1
|
Lin G, Ye T, Wang J. The association between long noncoding RNA ABHD11-AS1 and malignancy prognosis: a meta-analysis. BMC Cancer 2024; 24:1083. [PMID: 39223500 PMCID: PMC11367821 DOI: 10.1186/s12885-024-12866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Accumulating evidence has highlighted that lncRNA ABHD11-AS1 plays an essential role in tumorigenesis and is expected to become a new predictive biomarker and ideal target for cancer therapy, whereas some of their findings are conflicting due to the relatively small sample size of individual studies. Thus, this meta-analysis aimed to quantitatively ascertain the association of ABHD11-AS1 with diverse human malignancies. METHODS Eight databases were comprehensively screened for relevant articles on January 1, 2024. The significance of ABHD11-AS1 in malignancies was determined by odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence interval (CI). Subgroup analyses and sensitivity analyses were applied to verify the reliability and robustness of the pooled results. Simultaneously, the GEPIA2021 and UCSC Xena databases were applied to further strengthen the results. RESULTS Fourteen clinical studies comprising eight kinds of malignancies and 1215 malignancy cases were enrolled into this meta-analysis. The pooled results showed that increased ABHD11-AS1 expression was remarkably associated with lymph node metastasis (OR = 2.73, 95%CI [1.97, 3.77], I2 = 0%, p < 0.00001), advanced tumor stage ( OR = 3.14, 95%CI [2.34, 4.21], I2 = 39%, p < 0.00001), and unfavorable overall survival (OS) (HR = 1.81, 95%CI [1.58, 2.06], I2 = 0%, p < 0.00001). Subgroup analyses and sensitivity analyses indicated that the pooled results were reliable and robust. Additionally, ABHD11-AS1 was significantly increased in eight kinds of malignancies according to the validation of the GEPIA2021 database. Meanwhile, the UCSC Xena databases further revealed that elevated ABHD11-AS1 expression was significantly associated with poor prognosis as assessed by progression free interval (PFI), disease free interval (DFI), disease specific survival (DSS), and OS. CONCLUSIONS Current evidence supports the association of elevated ABHD11-AS1 expression with poor prognosis. Thereby, ABHD11-AS1 may be considered as a promising biomarker to screen cancer and predict malignancy prognosis. Also, there is a necessity for larger-scale multicenter studies with uniform study protocols from different countries to further validate the conclusions.
Collapse
Affiliation(s)
- Guangyao Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Tao Ye
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Wang
- Department of Obstetrics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J, Wang K. m 6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/ FOXM1 positive feedback loop. Cancer Lett 2024; 596:217004. [PMID: 38838765 DOI: 10.1016/j.canlet.2024.217004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.
Collapse
Affiliation(s)
- Yibo Bian
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of digestive Disease, Fourth Military Medical University, Xi'an, 710032, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhishuang Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Li
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, 200032, China
| | - Zhiwei Cui
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Li
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Huai'an, 223400, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Ghorbani A, Hosseinie F, Khorshid Sokhangouy S, Islampanah M, Khojasteh-Leylakoohi F, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Nazari E, Avan A. The prognostic, diagnostic, and therapeutic impact of Long noncoding RNAs in gastric cancer. Cancer Genet 2024; 282-283:14-26. [PMID: 38157692 DOI: 10.1016/j.cancergen.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gastric cancer (GC), ranking as the third deadliest cancer globally, faces challenges of late diagnosis and limited treatment efficacy. Long non-coding RNAs (lncRNAs) emerge as valuable treasured targets for cancer prognosis, diagnosis, and therapy, given their high specificity, convenient non-invasive detection in body fluids, and crucial roles in diverse physiological and pathological processes. Research indicates the significant involvement of lncRNAs in various aspects of GC pathogenesis, including initiation, metastasis, and recurrence, underscoring their potential as novel diagnostic and prognostic biomarkers, as well as therapeutic targets for GC. Despite existing challenges in the clinical application of lncRNAs in GC, the evolving landscape of lncRNA molecular biology holds promise for advancing the survival and treatment outcomes of gastric cancer patients. This review provides insights into recent studies on lncRNAs in gastric cancer, elucidating their molecular mechanisms and exploring the potential clinical applications in GC.
