1
|
Agrawal AC, Saini D, Nanda R. Serum Osteopontin as a Potential Marker for Metastasis and Prognosis in Primary Osteogenic Sarcoma: A Systematic Review. Cureus 2024; 16:e60544. [PMID: 38887353 PMCID: PMC11181102 DOI: 10.7759/cureus.60544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, poses significant challenges in diagnosis and prognosis. It is a painful medical burden, and treating it is still a difficult issue. Osteopontin (OPN), a multifunctional extracellular matrix protein, has emerged as a promising biomarker in this context. This systematic review explores the role of OPN as a diagnostic and prognostic marker in OS, highlighting its potential in enhancing early detection, monitoring disease progression, and predicting patient outcomes. Various studies have demonstrated elevated levels of OPN in OS patients, correlating with tumor aggressiveness, metastatic potential, and poor prognosis. In addition, OPN's involvement in tumor microenvironment regulation and metastatic processes underscores its clinical relevance as a biomarker. For this systematic review, comprehensive literature searches were conducted in the PubMed databases for research published between the database's establishment and November 11, 2022. Out of the nine studies that were available for analysis, a higher level of OPN in primary osteogenic sarcoma patients indicates a poorer prognosis and higher incidence of metastasis. OS has not shown commensurable progress with concerns to treatment approches and survical outcomes. However, the discovery of a biological marker that can predict metastasis and severity will be a groundbreaking development for advancements in OS diagnosis and treatment. Therefore, understanding the intricate interplay between OPN and OS pathogenesis holds promise for improving patient management and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alok C Agrawal
- Orthopedics, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Dikshant Saini
- Orthopedic Surgery, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Rachita Nanda
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| |
Collapse
|
2
|
Li YB, Zhang HQ, Lu YP, Yang XJ, Wang GD, Wang YY, Tang KL, Huang SY, Xiao GY. Construction of Magnesium Phosphate Chemical Conversion Coatings with Different Microstructures on Titanium to Enhance Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21672-21688. [PMID: 38637290 DOI: 10.1021/acsami.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.
Collapse
Affiliation(s)
- Yi-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Huan-Qing Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao-Juan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Guan-Duo Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-le Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Sheng-Yun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
3
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Liu Y, Yu L, Chen J, Li S, Wei Z, Guo W. Exploring the Osteogenic Potential of Zinc-Doped Magnesium Phosphate Cement (ZMPC): A Novel Material for Orthopedic Bone Defect Repair. Biomedicines 2024; 12:344. [PMID: 38397946 PMCID: PMC10886858 DOI: 10.3390/biomedicines12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
In orthopedics, the repair of bone defects remains challenging. In previous research reports, magnesium phosphate cements (MPCs) were widely used because of their excellent mechanical properties, which have been widely used in the field of orthopedic medicine. We built a new k-struvite (MPC) cement obtained from zinc oxide (ZnO) and assessed its osteogenic properties. Zinc-doped magnesium phosphate cement (ZMPC) is a novel material with good biocompatibility and degradability. This article summarizes the preparation method, physicochemical properties, and biological properties of ZMPC through research on this material. The results show that ZMPC has the same strength and toughness (25.3 ± 1.73 MPa to 20.18 ± 2.11 MPa), that meet the requirements of bone repair. Furthermore, the material can gradually degrade (12.27% ± 1.11% in 28 days) and promote osteogenic differentiation (relative protein expression level increased 2-3 times) of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. In addition, in vivo confirmation revealed increased bone regeneration in a rat calvarial defect model compared with MPC alone. Therefore, ZMPC has broad application prospects and is expected to be an important repair material in the field of orthopedic medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
5
|
Kathiresan N, Selvaraj C, Pandian S, Subbaraj GK, Alothaim AS, Safi SZ, Kulathaivel L. Proteomics and genomics insights on malignant osteosarcoma. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:275-300. [PMID: 38220428 DOI: 10.1016/bs.apcsb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-β, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.
