. Transl Cancer Res 2022; 11:3634-3644. [PMID: 36388013 PMCID: PMC9641103 DOI: 10.21037/tcr-22-544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 10/12/2024]
Abstract
BACKGROUND Accumulating data have shown that high expression of CD73 is associated with poor prognosis in various cancers, however the role and significance of CD73 in clear-cell renal cell carcinoma (ccRCC) still remain unclear. The present study aims to evaluate the prognostic significance of CD73 in ccRCC and explore the potential function in vitro and in vivo. METHODS Firstly, the expression of CD73 in ccRCC was detected using clinical tissues and verified using TCGA and GEO data. Immunohistochemistry and Kaplan-Meier test were performed for survival analysis. Furthermore, knockdown or overexpression of CD73 was conducted by lentivirus transfection in ccRCC cells. MTT assay, colony formation assay, wound healing assay, transwell assay and xenograft assay were performed in vitro or in vivo. RESULTS Our results showed that CD73 was highly expressed in ccRCC, and high expression of CD73 was negatively correlated with prognosis. In addition, CD73 promoted cell proliferation and migration in vitro and in vivo. Our data also showed that CD73 played both enzymatic and non-enzymatic functions in the regulation of cell proliferation and migration in ccRCC. CONCLUSIONS These findings suggested that CD73 might promote the growth of ccRCC and contribute to poor prognosis. Taken together, CD73 may be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Dong Jiang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xi Chu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiang Wu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
5
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|
6
|
Reyna-Jeldes M, Díaz-Muñoz M, Madariaga JA, Coddou C, Vázquez-Cuevas FG. Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 2021; 17:345-370. [PMID: 33982134 PMCID: PMC8410929 DOI: 10.1007/s11302-021-09785-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.
Collapse
Affiliation(s)
- M Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - J A Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile
| | - C Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
- Núcleo para el Estudio del Cáncer a nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta, Chile.
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México.
| |
Collapse
|
7
|
Abstract
Hepatocellular carcinoma (HCC) is a prevalent disease with a progression that is modulated by the immune system. Systemic therapy is used in the advanced stage and until 2017 consisted only of antiangiogenic tyrosine kinase inhibitors (TKIs). Immunotherapy with checkpoint inhibitors has shown strong anti-tumour activity in a subset of patients and the combination of the anti-PDL1 antibody atezolizumab and the VEGF-neutralizing antibody bevacizumab has or will soon become the standard of care as a first-line therapy for HCC, whereas the anti-PD1 agents nivolumab and pembrolizumab are used after TKIs in several regions. Other immune strategies such as adoptive T-cell transfer, vaccination or virotherapy have not yet demonstrated consistent clinical activity. Major unmet challenges in HCC checkpoint immunotherapy are the discovery and validation of predictive biomarkers, advancing treatment to earlier stages of the disease, applying the treatment to patients with liver dysfunction and the discovery of more effective combinatorial or sequential approaches. Combinations with other systemic or local treatments are perceived as the most promising opportunities in HCC and some are already under evaluation in large-scale clinical trials. This Review provides up-to-date information on the best use of currently available immunotherapies in HCC and the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain.