Collapse
Affiliation(s)
- Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinie
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Saeideh Khorshid Sokhangouy
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Ahmadieh-Yazdi A, Mahdavinezhad A, Tapak L, Nouri F, Taherkhani A, Afshar S. Using machine learning approach for screening metastatic biomarkers in colorectal cancer and predictive modeling with experimental validation. Sci Rep 2023; 13:19426. [PMID: 37940644 PMCID: PMC10632378 DOI: 10.1038/s41598-023-46633-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Colorectal cancer (CRC) liver metastasis accounts for the majority of fatalities associated with CRC. Early detection of metastasis is crucial for improving patient outcomes but can be delayed due to a lack of symptoms. In this research, we aimed to investigate CRC metastasis-related biomarkers by employing a machine learning (ML) approach and experimental validation. The gene expression profile of CRC patients with liver metastasis was obtained using the GSE41568 dataset, and the differentially expressed genes between primary and metastatic samples were screened. Subsequently, we carried out feature selection to identify the most relevant DEGs using LASSO and Penalized-SVM methods. DEGs commonly selected by these methods were selected for further analysis. Finally, the experimental validation was done through qRT-PCR. 11 genes were commonly selected by LASSO and P-SVM algorithms, among which seven had prognostic value in colorectal cancer. It was found that the expression of the MMP3 gene decreases in stage IV of colorectal cancer compared to other stages (P value < 0.01). Also, the expression level of the WNT11 gene was observed to increase significantly in this stage (P value < 0.001). It was also found that the expression of WNT5a, TNFSF11, and MMP3 is significantly lower, and the expression level of WNT11 is significantly higher in liver metastasis samples compared to primary tumors. In summary, this study has identified a set of potential biomarkers for CRC metastasis using ML algorithms. The findings of this research may provide new insights into identifying biomarkers for CRC metastasis and may potentially lay the groundwork for innovative therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Zhu D, Yuan S, Chen C. Hedyotis diffusa-Sculellaria barbata (HD-SB) suppresses the progression of colorectal cancer cells via the hsa_circ_0039933/hsa-miR-204-5p/wnt11 axis. Sci Rep 2023; 13:13331. [PMID: 37587207 PMCID: PMC10432535 DOI: 10.1038/s41598-023-40393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Our previous study confirmed that the combination of Hedyotis diffusa (HD) and Scutellaria barbata (SB) significantly inhibited colorectal cancer cell proliferation and the WNT signaling pathway. However, the exact molecular modulation remains unclear. In this study, colorectal cancer cells (SW620) were treated with 1 mg/mL HD-SB for 24 h, and high-throughput sequencing of circRNAs was performed. The level of hsa_circ_0039933 in three colorectal cancer cell lines (HT-29, SW620, and HCT116) was verified by qPCR. After transfection of hsa_circ_0039933 overexpression plasmids or small interfering RNAs, CCK8, apoptosis, cell migration, and cell invasion were utilized to evaluate the function of hsa_circ_0039933 in the progression of colorectal cancer cells. We identified hsa_circ_0039933, which was downregulated in HD-SB-induced colorectal cancer cells and positively related to colorectal cancer progression. In SW620 cells with relatively high expression of hsa_circ_0039933, interfering with the expression of hsa_circ_0039933 inhibited the proliferation, invasion, and migration of SW620 cells. In HCT116 cells with relatively low expression of hsa_circ_0039933, overexpression of hsa_circ_0039933 promoted the proliferation and invasion and migration ability of HCT116. Mechanistically, hsa_circ_0039933 targeted hsa-miR-204-5p to increase the expression of wnt11, leading to the activation of the Wnt pathway, thereby promoting the proliferation of colorectal cancer cells. This work revealed the potential molecular mechanism of HD-SB for the treatment of colorectal cancer, which was to inhibit the Wnt signaling pathway through the hsa_circ_0039933/hsa-miR-204-5p/wnt11 axis, then suppressing proliferation, migration, and invasion in the colorectal cancer cell.
Collapse
Affiliation(s)
- Danye Zhu
- Department of TCM Rehabilitation Medicine, Guangzhou Dongsheng Hospital, Guangzhou, 510000, Guangdong, China
| | - Shanmin Yuan
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China.
| | - Cong Chen
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
6
|
Yang W, Lu S, Peng L, Zhang Z, Zhang Y, Guo D, Ma F, Hua Y, Chen X. Integrated analysis of necroptosis-related genes for evaluating immune infiltration and colon cancer prognosis. Front Immunol 2022; 13:1085038. [PMID: 36618366 PMCID: PMC9814966 DOI: 10.3389/fimmu.2022.1085038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colon cancer (CC) is the second most common gastrointestinal malignancy. About one in five patients have already developed distant metastases at the time of initial diagnosis, and up to half of patients develop distant metastases from initial local disease, which leads to a poor prognosis for CC patients. Necroptosis plays a key role in promoting tumor growth in different tumors. The purpose of this study was to construct a prognostic model composed of necroptosis-related genes (NRGs) in CC. Methods The Cancer Genome Atlas was used to obtain information on clinical features and gene expression. Gene expression differential analysis, weighted gene co-expression network analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator regression algorithm were utilized to identify prognostic NRGs. Thereafter, a risk scoring model was established based on the NRGs. Biological processes and pathways were identified by gene ontology and gene set enrichment analysis (GSEA). Further, protein-protein interaction and ceRNA networks were constructed based on mRNA-miRNA-lncRNA. Finally, the effect of necroptosis related risk score on different degrees of immune cell infiltration was evaluated. Results CALB1, CHST13, and SLC4A4 were identified as NRGs of prognostic significance and were used to establish a risk scoring model. The time-dependent receiver operating characteristic curve analysis revealed that the model could well predict the 1-, 3-, and 5-year overall survival (OS). Further, GSEA suggested that the NRGs may participate in biological processes, such as the WNT pathway and JAK-Stat pathway. Eight key hub genes were identified, and a ceRNA regulatory network, which comprised 1 lncRNA, 5 miRNAs and 3 mRNAs, was constructed. Immune infiltration analysis revealed that the low-risk group had significantly higher immune-related scores than the high-risk group. A nomogram of the model was constructed based on the risk score, necroptosis, and the clinicopathological features (age and TNM stage). The calibration curves implied that the model was effective at predicting the 1-, 3-, and 5-year OS of CC. Conclusion Our NRG-based prognostic model can assist in the evaluation of CC prognosis and the identification of therapeutic targets for CC.
Collapse
Affiliation(s)
- Wei Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shuaibing Lu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liangqun Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhandong Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonglei Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dandan Guo
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yawei Hua
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China,*Correspondence: Xiaobing Chen,
| |
Collapse
|
7
|
Zhou X, Zhong F, Yan Y, Wu S, Wang H, Liu J, Li F, Cui D, Xu M. Pancreatic Cancer Cell-Derived Exosomes Promote Lymphangiogenesis by Downregulating ABHD11-AS1 Expression. Cancers (Basel) 2022; 14:cancers14194612. [PMID: 36230535 PMCID: PMC9562033 DOI: 10.3390/cancers14194612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Research on pancreatic cancer microbiomes has attracted attention in recent years. The current view is that enriched microbial communities in pancreatic cancer tissues may affect pancreatic cancer metastasis, including lymph node (LN) metastasis. Similar to carriers of genetic information between cells, such as DNA, mRNA, protein, and non-coding RNA, exosomes are of great importance in early LN metastasis in tumors, including pancreatic cancer. Our previous study showed that the long non-coding RNA ABHD11-AS1 was highly expressed in tissues of patients with pancreatic cancer, and was correlated with patient survival time. However, the role of ABHD11-AS1 in pancreatic cancer LN metastasis has rarely been studied. Hence, in this paper we confirmed that exosomes derived from pancreatic cancer cells could promote lymphangiogenesis in vitro and in vivo, and that the mechanism was related to the downregulation of ABHD11-AS1 expression in lymphatic endothelial cells, and to the enhancement of their ability to proliferate, migrate, and form tubes. These findings preliminarily show a new mechanism by which pancreatic cancer cells regulate peripheral lymphangiogenesis, providing a new therapeutic strategy for inhibiting LN metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Xulin Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fengyun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215025, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213000, China
| | - Sihui Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
- Correspondence: (D.C.); (M.X.)