Collapse
Affiliation(s)
- Nachammai Kathiresan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Computational and Structural Research in Drug Design Lab (CSRDD), Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, India.
| | - Sangavi Pandian
- Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Old Mahabalipuram Road (OMR), Kelambakkam
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Langeswaran Kulathaivel
- Department of Biomedical Science, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
6
|
Yang L, Zhu Z, Zheng Y, Yang J, Liu Y, Shen T, Li M, He H, Huang H, Dai W. RAB6A functions as a critical modulator of the stem-like subsets in cholangiocarcinoma. Mol Carcinog 2023; 62:1460-1473. [PMID: 37278569 DOI: 10.1002/mc.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
RAB6A is a member of RAB GTPase family and plays an important role in the targeted transport of neurotrophic receptors and inflammatory cytokines. RAB6A-mediated secretory pathway is involved in many physiological and pathological processes. Defects in RAB6A-mediated secretory pathway may lead to the development of many diseases, including cancer. However, its role in cholangiocarcinoma (CCA) has not yet been revealed. We explored the regulatory role of RAB6A in the stem-like subsets of CCA. We showed that RAB6A knockdown (KD) impedes cancer stem cells (CSCs) properties and epithelial-mesenchymal transition in vitro and that suppression of RAB6A inhibits tumor growth in vivo. We screened target cargos of RAB6A in CCA cells and identified a extracellular matrix component as the target cargo. RAB6A binds directly to OPN, and RAB6A KD suppressed OPN secretion and inhibited the interaction between OPN and αV integrin receptor. Moreover, RAB6A KD inhibited the AKT signaling pathway, which is a downstream effector of the integrin receptor signaling. In addition, shRNA targeting OPN blocked endogenous expression of OPN and consequently weakened CSCs properties in RAB6A-formed spheres. Similarly, inhibitor of AKT signaling, MK2206 also impedes oncogenic function of RAB6A in the stem-like subsets of CCA cells. In conclusion, our findings showed that RAB6A sustains CSCs phenotype maintenance by modulating the secretion of OPN and consequentially activating the downstream AKT signaling pathway. Targeting the RAB6A/OPN axis may be an effective strategy for CCA therapy.
Collapse
Affiliation(s)
- Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingyun Shen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
8
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Xie L, Wang J, Song L, Jiang T, Yan F. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct Target Ther 2023; 8:182. [PMID: 37150786 PMCID: PMC10164743 DOI: 10.1038/s41392-023-01398-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Gene delivery is the process by which foreign DNA is transferred to host cells, released from intracellular vesicles, and transported to the nuclei for transcription. This process is frequently inefficient and difficult to control spatiotemporally. We developed a gene delivery strategy that uses ultrasound to directly deliver plasmid DNA into nuclei via gas vesicles (GVs)-based intracellular cavitation. pDNA-binding GVs can be taken up by cells and cause intracellular cavitation when exposed to acoustic irradiation and delivering their pDNA payloads into nuclei. Importantly, GVs can remain stable in the cytoplasm in the absence of acoustic irradiation, allowing for temporally controlled nuclear gene delivery. We were able to achieve spatiotemporal control of E-cadherin nuclear gene delivery in this manner, demonstrating its efficacy in tumor invasion and metastasis inhibition. Interestingly, we discovered that nuclear gene delivery of E-cadherin during the G2/M phase of the cell cycle in C6 tumor cells inhibited tumor invasion and metastasis more effectively than during the G1 and S phases. The gene delivery of E-cadherin at the G2/M phase resulted in significantly lower expression of Fam50a, which reduced Fam50a/Runx2 interaction and led to reduced transactivation of MMP13, an important factor for epithelial-mesenchymal transition, as observed in a molecular mechanism assay. Thus, using remote acoustic control of intracellular cavitation of pDNA-GVs, we developed a high spatiotemporally controllable gene delivery strategy and achieved stronger tumor invasion and metastasis inhibition effects by delivering the E-cadherin gene at the G2/M phase.
Collapse
Affiliation(s)
- Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jieqiong Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tianan Jiang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Si W, Kan C, Zhang L, Li F. Role of RUNX2 in breast cancer development and drug resistance (Review). Oncol Lett 2023; 25:176. [PMID: 37033103 PMCID: PMC10079821 DOI: 10.3892/ol.2023.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Breast cancer is the most common malignancy and ranks second among the causes of tumor-associated death in females. The recurrence and drug resistance of breast cancer are intractable due to the presence of breast cancer stem cells (BCSCs), which are adequate to initiate tumor formation and refractory to conventional remedies. Runt-related transcription factor 2 (RUNX2), a pivotal transcription factor in mammary gland and bone development, has also been related to metastatic cancer and BCSCs. State-of-the-art research has indicated the retention of RUNX2 expression in a more invasive subtype of breast cancer, and in particular, triple-negative breast cancer development and drug resistance are associated with estrogen receptor signaling pathways. The present review mainly focused on the latest updates on RUNX2 in BCSCs and their roles in breast cancer progression and drug resistance, providing insight that may aid the development of RUNX2-based diagnostics and treatments for breast cancer in clinical practice.