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra-IDISNA and CIBERONC, Pamplona, Spain
| |
Collapse
|
8
|
Yang H, Yao F, Davis PF, Tan ST, Hall SRR. CD73, Tumor Plasticity and Immune Evasion in Solid Cancers. Cancers (Basel) 2021; 13:cancers13020177. [PMID: 33430239 PMCID: PMC7825701 DOI: 10.3390/cancers13020177] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumors are ecosystems composed of cancer cells and non-tumor stroma together in a hypoxic environment often described as wounds that do not heal. Accumulating data suggest that solid tumors hijack cellular plasticity possibly to evade detection by the immune system. CD73-mediated generation of the purine nucleoside adenosine, is an important biochemical constituent of the immunosuppressive tumor microenvironment. In this review, the association between CD73 expression and features associated with cellular plasticity involving stemness, epithelial-to-mesenchymal transition and metastasis together with immune infiltration is summarized for a wide range of solid tumor types. Our analyses demonstrate that CD73 correlates with signatures associated with cellular plasticity in solid tumors. In addition, there are strong associations between CD73 expression and type of infiltrating lymphocytes. Collectively, the observations suggest a biomarker-based stratification to identify CD73-adenosinergic rich tumors may help identify patients with solid cancers who will respond to a combinatorial strategy that includes targeting CD73. Abstract Regulatory networks controlling cellular plasticity, important during early development, can re-emerge after tissue injury and premalignant transformation. One such regulatory molecule is the cell surface ectoenzyme ecto-5′-nucleotidase that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine (eADO). Ecto-5′-nucleotidase (NT5E) or cluster of differentiation 73 (CD73), is an enzyme that is encoded by NT5E in humans. In normal tissue, CD73-mediated generation of eADO has important pleiotropic functions ranging from the promotion of cell growth and survival, to potent immunosuppression mediated through purinergic G protein-coupled adenosine receptors. Importantly, tumors also utilize several mechanisms mediated by CD73 to resist therapeutics and in particular, evade the host immune system, leading to undesired resistance to targeted therapy and immunotherapy. Tumor cell CD73 upregulation is associated with worse clinical outcomes in a variety of cancers. Emerging evidence indicates a link between tumor cell stemness with a limited host anti-tumor immune response. In this review, we provide an overview of a growing body of evidence supporting the pro-tumorigenic role of CD73 and adenosine signaling. We also discuss data that support a link between CD73 expression and tumor plasticity, contributing to dissemination as well as treatment resistance. Collectively, targeting CD73 may represent a novel treatment approach for solid cancers.
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Sean R. R. Hall
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| |
Collapse
|
9
|
Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18:525-543. [PMID: 33850328 PMCID: PMC8042636 DOI: 10.1038/s41575-021-00438-0] [Citation(s) in RCA: 681] [Impact Index Per Article: 227.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent disease with a progression that is modulated by the immune system. Systemic therapy is used in the advanced stage and until 2017 consisted only of antiangiogenic tyrosine kinase inhibitors (TKIs). Immunotherapy with checkpoint inhibitors has shown strong anti-tumour activity in a subset of patients and the combination of the anti-PDL1 antibody atezolizumab and the VEGF-neutralizing antibody bevacizumab has or will soon become the standard of care as a first-line therapy for HCC, whereas the anti-PD1 agents nivolumab and pembrolizumab are used after TKIs in several regions. Other immune strategies such as adoptive T-cell transfer, vaccination or virotherapy have not yet demonstrated consistent clinical activity. Major unmet challenges in HCC checkpoint immunotherapy are the discovery and validation of predictive biomarkers, advancing treatment to earlier stages of the disease, applying the treatment to patients with liver dysfunction and the discovery of more effective combinatorial or sequential approaches. Combinations with other systemic or local treatments are perceived as the most promising opportunities in HCC and some are already under evaluation in large-scale clinical trials. This Review provides up-to-date information on the best use of currently available immunotherapies in HCC and the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bruno Sangro
- grid.411730.00000 0001 2191 685XLiver Unit and HPB Oncology Area, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain
| | - Ignacio Melero
- grid.5924.a0000000419370271Program of Immunology and Immunotherapy, CIMA de la Universidad de Navarra, IDISNA and CIBEREHD, Pamplona, Spain ,grid.411730.00000 0001 2191 685XDepartment of Immunology and Immunotherapy, Clinica Universidad de Navarra-IDISNA and CIBERONC, Pamplona, Spain
| |
Collapse
|
10
|
Abstract
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Collapse
|
11
|
Kitabatake K, Kaji T, Tsukimoto M. Involvement of CD73 and A2B Receptor in Radiation-Induced DNA Damage Response and Cell Migration in Human Glioblastoma A172 Cells. Biol Pharm Bull 2020; 44:197-210. [PMID: 33268695 DOI: 10.1248/bpb.b20-00654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioblastoma is the most common malignant tumor of the central nervous system and is treated with a combination of surgery, radiation and chemotherapy. However, the tumor often acquires radiation resistance, which is characterized by an increased DNA damage response (DDR). Here, we show that CD73, which generates extracellular adenosine from ATP, and A2B receptor, which is activated by adenosine, are involved in the γ-radiation-induced DDR and the enhanced migration ability of human glioblastoma cell line A172. To investigate DDR, we evaluated ataxia telangiectasia mutated (ATM) activation and focus formation of histone H2A isoform γ (γH2AX) and p53-binding protein 1 (53BP1) in the nucleus of A172 cells after γ-irradiation. Antagonists of A2B receptor and CD73, or knockdown with small interfering RNA (siRNA), suppressed γ-radiation-induced DDR and promoted γ-radiation-induced cell death, as well as suppressing γ-radiation-induced cell migration and actin remodeling. These results suggest that activation of A2B receptor by extracellular adenosine generated via CD73 promotes γ-radiation-induced DDR, leading to recovery from DNA damage, and also enhances cell migration and actin remodeling. The CD73-A2B receptor pathway may be a promising target for overcoming radiation resistance and the acquisition of malignant phenotypes during radiotherapy of glioblastoma.