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Correspondence: (D.C.); (M.X.)
| |
Collapse
|
8
|
circZC3HAV1 Regulates TBC1D9 to Affect the Biological Behavior of Colorectal Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7386946. [PMID: 36164444 PMCID: PMC9508460 DOI: 10.1155/2022/7386946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed cancers all over the world, which accounts for a large proportion of cancer-associated deaths. The regulatory function of circular RNAs (circRNAs) has been affirmed in diverse cancers. circ_0082628, named circRNA zinc finger CCCH-type containing antiviral 1 (circZC3HAV1), has been discovered to be significantly downregulated in CRC tissues. Nevertheless, the function and mechanism of circZC3HAV1 in CRC remain unclear. Purpose We targeted at studying the specific role and mechanism of circZC3HAV1 in CRC cells. Methods The expression of the genes was detected by quantitative real-time polymerase chain reaction (qPCR). The binding relationship among different genes was verified by mechanism assays. Functional assays were carried out to reveal the role of different RNAs in CRC cell malignant behaviors. Results circZC3HAV1 was significantly downregulated in CRC cells. circZC3HAV1 overexpression hampered CRC cell migratory and invasive abilities. As for the mechanism, circZC3HAV1 competitively bound with microRNA-146b-3p (miR-146b-3p) to enhance the expression of TBC1 domain family member 9 (TBC1D9). Rescue assays demonstrated circZC3HAV1 sponged miR-146b-3p and upregulated TBC1D9 to restrict migration and invasion of CRC cells. Conclusion circZC3HAV1 could upregulate TBC1D9 via absorbing miR-146b-3p, consequently inhibiting migratory and invasive capabilities of CRC cells.
Collapse
|
9
|
Lu H, Zhu C, Chen Y, Ruan Y, Fan L, Chen Q, Wei Q. LncRNA ABHD11-AS1 promotes tumor progression in papillary thyroid carcinoma by regulating EPS15L1/EGFR signaling pathway. Clin Transl Oncol 2022; 24:1124-1133. [PMID: 35098448 DOI: 10.1007/s12094-021-02753-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) acts as an oncogene involved in papillary thyroid carcinoma (PTC) occurrence and progression. ABHD11-AS1 exerts biologic functions by some miRNAs and proteins to regulate multiple targets. Identification of novel mechanism of ABHD11-AS1 could be helpful in therapeutic targeting for PTC treatment. METHODS Differentially expressed lncRNAs were selected from TCGA database. qRT-PCR analysis was applied to examine the expression of ABHD11-AS1 in PTC cell lines and tissues. The relationship of ABHD11-AS1 expression and clinicopathological features was analyzed by Kaplan-Meier analysis. Two PTC cell lines (TPC-1 and KTC-1) were transfected with pcDNA 3.1, pcDNA3.1-ABHD11-AS1, si-NC and si-ABHD11-AS1, respectively, to verify the ABHD11-AS1 oncogene-regulating capacity to promote tumor progression. The cell metastasis and proliferation had been evaluated both in vitro and in vivo. RESULTS High expression of ABHD11-AS1 was found in PTC tissues (P < 0.01), which was significantly correlated with lymph node metastasis (P < 0.05). ABHD11-AS1 overexpression noticeably promoted cell proliferation, migration, and invasion capabilities, which were obviously decreased upon ABHD11-AS1 knockdown. ABHD11-AS1 positively regulated EGFR/EPS15L1 pathway, as EGFR, EPS15L1, STAT3, and p-STAT3 were activated. CONCLUSION ABHD11-AS1 promotes tumor progression in PTC by regulating EPS15L1/EGFR pathway.
Collapse
Affiliation(s)
- H Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - C Zhu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People's Republic of China
| | - Y Chen
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Y Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People's Republic of China
| | - L Fan
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Q Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People's Republic of China.
| | - Q Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
10
|
Golla U, Sesham K, Dallavalasa S, Manda NK, Unnam S, Sanapala AK, Nalla S, Kondam S, Kumar R. ABHD11-AS1: An Emerging Long Non-Coding RNA (lncRNA) with Clinical Significance in Human Malignancies. Noncoding RNA 2022; 8:ncrna8020021. [PMID: 35314614 PMCID: PMC8938790 DOI: 10.3390/ncrna8020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of lncRNAs has been linked to the development and progression of different cancers. One such lncRNA is ABHD11 antisense RNA 1 (ABHD11-AS1), which has recently gained attention for its significant role in human malignancies. ABHD11-AS1 is highly expressed in gastric, lung, breast, colorectal, thyroid, pancreas, ovary, endometrium, cervix, and bladder cancers. Several reports highlighted the clinical significance of ABHD11-AS1 in prognosis, diagnosis, prediction of cancer progression stage, and treatment response. Significantly, the levels of ABHD11-AS1 in gastric juice had been exhibited as a clinical biomarker for the assessment of gastric cancer, while its serum levels have prognostic potential in thyroid cancers. The ABHD11-AS1 has been reported to exert oncogenic effects by sponging different microRNAs (miRNAs), altering signaling pathways such as PI3K/Akt, epigenetic mechanisms, and N6-methyladenosine (m6A) RNA modification. In contrast, the mouse homolog of AHD11-AS1 (Abhd11os) overexpression had exhibited neuroprotective effects against mutant huntingtin-induced toxicity. Considering the emerging research reports, the authors attempted in this first review on ABHD11-AS1 to summarize and highlight its oncogenic potential and clinical significance in different human cancers. Lastly, we underlined the necessity for future mechanistic studies to unravel the role of ABHD11-AS1 in tumor development, prognosis, progression, and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| | - Kishore Sesham
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri 522503, India;
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Mysuru 570015, India;
| | - Naresh Kumar Manda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Sambamoorthy Unnam
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Arun Kumar Sanapala
- Faculty of Pharmacy, Sree Dattha Institute of Pharmacy, Ibrahimpatnam 501510, India; (S.U.); (A.K.S.)