Collapse
Affiliation(s)
- Wentao Si
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Feifei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
11
|
Chan NT, Lee MS, Wang Y, Galipeau J, Li WJ, Xu W. CTR9 drives osteochondral lineage differentiation of human mesenchymal stem cells via epigenetic regulation of BMP-2 signaling. SCIENCE ADVANCES 2022; 8:eadc9222. [PMID: 36383652 PMCID: PMC9668309 DOI: 10.1126/sciadv.adc9222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/19/2022] [Indexed: 05/06/2023]
Abstract
Cell fate determination of human mesenchymal stem/stromal cells (hMSCs) is precisely regulated by lineage-specific transcription factors and epigenetic enzymes. We found that CTR9, a key scaffold subunit of polymerase-associated factor complex (PAFc), selectively regulates hMSC differentiation to osteoblasts and chondrocytes, but not to adipocytes. An in vivo ectopic osteogenesis assay confirmed the essentiality of CTR9 in hMSC-derived bone formation. CTR9 counteracts the activity of Enhancer Of Zeste 2 (EZH2), the epigenetic enzyme that deposits H3K27me3, in hMSCs. Accordingly, CTR9 knockdown (KD) hMSCs gain H3K27me3 mark, and the osteogenic differentiation defects of CTR9 KD hMSCs can be partially rescued by treatment with EZH2 inhibitors. Transcriptome analyses identified bone morphology protein-2 (BMP-2) as a downstream effector of CTR9. BMP-2 secretion, membrane anchorage, and the BMP-SMAD pathway were impaired in CTR9 KD MSCs, and the effects were rescued by BMP-2 supplementation. This study uncovers an epigenetic mechanism engaging the CTR9-H3K27me3-BMP-2 axis to regulate the osteochondral lineage differentiation of hMSCs.
Collapse
Affiliation(s)
- Ngai Ting Chan
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53706, USA
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53706, USA
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53706, USA
| |
Collapse
|
12
|
Dong X, Wang Y, Zhuang H, An G. Hydroxygenkwanin suppresses proliferation, invasion and migration of osteosarcoma cells via the miR‑320a/SOX9 axis. Mol Med Rep 2022; 26:299. [PMID: 35929504 PMCID: PMC9434992 DOI: 10.3892/mmr.2022.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hydroxygenkwanin (HGK) has an anticancer effect in a variety of tumors, but its role in osteosarcoma has not been explored. The purpose of the present study was to investigate the therapeutic effect of HGK on osteosarcoma and its specific molecular mechanism. Osteosarcoma cells (MG-63 and U2OS) treated with various concentrations of HGK were assigned to the treatment group. MTT, clone formation, wound healing and Transwell assays were performed to assess the viability, proliferation, migration, and invasion of MG-63 and U2OS cells. RT-qPCR was conducted to quantify the expression levels of of microRNA (miR)-320a and SRY-box transcription factor 9 (SOX9) in MG-63 and U2OS cells. The binding sites of miR-320a and SOX9 were predicted by starBase database, and verified using the dual-luciferase reporter assay. The expression levels of SOX9 and EMT-related proteins (N-cadherin, E-cadherin and vimentin) were detected by western blot analysis. HGK inhibited cell proliferation, migration, invasion, but promoted the expression of miR-320a in MG-63 and U2OS cells. Downregulation of miR-320a reversed the effects of HGK on proliferation, migration and invasion of MG-63 and U2OS cells, while upregulation of miR-320a had the opposite effect. HGK inhibited the expression of SOX9 by promoting the expression of miR-320a. Upregulation of SOX9 could partially reverse miR-320a-induced migration and invasion of MG-63 and U2OS cells. In addition, upregulation of miR-320a promoted E-cadherin expression and inhibited the expression of N-cadherin and vimentin, and the effect of miR-320a was also reversed by SOX9. In conclusion, HGK inhibited proliferation, migration and invasion of MG-63 and U2OS cells through the miR-320a/SOX9 axis.