Collapse
Affiliation(s)
- Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
12
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
13
|
Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol 2020; 236:851-862. [PMID: 32648591 DOI: 10.1002/jcp.29932] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase-1 and CD73/ecto-5'-nucleotidase are cell-surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39-CD73-adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39-CD73-adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39-CD73-adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Peng H, Xue R, Ju Z, Qiu J, Wang J, Yan W, Gan X, Tian Y, Shen H, Wang X, Wang X, Ni X, Yu Y, Lu L. Cancer-associated fibroblasts enhance the chemoresistance of CD73 + hepatocellular carcinoma cancer cells via HGF-Met-ERK1/2 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:856. [PMID: 32793700 DOI: 10.21037/atm-20-1038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs) are a major component of hepatocellular carcinoma (HCC) stroma that are critically involved in HCC cancer chemoresistance, but the mechanism has not been elucidated. Previous studies have reported CD73 exerted an immunosuppressive function in cancer. Here, we explored the mechanism by which CAFs regulates CD73+ HCC cells and clarified whether CAFs promote chemoresistance of CD73+ cells. Methods We used the co-culture method to study the relationship between CAFs and HCC cells. Immunohistochemistry was applied to evaluate the correlation between α-smooth-muscle actin (α-SMA) and CD73. CD73 mRNA and protein were determined by real-time polymerase chain reaction (RT-PCR) and western blotting, and hepatocyte growth factor (HGF) was assayed by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to explore the regulated pathway of CD73+ HCC. We then knocked down CD73 in cells, and then assessed the effect of CD73 on the apoptosis by flow cytometry. Finally, a sphere formation assay was applied to investigate the stemness of cancer cells, and xenograft tumors in nude mice were built to investigate the tumorigenicity. Results We found that the proportion of CAFs was positively correlated with CD73 expression in HCC cells. Mechanistically, c-Met and the MEK-ERK1/2 pathway were activated by HGF from CAFs which upregulated CD73 expression in HCC cells. Also, we found that CD73 promote sorafenib and cisplatin resistance in HCC, and CD73+ HCC cells indicated the higher capability of tumorigenicity compared to CD73- HCC cells in vivo. Furthermore, HGF further enhanced the chemoresistant characteristics of CD73+ tumor cells. Conclusions Our findings collectively suggest that CD73 is a vital HCC-chemoresistance force controlled by cross-talking between CAFs and HCC cells, thereby establishing CD73 as a potential new therapeutic target for HCC.