| | - Sharada Nalla
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Susmitha Kondam
- Faculty of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar 509001, India; (S.N.); (S.K.)
| | - Rajesh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| |
Collapse
|
11
|
Hou S, Zhang X, Yang J. Long non-coding RNA ABHD11-AS1 facilitates the progression of cervical cancer by competitively binding to miR-330-5p and upregulating MARK2. Exp Cell Res 2021; 410:112929. [PMID: 34793775 DOI: 10.1016/j.yexcr.2021.112929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/20/2022]
Abstract
Cervical cancer (CC) is among the most prevalent gynecological malignancies. Participation of long non-coding RNA (lncRNA) in modulating biological behaviors of CC cells has been confirmed. However, the function of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in CC is still unclear. RT-qPCR and Western blot were performed for measuring RNA and protein levels. Functional assays were done to evaluate ABHD11-AS1 influences on cell proliferation, apoptosis, invasion and migration. After the verification of ABHD11-AS1 distribution in CC cells, mechanism assays were conducted to study the interaction of relative RNAs. ABHD11-AS1 expression was abnormally high in CC cells. In vitro experiments showed ABHD11-AS1 downregulation restrained CC cell malignant phenotypes. In vivo experiments proved ABHD11-AS1 knockdown impeded tumor growth. Moreover, miR-330-5p was corroborated to bind with ABHD11-AS1 in CC cells and microtubule affinity regulating kinase 2 (MARK2) was confirmed to be targeted by miR-330-5p. MiR-330-5p inhibition or MARK2 overexpression could countervail the suppressive effect of ABHD11-AS1 knockdown on CC cell malignant behaviors. We found that ABHD11-AS1 facilitated CC tumorigenesis through competitively sequestering miR-330-5p to upregulate MARK2, indicating ABHD11-AS1 as a potential biomarker in CC.
Collapse
Affiliation(s)
- Shunyu Hou
- Department of Gynecology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001, Jiangsu, China
| | - Xiaoqian Zhang
- Department of Gynecology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001, Jiangsu, China
| | - Jian Yang
- Department of Gynecology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001, Jiangsu, China.
| |
Collapse
|
12
|
Lo TW, Figueroa-Romero C, Hur J, Pacut C, Stoll E, Spring C, Lewis R, Nair A, Goutman SA, Sakowski SA, Nagrath S, Feldman EL. Extracellular Vesicles in Serum and Central Nervous System Tissues Contain microRNA Signatures in Sporadic Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2021; 14:739016. [PMID: 34776863 PMCID: PMC8586523 DOI: 10.3389/fnmol.2021.739016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminalneurodegenerative disease. Clinical and molecular observations suggest that ALS pathology originates at a single site and spreads in an organized and prion-like manner, possibly driven by extracellular vesicles. Extracellular vesicles (EVs) transfer cargo molecules associated with ALS pathogenesis, such as misfolded and aggregated proteins and dysregulated microRNAs (miRNAs). However, it is poorly understood whether altered levels of circulating extracellular vesicles or their cargo components reflect pathological signatures of the disease. In this study, we used immuno-affinity-based microfluidic technology, electron microscopy, and NanoString miRNA profiling to isolate and characterize extracellular vesicles and their miRNA cargo from frontal cortex, spinal cord, and serum of sporadic ALS (n = 15) and healthy control (n = 16) participants. We found larger extracellular vesicles in ALS spinal cord versus controls and smaller sized vesicles in ALS serum. However, there were no changes in the number of extracellular vesicles between cases and controls across any tissues. Characterization of extracellular vesicle-derived miRNA cargo in ALS compared to controls identified significantly altered miRNA levels in all tissues; miRNAs were reduced in ALS frontal cortex and spinal cord and increased in serum. Two miRNAs were dysregulated in all three tissues: miR-342-3p was increased in ALS, and miR-1254 was reduced in ALS. Additional miRNAs overlapping across two tissues included miR-587, miR-298, miR-4443, and miR-450a-2-3p. Predicted targets and pathways associated with the dysregulated miRNAs across the ALS tissues were associated with common biological pathways altered in neurodegeneration, including axon guidance and long-term potentiation. A predicted target of one identified miRNA (N-deacetylase and N-sulfotransferase 4; NDST4) was likewise dysregulated in an in vitro model of ALS, verifying potential biological relevance. Together, these findings demonstrate that circulating extracellular vesicle miRNA cargo mirror those of the central nervous system disease state in ALS, and thereby offer insight into possible pathogenic factors and diagnostic opportunities.