Collapse
Affiliation(s)
- Xinli Dong
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Yanhua Wang
- Department of Nursing, Traditional Chinese Medicine Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Hua Zhuang
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Binzhou, Binzhou, Shandong 256600, P.R. China
| | - Gang An
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
13
|
Pan-cancer landscape of the RUNX protein family reveals their potential as carcinogenic biomarkers and the mechanisms underlying their action. J Transl Int Med 2022; 10:156-174. [PMID: 35959452 PMCID: PMC9328034 DOI: 10.2478/jtim-2022-0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background
The RUNX family of transcription factors plays an important regulatory role in tumor development. Although the importance of RUNX in certain cancer types is well known, the pan-cancer landscape remains unclear.
Materials and Methods
Data from The Cancer Genome Atlas (TCGA) provides a pan-cancer overview of the RUNX genes. Hence, herein, we performed a pan-cancer analysis of abnormal RUNX expression and deciphered the potential regulatory mechanism. Specifically, we used TCGA multi-omics data combined with multiple online tools to analyze transcripts, genetic alterations, DNA methylation, clinical prognoses, miRNA networks, and potential target genes.
Results
RUNX genes are consistently overexpressed in esophageal, gastric, pancreatic, and pan-renal cancers. The total protein expression of RUNX1 in lung adenocarcinoma, kidney renal clear cell carcinoma (KIRC), and uterine corpus endometrial carcinoma (UCEC) is consistent with the mRNA expression results. Moreover, increased phosphorylation on the T14 and T18 residues of RUNX1 may represent potential pathogenic factors. The RUNX genes are significantly associated with survival in pan-renal cancer, brain lower-grade glioma, and uveal melanoma. Meanwhile, various mutations and posttranscriptional changes, including the RUNX1 D96 mutation in invasive breast carcinoma, the co-occurrence of RUNX gene mutations in UCEC, and methylation changes in the RUNX2 promoter in KIRC, may be associated with cancer development. Finally, analysis of epigenetic regulator co-expression, miRNA networks, and target genes revealed the carcinogenicity, abnormal expression, and direct regulation of RUNX genes.
Conclusions
We successfully analyzed the pan-cancer abnormal expression and prognostic value of RUNX genes, thereby providing potential biomarkers for various cancers. Further, mutations revealed via genetic alteration analysis may serve as a basis for personalized patient therapies.
Collapse
|
14
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
15
|
Zhao H, Chen Y, Shen P, Gong L. Prognostic value and immune characteristics of RUNX gene family in human cancers: a pan-cancer analysis. Aging (Albany NY) 2022; 14:4014-4035. [PMID: 35522574 PMCID: PMC9134966 DOI: 10.18632/aging.204065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Background: Runt-related transcription factors (RUNX) are involved in numerous fundamental biological processes and play crucial parts in tumorigenesis and metastasis both directly and indirectly. However, the pan-cancer evidence of the RUNX gene family is not available. Methods: In this study, we analyzed the potential association between RUNX gene family expression and patient’s prognosis, immune cell infiltration, drug response, and genetic mutation data across different types of tumors using based on The Cancer Genome Atlas, Gene Expression Omnibus, and Oncomine database. Results: The results showed that the expression of the RUNX gene family varied among different cancer types, revealing its heterogeneity in cancers and that expression of RUNX2 was lower than that of RUNX1 and RUNX3 across all cancer types. RUNX gene family gene expression was related to prognosis in several cancers. Furthermore, our study revealed a clear association between RUNX gene family expression and ESTIMATE score, RNA stemness, and DNA stemness scores. Compared with RUNX1 and RUNX2, RUNX3 showed relatively low levels of genetic alterations. RUNX gene family genes had clear associations with immune infiltrate subtypes, and their expression was positively related to immune checkpoint genes and drug sensitivity in most cases. Two immunotherapy cohorts confirm that the expression of RUNX was correlated with the clinical response of immunotherapy. Conclusions: These findings will help to elucidate the potential oncogenic roles of RUNX gene family genes in different types of cancer and it can function as a prognostic marker in various malignant tumors.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai 200000, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, Shanghai, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Peijun Shen
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai 200000, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, Shanghai, China
| |
Collapse
|
16
|