Collapse
Affiliation(s)
- Hao Peng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Rong Xue
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Zheng Ju
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiannan Qiu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiawei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Yan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiaojie Gan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yizhu Tian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hongbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- State Key Laboratory of Reproductive Medicine, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xuhao Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Ostuni A, Carmosino M, Miglionico R, Abruzzese V, Martinelli F, Russo D, Laurenzana I, Petillo A, Bisaccia F. Inhibition of ABCC6 Transporter Modifies Cytoskeleton and Reduces Motility of HepG2 Cells via Purinergic Pathway. Cells 2020; 9:cells9061410. [PMID: 32517079 PMCID: PMC7349786 DOI: 10.3390/cells9061410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
ABCC6, belonging to sub-family C of ATP-binding cassette transporter, is an ATP-dependent transporter mainly present in the basolateral plasma membrane of hepatic and kidney cells. Although the substrates transported are still uncertain, ABCC6 has been shown to promote ATP release. The extracellular ATP and its derivatives di- and mono-nucleotides and adenosine by acting on specific receptors activate the so-called purinergic pathway, which in turn controls relevant cellular functions such as cell immunity, inflammation, and cancer. Here, we analyzed the effect of Abcc6 knockdown and probenecid-induced ABCC6 inhibition on cell cycle, cytoskeleton, and motility of HepG2 cells. Gene and protein expression were evaluated by quantitative Reverse Transcription PCR (RT-qPCR) and western blot, respectively. Cellular cycle analysis was evaluated by flow cytometry. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by in vitro wound-healing migration assay. Cell migration is reduced both in Abcc6 knockdown HepG2 cells and in probenecid treated HepG2 cells by interfering with the extracellular reserve of ATP. Therefore, ABCC6 could contribute to cytoskeleton rearrangements and cell motility through purinergic signaling. Altogether, our findings shed light on a new role of the ABCC6 transporter in HepG2 cells and suggest that its inhibitor/s could be considered potential anti-metastatic drugs.
Collapse
Affiliation(s)
- Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
- Correspondence: (A.O.); (F.B.); Tel.: +39-0971-205453 (A.O.); Tel.: +39-0971-205462 (F.B.)
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Rocchina Miglionico
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Vittorio Abruzzese
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Fabio Martinelli
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Daniela Russo
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy;
| | - Agata Petillo
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy; (M.C.); (R.M.); (V.A.); (F.M.); (D.R.); (A.P.)
- Correspondence: (A.O.); (F.B.); Tel.: +39-0971-205453 (A.O.); Tel.: +39-0971-205462 (F.B.)
| |
Collapse
|
16
|
Alcedo KP, Guerrero A, Basrur V, Fu D, Richardson ML, McLane JS, Tsou C, Nesvizhskii AI, Welling TH, Lebrilla CB, Otey CA, Kim HJ, Omary MB, Snider NT. Tumor-Selective Altered Glycosylation and Functional Attenuation of CD73 in Human Hepatocellular Carcinoma. Hepatol Commun 2019; 3:1400-1414. [PMID: 31592495 PMCID: PMC6771166 DOI: 10.1002/hep4.1410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
CD73, a cell-surface N-linked glycoprotein that produces extracellular adenosine, is a novel target for cancer immunotherapy. Although anti-CD73 antibodies have entered clinical development, CD73 has both protumor and antitumor functions, depending on the target cell and tumor type. The aim of this study was to characterize CD73 regulation in human hepatocellular carcinoma (HCC). We examined CD73 expression, localization, and activity using molecular, biochemical, and cellular analyses on primary HCC surgical specimens, coupled with mechanistic studies in HCC cells. We analyzed CD73 glycan signatures and global alterations in transcripts encoding other N-linked glycoproteins by using mass spectrometry glycomics and RNA sequencing (RNAseq), respectively. CD73 was expressed on tumor hepatocytes where it exhibited abnormal N-linked glycosylation, independent of HCC etiology, tumor stage, or fibrosis presence. Aberrant glycosylation of tumor-associated CD73 resulted in a 3-fold decrease in 5'-nucleotidase activity (P < 0.0001). Biochemically, tumor-associated CD73 was deficient in hybrid and complex glycans specifically on residues N311 and N333 located in the C-terminal catalytic domain. Blocking N311/N333 glycosylation by site-directed mutagenesis produced CD73 with significantly decreased 5'-nucleotidase activity in vitro, similar to the primary tumors. Glycosylation-deficient CD73 partially colocalized with the Golgi structural protein GM130, which was strongly induced in HCC tumors. RNAseq analysis further revealed that N-linked glycoprotein-encoding genes represented the largest category of differentially expressed genes between HCC tumor and adjacent tissue. Conclusion: We provide the first detailed characterization of CD73 glycosylation in normal and tumor tissue, revealing a novel mechanism that leads to the functional suppression of CD73 in human HCC tumor cells. The present findings have translational implications for therapeutic candidate antibodies targeting cell-surface CD73 in solid tumors and small-molecule adenosine receptor agonists that are in clinical development for HCC.