Collapse
Affiliation(s)
- Ting-wen Lo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Evan Stoll
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Calvin Spring
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rose Lewis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Athul Nair
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Binterface Institute, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Xie Q, Zhao S, Kang R, Wang X. lncRNA SNHG11 facilitates prostate cancer progression through the upregulation of IGF‑1R expression and by sponging miR‑184. Int J Mol Med 2021; 48:182. [PMID: 34328198 PMCID: PMC8354307 DOI: 10.3892/ijmm.2021.5015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/07/2021] [Indexed: 11/05/2022] Open
Abstract
Long non‑coding RNA (lncRNA) small nucleolar RNA host gene 11 (SNHG11) has been shown to play an important role in the development and progression of numerous types of cancer. However, to the best of our knowledge, the role of SNHG11 in prostate cancer (PCa) development and metastasis remains unclear. Thus, the aim of the present study was to investigate the functional role and molecular mechanisms of SNHG11 in PCa progression. It was revealed that the SNHG11 expression levels were significantly upregulated in PCa tissues, in comparison with those in adjacent normal tissues. Functionally, SNHG11 knockdown significantly suppressed PCa cell proliferation, migration, invasion and metastasis in vitro and in vivo. Furthermore, SNHG11 was found to positively regulate insulin‑like growth factor 1 receptor (IGF‑1R) expression by sponging microRNA (miRNA/miR)‑184 in PCa cells. The results of rescue experiments demonstrated that IGF‑1R overexpression reversed the suppressive effects of SNHG11 knockdown on the proliferation, migration and invasion of PCa cells. On the whole, the findings of the present study suggest that SNHG11 expression is upregulated in PCa and that it facilitates PCa progression, at least in part, via the modulation of the miR‑184/IGF‑1R signaling axis.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Reproduction, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Zhejiang, Taizhou 318000, P.R. China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaolan Wang
- Reproductive Center of Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
14
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
15
|
Hou S, Zhuang YY, Lin QY, Chen Z, Zhao HG, Zhang L, Lin CH. Overexpression of serum lncRNA-ABHD11-AS1 as poor prognosis of patients with papillary thyroid carcinoma. Exp Mol Pathol 2021; 121:104658. [PMID: 34102210 DOI: 10.1016/j.yexmp.2021.104658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
This paper was aimed at exploring the correlation of long non-coding RNA (lncRNA)-ABHD11 Antisense RNA1 (ABHD11-AS1) with the poor prognosis of patients with papillary thyroid carcinoma (PTC) and at investigating its effects on the survival of PTC cells. Serum was respectively collected from 64 PTC patients who were admitted to our hospital (PTC group) and from 50 healthy controls who underwent physical examinations (HC group) both from April 2011 to April 2015. The expression levels of ABHD11-AS1 in the serum were detected, and the values of it for diagnosis and prognosis (5-year follow-ups) were analyzed. The knockdown and overexpression models of ABHD11-AS1 in were constructed to explore the effects of the models on their proliferation, cycles and apoptosis. According to the data, the expression levels of serum ABHD11-AS1 in the PTC patients were remarkably higher than those in the healthy controls, and the area under the curve (AUC) for distinguishing the patients from the controls was 0.920. In the analysis of prognosis, the levels in patients with a poor prognosis were remarkably higher than those in patients with a good prognosis. According to the curves of overall survival rates (OSRs), the high levels of ABHD11-AS1 were remarkably correlated with the poor prognosis (a lower 5-year OSR). COX analysis showed that TNM staging, lymph node metastasis and ABHD11-AS1 were the independent prognostic factors of PTC patients. In the cell experiments, knocking down ABHD11-AS1 remarkably inhibited PTC cells from proliferation, arrested them in G0/G1 phase, and induced their apoptosis, negatively affecting their survival indices. Overexpressing this RNA had positive effects on the survival indices. Taken together, high levels of serum ABHD11-AS1 are related to the poor prognosis of PTC patients, and knocking down its expression can inhibit the survival of PTC cells.
Collapse
Affiliation(s)
- Sen Hou
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, China
| | - Yu-Ying Zhuang
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, China
| | - Qiu-Yu Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, China
| | - Zhen Chen
- Chengdu Xinke Pharmaceutical Co., LTD, Chengdu City 610000, Sichuan Province, China
| | - Hong-Guang Zhao
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, China
| | - Laney Zhang
- Biological sciences at Cornell University (2022'), Ithaca, NY, USA
| | - Cheng-He Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, China.
| |
Collapse
|
16
|
Tan X, Liu Y, Liu Y, Zhang T, Cong S. Dysregulation of long non-coding RNAs and their mechanisms in Huntington's disease. J Neurosci Res 2021; 99:2074-2090. [PMID: 34031910 DOI: 10.1002/jnr.24825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Extensive alterations in gene regulatory networks are a typical characteristic of Huntington's disease (HD); these include alterations in protein-coding genes and poorly understood non-coding RNAs (ncRNAs), which are associated with pathology caused by mutant huntingtin. Long non-coding RNAs (lncRNAs) are an important class of ncRNAs involved in a variety of biological functions, including transcriptional regulation and post-transcriptional modification of many targets, and likely contributed to the pathogenesis of HD. While a number of changes in lncRNAs expression have been observed in HD, little is currently known about their functions. Here, we discuss their possible mechanisms and molecular functions, with a particular focus on their roles in transcriptional regulation. These findings give us a better insight into HD pathogenesis and may provide new targets for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Xiaoping Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yang Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yan Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Taiming Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
17
|
Cheng Y, Wang M, Zhou J, Dong H, Wang S, Xu H. The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer. Genes (Basel) 2021; 12:genes12030440. [PMID: 33808751 PMCID: PMC8003501 DOI: 10.3390/genes12030440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications of eukaryotic RNA. The m6A modification is a dynamic and reversible process, regulated by three kinds of regulator, including m6A methyltransferases, demethylases and m6A-binding proteins, and this modification plays a vital role in many diseases, especially in cancers. Accumulated evidence has proven that this modification has a significant effect on cellular biological functions and cancer progression; however, little is known about the effects of the m6A modification in non-small cell lung cancer (NSCLC). In this review, we summarized how various m6A regulators modulate m6A RNA metabolism and demonstrated the effect of m6A modification on the progression and cellular biological functions of NSCLC. We also discussed how m6A modification affects the treatment, drug resistance, diagnosis and prognosis of NSCLC patients.