Shao Z, Bi S. Endocrine regulation and metabolic mechanisms of osteopontin in the development and progression of osteosarcoma, metastasis and prognosis. Front Endocrinol (Lausanne) 2022; 13:1100063. [PMID: 36714568 PMCID: PMC9880040 DOI: 10.3389/fendo.2022.1100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumor, occurring in adolescents and patients over 60. It has a bimodal onset and a poor prognosis, and its development has not yet been fully explained. Osteopontin (OPN) is a high protein consisting of 314 amino acid residues with a negative charge and is involved in many biological activities. OPN is not only an essential part of the regulation of the nervous system and endocrine metabolism of skeletal cells. Still, it is also involved in several other important biological activities, such as the division, transformation, and proliferation of skeletal cells and their associated cells, such as bone tumor cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoblasts, and osteoclasts. Osteoblasts and osteocytes. Recent studies have shown a strong correlation between OPN and the development and progression of many skeletal diseases, such as osteosarcoma and rheumatoid arthritis. This review aims to understand the mechanisms and advances in the role of OPN as a factor in the development, progression, metastasis, and prognosis of osteosarcoma in an attempt to provide a comprehensive summary of the mechanisms by which OPN regulates osteosarcoma progression and in the hope of contributing to the advancement of osteosarcoma research and clinical treatment.
Collapse
|
17
|
Xu C, Wang M, Zandieh-Doulabi B, Sun W, Wei L, Liu Y. To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Front Cell Dev Biol 2021; 9:740783. [PMID: 34869325 PMCID: PMC8635864 DOI: 10.3389/fcell.2021.740783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.
Collapse
Affiliation(s)
- Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Li M, Cheng WT, Li H, Zhang Z, Lu XL, Deng SS, Li J, Yang CH. Comprehensive Analysis of Key mRNAs and lncRNAs in Osteosarcoma Response to Preoperative Chemotherapy with Prognostic Values. Curr Med Sci 2021; 41:916-929. [PMID: 34671904 DOI: 10.1007/s11596-021-2430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/29/2020] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Osteosarcoma is one of the most common types of bone sarcoma with a poor prognosis. However, identifying the predictive factors that contribute to the response to neoadjuvant chemotherapy remains a significant challenge. METHODS A public data series (GSE87437) was downloaded to identify differentially expressed genes (DEGs) and differentially expressed lncRNAs (DElncRNAs) between osteosarcoma patients that do and do not respond to preoperative chemotherapy. Subsequently, functional analysis of the transcriptome expression profile, regulatory networks of DEGs and DElncRNAs, competing endogenous RNAs (ceRNA) and protein-protein interaction networks were performed. Furthermore, the function, pathway, and survival analysis of hub genes was performed and drug and disease relationship prediction of DElncRNA was carried out. RESULTS A total of 626 DEGs, 26 DElncRNAs, and 18 hub genes were identified. However, only one gene and two lncRNAs were found to be suitable as candidate gene and lncRNAs respectively. CONCLUSION The DEGs, hub genes, candidate gene, and candidate lncRNAs screened out in this context were considered as potential biomarkers for the response to neoadjuvant chemotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Ting Cheng
- Oncology Department, Wuhan No.1 Hospital, Wuhan, 430030, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Li Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-Si Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jian Li
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, D-53127, Germany.
| | - Cai-Hong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
Liang S, Li Y, Wang B. The cancer-related transcription factor Runx2 combined with osteopontin: a novel prognostic biomarker in resected osteosarcoma. Int J Clin Oncol 2021; 26:2347-2354. [PMID: 34546483 DOI: 10.1007/s10147-021-02025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Osteosarcoma is the most common primary bone cancer in children and young adults. Recent experimental evidence has indicated that Runx2/OPN axis play important roles in the metastasis of osteosarcoma cells. The present study aimed to explore their relationship and prognostic significance in surgically resected osteosarcoma. METHODS The expression of runt-related transcription factor2(Runx2) and osteopontin (OPN) in clinical specimens from 105 osteosarcoma patients were detected by immunohistochemistry. The correlations between Runx2, OPN, and clinicopathologic data were analyzed by Chi-square (χ2) tests. The prognostic values were determined by univariate and multivariate survival analysis. The accuracy of oncologic outcome prediction was evaluated by receiver-operating characteristics curves. RESULTS The results showed there is a significant positive correlation between Runx2 and OPN expression at protein levels (P = 0.015). Runx2 and OPN were both independent predictors for overall survival and metastasis-free survival. When Runx2 and OPN were taken into consideration together, the predictive range was extended and the sensitivity was improved, and more significant and better biomarkers for osteosarcoma metastasis and survival. CONCLUSIONS These results suggest that a combined Runx2/OPN expression could be a valuable independent predictor of tumor metastasis and survival in osteosarcoma patients.