Collapse
Affiliation(s)
- Karel P. Alcedo
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Andres Guerrero
- Department of ChemistryUniversity of California DavisDavisCA
| | | | - Dong Fu
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Monea L. Richardson
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Joshua S. McLane
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Chih‐Chiang Tsou
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI
| | - Alexey I. Nesvizhskii
- Department of PathologyUniversity of MichiganAnn ArborMI
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI
| | - Theodore H. Welling
- Perlmutter Cancer Center and Department of SurgeryNew York University Langone HealthNew YorkNY
| | | | - Carol A. Otey
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Hong Jin Kim
- Department of SurgeryUniversity of North Carolina at Chapel HillChapel HillNC
| | - M. Bishr Omary
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI
- Department of MedicineUniversity of MichiganAnn ArborMI
- Center for Advanced Biotechnology & MedicineRutgers UniversityPiscatawayNJ
- Rutgers Biomedical Health SciencesNewarkNJ
| | - Natasha T. Snider
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| |
Collapse
|
17
|
Ma XL, Shen MN, Hu B, Wang BL, Yang WJ, Lv LH, Wang H, Zhou Y, Jin AL, Sun YF, Zhang CY, Qiu SJ, Pan BS, Zhou J, Fan J, Yang XR, Guo W. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. J Hematol Oncol 2019; 12:37. [PMID: 30971294 PMCID: PMC6458749 DOI: 10.1186/s13045-019-0724-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide because of rapid progression and high incidence of metastasis or recurrence. Accumulating evidence shows that CD73-expressing tumor cell is implicated in development of several types of cancer. However, the role of CD73 in HCC cell has not been systematically investigated and its underlying mechanism remains elusive. METHODS CD73 expression in HCC cell was determined by RT-PCR, Western blot, and immunohistochemistry staining. Clinical significance of CD73 was evaluated by Cox regression analysis. Cell counting kit-8 and colony formation assays were used for proliferation evaluation. Transwell assays were used for motility evaluations. Co-immunoprecipitation, cytosolic and plasma membrane fractionation separation, and ELISA were applied for evaluating membrane localization of P110β and its catalytic activity. NOD/SCID/γc(null) (NOG) mice model was used to investigate the in vivo functions of CD73. RESULTS In the present study, we demonstrate that CD73 was crucial for epithelial-mesenchymal transition (EMT), progression and metastasis in HCC. CD73 expression is increased in HCC cells and correlated with aggressive clinicopathological characteristics. Clinically, CD73 is identified as an independent poor prognostic indicator for both time to recurrence and overall survival. CD73 knockdown dramatically inhibits HCC cells proliferation, migration, invasion, and EMT in vitro and hinders tumor growth and metastasis in vivo. Opposite results could be observed when CD73 is overexpressed. Mechanistically, adenosine produced by CD73 binds to adenosine A2A receptor (A2AR) and activates Rap1, which recruits P110β to the plasma membrane and triggers PIP3 production, thereby promoting AKT phosphorylation in HCC cells. Notably, a combination of anti-CD73 and anti-A2AR achieves synergistic depression effects on HCC growth and metastasis than single agent alone. CONCLUSIONS CD73 promotes progression and metastasis through activating PI3K/AKT signaling, indicating a novel prognostic biomarker for HCC. Our data demonstrate the importance of CD73 in HCC in addition to its immunosuppressive functions and revealed that co-targeting CD73 and A2AR strategy may be a promising novel therapeutic strategy for future HCC management.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Min-Na Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Li-Hua Lv
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - An-Li Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Chuan-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Liver Cancer Institute, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|