Collapse
|
18
|
Xin H, Yan Z, Cao J. Long non-coding RNA ABHD11-AS1 boosts gastric cancer development by regulating miR-361-3p/PDPK1 signalling. J Biochem 2021; 168:465-476. [PMID: 32678870 DOI: 10.1093/jb/mvaa065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/23/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in gastrointestinal malignant tumours. Long non-coding RNAs were widely reported to play a significant role in the regulation of occurrence or development of tumours. Bioinformatics analysis and a wide range of experiments were conducted to explore the expression status, specific function and molecular mechanism of long non-coding RNA ABHD11 antisense RNA 1 (ABHD11-AS1). ABHD11-AS1 knockdown repressed cell proliferation but enhanced cell apoptosis in function. We proved that miR-361-3p directly combines with the 3'wUTR of PDPK2 and ABHD11-AS1 cooperated with miR-361-3p to modulate PDPK2 mRNA and protein levels. Rescue assays confirmed that the miR-361-3p silence reversed the suppressive effect of ABHD11-AS1 deficiency. In summary, ABHD11-AS1 boosts GC development by regulating miR-361-3p/PDPK1 signalling.
Collapse
Affiliation(s)
- Hairong Xin
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Zhifeng Yan
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Jie Cao
- Department of Cancer, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing, Jiangsu 210009, China
| |
Collapse
|
19
|
EZH2-mediated lncRNA ABHD11-AS1 promoter regulates the progression of ovarian cancer by targeting miR-133a-3p. Anticancer Drugs 2021; 32:269-277. [PMID: 33491971 DOI: 10.1097/cad.0000000000001039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-chain noncoding RNAs (lncRNAs) are involved in a wide range of biological and pathological processes in ovarian cancer. The purpose of this study was to investigate the effects of EZH2-mediated ABHD11-AS1 promoter on the pathogenesis of ovarian cancer. The expression levels of EZH2, ABHD11-AS1 and miR-133a-3p were examined in ovarian cancer tissues using reverse transcription-quantitative PCR. Cell proliferation was evaluated using cell counting kit 8 assay, and cell invasion/migration was determined using a Transwell assay. Cell apoptosis was evaluated using flow cytometry. Dual luciferase assay was performed to confirm the interaction between ABHD11-AS1 and miR-133a-3p. The binding site of H3K27me3 on ABHD11-AS1 promoter was confirmed by ChIP. The expression of ABHD11-AS1 was significantly upregulated in ovarian cancer samples, and its levels were closely associated with lymph node metastasis, tumor stage and 3-year survival rate. Furthermore, interference of ABHD11-AS1 suppressed the proliferation, migration and invasion of ovarian cancer cells, while cell apoptosis was promoted. Additionally, miR-133a-3p could be a novel target of ABHD11-AS1, and EZH2-mediated H3K27me3 protein might bind to ABHD11-AS1 promoter directly. Moreover, rescue experiments indicated that the effects caused by ABHD11-AS1 knockdown on the malignant characteristics of ovarian cancer cells were notably enhanced by miR-133a-3p mimics, whereas the influences on cell growth and metastasis induced by overexpressed ABHD11-AS1 were abrogated by the restoration of miR-133a-3p expression. In summary, EZH2-mediated enrichment of H3K27me3 on ABHD11-AS1 promoter could regulate the progression of ovarian cancer via miR-133a-3p. Therefore, EZH2/ABHD11-AS1/miR-133a-3p axis might be a putative candidate for targeted treatment of ovarian cancer.
Collapse
|
20
|
Lu X, Yang C, Hu Y, Xu J, Shi C, Rao J, Yu W, Cheng F. Upregulation of miR-1254 promotes Hepatocellular Carcinoma Cell Proliferation, Migration, and Invasion via Inactivation of the Hippo-YAP signaling pathway by decreasing PAX5. J Cancer 2021; 12:771-789. [PMID: 33403035 PMCID: PMC7778534 DOI: 10.7150/jca.49680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that microRNAs (miRNAs) affect the progression of hepatocellular carcinoma (HCC). However, the exact function and mechanism of miR-1254 in HCC remains unclear. This study explored the effects of miR-1254 on the biological behavior of HCC cells and determined the underlying mechanism. RT-qPCR was used to detect the expression of miR-1254. Gain- or loss-of-function assays determined if miR-1254 affected the biological function of HCC cells in vitro. Dual luciferase reporter assays confirmed the target gene of miR-1254. Tumor xenografts in mice were used to explore the effects of miR-1254 on tumorigenesis and metastasis of HCC. miR-1254 was upregulated in HCC tissues and cell lines and linked to larger tumor size, aggressive vascular invasion and higher Edmondson grade. Lentiviral-based overexpression and knockdown experiments indicated that miR-1254 promoted proliferation, migration, invasion, and the epithelial-mesenchymal transition of HCC cells. The paired box gene 5 (PAX5) was downregulated in HCC tissues, negatively correlated with miR-1254 expression, and confirmed to be a direct target of miR-1254. Restoration of PAX5 reversed the effects of miR-1254 on the biological behavior of HCC cells. Advanced mechanism studies suggested that PAX5 might mediate miR-1254 by regulating the Hippo signaling pathway. Tumor xenografts in mice confirmed that miR-1254 promoted tumorigenesis and metastasis, and led to poor survival. In conclusion, miR-1254 promoted proliferation, migration, and invasion of HCC cells via decreasing Hippo signaling through targeting PAX5 in vitro and in vivo. This miRNA might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Xu Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Chao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Yuanchang Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Jian Xu
- Department of General Surgery, Changzhou Jintan District People's Hospital; Changzhou 213200, Jiangsu Province, China
| | - Chengyu Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Weixin Yu
- Department of General Surgery, Changzhou Jintan District People's Hospital; Changzhou 213200, Jiangsu Province, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
21
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
22
|
Lei R, Feng L, Hong D. ELFN1-AS1 accelerates the proliferation and migration of colorectal cancer via regulation of miR-4644/TRIM44 axis. Cancer Biomark 2020; 27:433-443. [PMID: 31929141 DOI: 10.3233/cbm-190559] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Faced with the increasing colorectal cancer (CRC) cases, the interrogation of pivotal molecules in CRC appears to be vitally important. Long non-coding RNAs (lncRNAs) are well-known regulators of gene expression at transcriptional, post-transcriptional or epigenetic level, among which the competing endogenous RNA (ceRNA) network is a common way that lncRNAs exert their properties. The current study aimed to provide a new insight into improving the outcomes of CRC patients. Our study detected that ELFN1-AS1 expression was elevated in CRC tissues and cells, and ELFN1-AS1 upregulation was correlated with poor prognosis of CRC sufferers. Besides, it was viewed that ELFN1-AS1 knockdown impeded the proliferation and migration abilities as well as activated the apoptosis ability of CRC cells. In subsequence, mechanism assays also displayed that ELFN1-AS1 targeted miR-4644 to augment TRIM44 level. Finally, rescue experiments confirmed that TRIM44 took part in the ELFN1-AS1-medatied promotional influences on CRC cells proliferation and migration. In conclusion, ELFN1-AS1 exerted pro-proliferation, anti-apoptosis and pro-migration functions on CRC cells by acting as a sponge of miR-4644 to increase TRIM44 expression at mRNA and protein level, providing an additional molecule responsible for the carcinogenesis and progression for CRC.