Collapse
Affiliation(s)
- Shoulei Liang
- Department of Bone Disease, The Second Hospital of Tangshan, No.21, Jianshe North Road, Tangshan, 063000, China
| | - Yong Li
- Department of Bone Disease, The Second Hospital of Tangshan, No.21, Jianshe North Road, Tangshan, 063000, China
| | - Baocang Wang
- Department of Bone Disease, The Second Hospital of Tangshan, No.21, Jianshe North Road, Tangshan, 063000, China.
| |
Collapse
|
20
|
Ni L, Yuan C. The Pathogenic Potential of RUNX2. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Sari AS, Demirçay E, Öztürk A, Terzi A, Karaöz E. The promising effects of BMP2 transfected mesenchymal stem cells on human osteosarcoma. ACTA ACUST UNITED AC 2021; 45:301-313. [PMID: 34377054 PMCID: PMC8313938 DOI: 10.3906/biy-2101-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
Selective targeting of transfected mesenchymal stem cells (MSCs) carrying specific antioncogenes to the tumor was suggested as a treatment option. Bone morphogenetic protein-2 (BMP2) was shown to inhibit the proliferation and aggressiveness of osteosarcoma (OS) cells. Here, we aimed to assess the homing efficiency of intraperitoneally administered hMSCs transfected with
BMP2
to the tumoral site and their effects on OS using an orthotopic xenograft murine model. Orthotopic xenograft murine model of OS in six-week-old female NOD/SCID mice using 143B cells was established. hMSCs transfected with
BMP2
(BMP2+hMSC) were used. In vivo experiments performed on four groups of mice that received no treatment, or intraperitoneally administered BMP2, hMSCs, and BMP2+hMSCs. Histopathological and immunohistochemical studies were used to evaluate the pathological identification and to assess the dimensions and necrotic foci of the tumor, the features of lung metastases, and immunostaining against p27, Ki-67, and caspase-3 antibodies. The osteogenic differentiation markers BMP2, BMP4, COL1A1, OPN, OCN and PF4 evaluated using RT-PCR. The tumor dimensions in the hMSCs group were significantly higher than those of the remaining groups (p < 0.01). The number of metastatic foci in the BMP2+hMSCs group was significantly lower than those of the other groups (p < 0.01). The current results showed that the intraperitoneal route could be efficiently used for targeting hMSCs to the tumoral tissues for effective BMP2 delivery. In this study, the effects of BMP2 transfected hMSCs on human OS and metastasis were promising for achieving osteogenic differentiation and reduced metastatic process.