Collapse
Affiliation(s)
- Ren Lei
- Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Liuchun Feng
- Respiratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Deng Hong
- Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
23
|
Liu B, Wang W, Sun S, Ding H, Lan L, Li X, Han S. Knockdown of lncRNA ABHD11-AS1 Suppresses the Tumorigenesis of Pancreatic Cancer via Sponging miR-1231. Onco Targets Ther 2020; 13:11347-11358. [PMID: 33177842 PMCID: PMC7652219 DOI: 10.2147/ott.s259598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic cancer ranks first among the most aggressive malignancies. Long non-coding RNA (LncRNA) ABHD11-AS1 is known to be upregulated in pancreatic cancer. However, the mechanism by which ABHD11-AS1 mediates the tumorigenesis of pancreatic cancer remains unclear. Methods Gene and protein expressions in pancreatic cancer cells were detected by qRT-PCR and Western blot, respectively. Cell viability was measured by CCK-8 assay. Cell apoptosis and cycle were tested by flow cytometry. In addition, cell migration and invasion were tested by wound healing and transwell assay, respectively. The correlation between ABHD11-AS1, miR-1231 and cyclin E1 was confirmed by dual-luciferase report and RNA pull-down. Finally, xenograft mice model was established to investigate the role of ABDH-AS1 in pancreatic cancer in vivo. Results ABHD11-AS1 was found to be negatively correlated with the survival rate of patients with pancreatic cancer. ABHD11-AS1 silencing significantly inhibited the proliferation and induced the apoptosis of pancreatic cancer cells. Additionally, knockdown of ABHD11-AS1 greatly inhibited the migration and invasion of pancreatic cancer cells. Meanwhile, ABHD11-AS1 bound to miR-1231 and cyclin E1 was found to be the target of miR-1231. Moreover, ABHD11-AS1 knockdown-induced G1 arrest in pancreatic cancer cells was reversed by miR-1231 antagomir. Finally, knockdown of ABHD11-AS1 obviously inhibited the tumor growth of pancreatic cancer in vivo. Conclusion ABHD11-AS1 silencing significantly inhibited the tumorigenesis of pancreatic cancer in vitro and in vivo. Thus, ABHD11-AS1 may serve as a potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Bowei Liu
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Wei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, People's Republic of China
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Ling Lan
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiuling Li
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Shuangyin Han
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
24
|
Oh S, Song H, Freeman WM, Shin S, Janknecht R. Cooperation between ETS transcription factor ETV1 and histone demethylase JMJD1A in colorectal cancer. Int J Oncol 2020; 57:1319-1332. [PMID: 33174020 PMCID: PMC7646594 DOI: 10.3892/ijo.2020.5133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
ETS variant 1 (ETV1) is an oncogenic transcription factor. However, its role in colorectal cancer has remained understudied. The present study demonstrated that ETV1 downregulation led to reduced HCT116 colorectal cancer cell growth and clonogenic activity. Furthermore, the ETV1 mRNA levels were enhanced in colorectal tumors and were associated with disease severity. In addition, ETV1 directly bound to Jumonji C domain-containing (JMJD) 1A, a histone demethylase known to promote colon cancer. ETV1 and JMJD1A, but not a catalytically inactive mutant thereof, cooperated in inducing the matrix metalloproteinase (MMP)1 gene promoter that was similar to the cooperation between ETV1 and another histone demethylase, JMJD2A. RNA-sequencing revealed multiple potential ETV1 target genes in HCT116 cells, including the FOXQ1 and TBX6 transcription factor genes. Moreover, JMJD1A co-regulated FOXQ1 and other ETV1 target genes, but not TBX6, whereas JMJD2A downregulation had no impact on FOXQ1 as well as TBX6 transcription. Accordingly, the FOXQ1 gene promoter was stimulated by ETV1 and JMJD1A in a cooperative manner, and both ETV1 and JMJD1A bound to the FOXQ1 promoter. Notably, the overexpression of FOXQ1 partially reversed the growth inhibitory effects of ETV1 ablation on HCT116 cells, whereas TBX6 impaired HCT116 cell growth and may thereby dampen the oncogenic activity of ETV1. The latter also revealed for the first time, to the best of our knowledge, a potential tumor suppressive function of TBX6. Taken together, the present study uncovered a ETV1/JMJD1A-FOXQ1 axis that may drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hoogeun Song
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Shang T, Zhou X, Chen W. LINC01123 Promotes Progression of Colorectal Cancer via miR-625-5p/LASP1 Axis. Cancer Biother Radiopharm 2020; 36:765-773. [PMID: 32423238 DOI: 10.1089/cbr.2020.3740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Evidence from previous investigations points to a rising trend in the incidence of colorectal cancer (CRC) worldwide. The mortality resulting from this cancer is high. Unlike nonsmall cell lung cancer for which LINC01123 has been investigated, there are few reports on how this long noncoding RNA (lncRNA) regulates CRC. Materials and Methods: The authors evaluated the expression of LINC01123 in CRC tissues by quantitative real-time polymerase chain reaction. Its impact on cancer cell behavior was analyzed with cell counting kit-8 (CCK-8), colony formation, and Transwell invasion assays. To establish the mechanisms of LINC01123 in CRC they carried out RIP and luciferase reporter assays. Results: The results show that LINC01123 expression is abnormally elevated in CRC tissues and cell lines. High LINC01123 expression closely correlates with poor prognosis, advanced TNM stage, and lymph-node metastasis. The authors also show that knockdown of LINC01123 inhibits proliferation and invasion in CRC cells. In mechanism, it is revealed that LINC01123 may function as competitive endogenous RNA (ceRNA) against miR-625-5p to promote LIM and SH3 protein 1 (LASP1) expression. Conclusions: The data indicate that high LINC01123 exerts its oncogenic roles by regulating the miR-625-5p/LASP1 axis in CRC progression.
Collapse
Affiliation(s)
- Tao Shang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Colorectal Surgery, Zhejiang Provincial Hospital of Chinese Traditional Medicine, Hangzhou, China
| | - Xiukou Zhou
- Department of Colorectal Surgery, Zhejiang Provincial Hospital of Chinese Traditional Medicine, Hangzhou, China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Wang AH, Jin CH, Cui GY, Li HY, Wang Y, Yu JJ, Wang RF, Tian XY. MIR210HG promotes cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in cervical cancer. Aging (Albany NY) 2020; 12:3205-3217. [PMID: 32087604 PMCID: PMC7066889 DOI: 10.18632/aging.102799] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/12/2020] [Indexed: 01/31/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the progression of cervical cancer (CC). However, the roles and underlying molecular mechanisms of lncRNAs in CC remain unclear. In the current study, we discovered a new lncRNA MIR210HG which was upregulated in CC tissues through microarray. The upregulation of MIR210HG was associated with advanced FIGO stage, metastasis, and poor prognosis in CC patients. Function assays showed that MIR210HG inhibition significantly suppressed the proliferation, invasion, and epithelial-mesenchymal transition (EMT) processes in CC and reduced tumor growth in vivo. Mechanistically, we identified that MIR210HG might serve as a competing endogenous RNA (ceRNA) of miR-503-5p to relieve the repressive effect of miR-503-5p on TRAF4 expression in CC cells. In conclusion, we demonstrated that MIR210HG promoted CC progression through regulating the MIR210HG/miR-503-5p/TRAF4 axis, indicating that MIR210HG might act as a novel insight into CC treatment.
Collapse
Affiliation(s)
- Ai-Hong Wang
- Department of Gynecologic and Obstetrics, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.,Department of Gynecologic and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Can-Hui Jin
- Department of Gastrointestinal Tumor Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan,China
| | - Guan-Yi Cui
- University Hospital, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Hong-Yu Li
- Department of Gynecologic and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yin Wang
- Department of Gynecologic and Obstetrics, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Juan-Juan Yu
- Department of Gynecologic and Obstetrics, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Rui-Fang Wang
- Department of Gynecologic and Obstetrics, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xiao-Yu Tian
- Department of Gynecologic and Obstetrics, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| |
Collapse
|
27
|
Peng X, Wei F, Hu X. Long noncoding RNA DLGAP1-AS1 promotes cell proliferation in hepatocellular carcinoma via sequestering miR-486-5p. J Cell Biochem 2019; 121:1953-1962. [PMID: 31633236 DOI: 10.1002/jcb.29430] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is most prevalent tumor in liver and one of the most fatal cancers in the world. Long noncoding RNAs (lncRNAs) have been accepted as important regulators in carcinomas. But there are still many lncRNAs including DLGAP1-AS1 unannotated in HCC. First of all, GEPIA suggested that DLGAP1-AS1 presented high expression in HCC tissue samples relative to the normal tissues. Besides, overexpression of DLGAP1-AS1 was also proved in HCC cell lines. Moreover, DLGAP1-AS1 knockdown efficiently suppressed cell proliferation in HCC. Interestingly, miR-486-5p was predicted and validated to interact with DLGAP1-AS1, while the level of miR-486-5p was significantly increased In HCC after DLGAP1-AS1 knockdown. Moreover, we uncovered that ectopic expression of miR-486-5p induced suppression on HCC cell proliferation and that miR-486-5p inhibition offset the effect of DLGAP1-AS1 silence on HCC cell proliferation and apoptosis. Furthermore, H3F3B was identified as target of miR-486-5p and was therefore positively regulated by DLGAP1-AS1 in HCC. Of note, H3F3B upregulation partly revived the declined cell proliferative capacity in response to DLGAP1-AS1 knockdown. To conclude, DLGAP1-AS1 exerted its oncogenic role in HCC via miR-486-5p/H3F3B axis. Our new findings provided novel theoretical basis for discovery of therapeutic targets of HCC.
Collapse
Affiliation(s)
- Xiaochun Peng
- Department of Interventional Radiology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Fengmei Wei
- Department of Cancer Center, Shanxian Central Hospital, Heze City, Shandong Province, China
| | - Xiaoli Hu
- Department of Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
| |
Collapse
|