Collapse
Affiliation(s)
- Ahmet Sinan Sari
- Department of Orthopedics and Traumatology, Faculty of Medicine, Başkent University, Ankara Training and Research Hospital, Ankara Turkey
| | - Emre Demirçay
- Department of Orthopedics and Traumatology, Faculty of Medicine, Başkent University, Istanbul Training and Research Hospital, İstanbul Turkey
| | - Ahmet Öztürk
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli Turkey
| | - Ayşen Terzi
- Department of Pathology, Faculty of Medicine, Başkent University, Ankara Training and Research Hospital, Ankara Turkey
| | - Erdal Karaöz
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli Turkey.,Istinye University, School of Medicine, Department of Histology and Embryology, İstanbul Turkey.,Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, İstanbul Turkey.,Liv Hospital, Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul Turkey
| |
Collapse
|
22
|
Farooqi AA, Gulnara K, Mukhanbetzhanovna AA, Datkhayev U, Kussainov AZ, Adylova A. Regulation of RUNX proteins by long non-coding RNAs and circular RNAs in different cancers. Noncoding RNA Res 2021; 6:100-106. [PMID: 34189363 PMCID: PMC8209647 DOI: 10.1016/j.ncrna.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
RUNX proteins have been shown to behave as "double-edge sword" in wide variety of cancers. Discovery of non-coding RNAs has played linchpin role in improving our understanding about the post-transcriptional regulation of different cell signaling pathways. Several new mechanistic insights and distinct modes of cross-regulation of RUNX proteins and non-coding RNAs have been highlighted by recent research. In this review we have attempted to provide an intricate interplay between non-coding RNAs and RUNX proteins in different cancers. Better conceptual and mechanistic understanding of layered regulation of RUNX proteins by non-coding RNAs will be helpful in effective translation of the laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
| | - Kapanova Gulnara
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty, 050040, Kazakhstan
| | | | - Ubaidilla Datkhayev
- Asfendiyarov Kazakh National Medical University, KazNMU, Tole Bi St 94, Almaty, 050000, Kazakhstan
| | - Abay Z Kussainov
- Kazakh National Medical University Named After S. D. Asfendiyarov, Kazakhstan
| | - Aima Adylova
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
23
|
Lopez-Campistrous A, Adewuyi EE, Williams DC, McMullen TPW. Gene expression profile of epithelial-mesenchymal transition mediators in papillary thyroid cancer. Endocrine 2021; 72:452-461. [PMID: 32914379 DOI: 10.1007/s12020-020-02466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Platelet derived growth receptor alpha (PDGFRA) promotes the epithelial-mesenchymal transition (EMT) in thyroid follicular cells and is linked to lymphatic metastases in papillary thyroid cancer (PTC). We probed the regulatory network of genes linked to PDGFRA and EMT, comparing matched patient primary tumor and metastatic specimens, as well as engineered cell lines and ex vivo primary cultures with and without PDGFRA. METHODS Freshly isolated thyroid tumors with or without metastases, with matching neighboring benign or normal tissue, was isolated for comparative transcriptional analysis using a TaqMan Low Density array (TLDA) assay with genes representing important markers of EMT, cellular adhesion, apoptosis, differentiation, senescence, and signal transduction pathways in thyroid cancer. Transfected primary cultures and immortalized cell lines were also analyzed with respect to PDGFRA expression and cell phenotype. RESULTS We reveal the consistent upregulation of serine protease DPP4 and structural protein SPP1 with the progression of PTC to metastatic disease, as well as with PDGFRA expression. Conversely, epithelial integrity gene TFF3 and transcription factor SOX10 were strongly down-regulated. This gene network also includes important mediators of EMT including DSG1, MMP3, MMP9, and BECN. We observed similar genomic changes in ex vivo normal thyroid cells transfected with PDGFRA that also exhibited a partially dedifferentiated phenotype. In particular, we observed lamellopodia with induction of PDGFRA and illustrate that DPP4 and SPP1 were upregulated in this process, with decreased TFF3 and SOX10 as seen in tissue specimens. PDGFRA did decrease nuclear protein levels of differentiation factor TTF1, but not the transcription of TTF1 and PAX8. CONCLUSIONS We demonstrate that PDGFRA activates EMT pathways and decreases expression of genes favoring epithelial integrity, pushing follicular cells toward a dedifferentiated phenotype. SPP1 and DPP4, previously linked with adverse outcomes in thyroid cancer, appear to be regulated by PDGFRA. PDGFRA expression promotes metastatic disease through multiple EMT levers that favor formation of an invasive phenotype and increased metalloproteinase expression.
Collapse
Affiliation(s)
| | | | | | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada.
- Department of Oncology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
24
|
Xiao D, Liu K, Chen J, Gong Y, Zhou X, Huang J. RUNX2 as a Potential Prognosis Biomarker and New Target for Human Lung Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Shi W, Lu J, Li J, Qiu M, Lu Y, Gu J, Kong X, Sun W. Piperlongumine Attenuates High Calcium/Phosphate-Induced Arterial Calcification by Preserving P53/PTEN Signaling. Front Cardiovasc Med 2021; 7:625215. [PMID: 33644124 PMCID: PMC7903972 DOI: 10.3389/fcvm.2020.625215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Vascular calcification frequently occurs in the process of chronic kidney disease, atherosclerosis and aging, resulting in an increased prevalence of cardiovascular events. Piperlongumine (PLG) is a natural product isolated from Piper longum L. Here, we aimed to explore the effect of PLG in high calcium- and phosphate-induced vascular calcification and the associated mechanism. Flow cytometry assays showed that PLG at concentrations <10 μM did not promote vascular smooth muscle cells (VSMCs) apoptosis, and PLG at concentrations >2.5 μM inhibited VSMCs proliferation. Thus, 2.5 μM PLG was selected for subsequent experiments. Alizarin red staining and ALP activity assays showed that PLG inhibited calcium deposition of VSMCs treated with high calcium/phosphate medium. PLG also decreased the expression of osteogenic genes and proteins, including Runx2, Bmp2, and OPN, as determined by qRT-PCR and western blotting. In a vitamin D-induced aortic calcification mouse model, a 5 mg/kg dose of PLG decreased calcium deposition in the aortic wall as well as Runx2 expression. With regard to the mechanism, we found that the levels of P53 mRNA and protein in both VSMCs and mouse aortic tissues were decreased in the calcification models, and we observed that PLG preserved the levels of P53 and its downstream gene PTEN. Concurrent treatment of VSMCs with P53 ShRNA and PLG blunted the anti-calcific effect of PLG. In conclusion, PLG attenuates high calcium/phosphate-induced vascular calcification by upregulating P53/PTEN signaling in VSMCs. PLG may act as a promising herbal extract for the clinical management of vascular calcification.
Collapse
Affiliation(s)
- Wenxiang Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jieyu Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junhan Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Translational Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Translational Medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Identification and Analysis of Three Hub Prognostic Genes Related to Osteosarcoma Metastasis. JOURNAL OF ONCOLOGY 2021; 2021:6646459. [PMID: 33564309 PMCID: PMC7867449 DOI: 10.1155/2021/6646459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) often occurs in children and often undergoes metastasis, resulting in lower survival rates. Information on the complexity and pathogenic mechanism of OS is limited, and thus, the development of treatments involving alternative molecular and genetic targets is hampered. We categorized transcriptome data into metastasis and nonmetastasis groups, and 400 differential RNAs (230 messenger RNAs (mRNAs) and 170 long noncoding RNAs (lncRNAs)) were obtained by the edgeR package. Prognostic genes were identified by performing univariate Cox regression analysis and the Kaplan-Meier (KM) survival analysis. We then examined the correlation between the expression level of prognostic lncRNAs and mRNAs. Furthermore, microRNAs (miRNAs) corresponding to the coexpression of lncRNA-mRNA was predicted, which was used to construct a competitive endogenous RNA (ceRNA) regulatory network. Finally, multivariate Cox proportional risk regression analysis was used to identify hub prognostic genes. Three hub prognostic genes (ABCG8, LOXL4, and PDE1B) were identified as potential prognostic biomarkers and therapeutic targets for OS. Furthermore, transcriptions factors (TFs) (DBP, ESX1, FOS, FOXI1, MEF2C, NFE2, and OTX2) and lncRNAs (RP11-357H14.16, RP11-284N8.3, and RP11-629G13.1) that were able to affect the expression levels of genes before and after transcription were found to regulate the prognostic hub genes. In addition, we identified drugs related to the prognostic hub genes, which may have potential clinical applications. Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that the expression levels of ABCG8, LOXL4, and PDE1B coincided with the results of bioinformatics analysis. Moreover, the relationship between the hub prognostic gene expression and patient prognosis was also validated. Our study elucidated the roles of three novel prognostic biomarkers in the pathogenesis of OS as well as presenting a potential clinical treatment for OS.
Collapse
|
27
|
Chen Y, Wang W, Jiang B, Yao L, Xia F, Li X. Integrating Tumor Stroma Biomarkers With Clinical Indicators for Colon Cancer Survival Stratification. Front Med (Lausanne) 2020; 7:584747. [PMID: 33365318 PMCID: PMC7750539 DOI: 10.3389/fmed.2020.584747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023] Open
Abstract
The tumor stroma plays an important role in tumor progression and chemotherapeutic resistance; however, its role in colon cancer (CC) survival prognosis remains to be investigated. Here, we identified tumor stroma biomarkers and evaluated their role in CC prognosis stratification. Four independent datasets containing a total of 1,313 patients were included in this study and were divided into training and testing sets. Stromal scores calculated using the estimation of stromal and immune cells in malignant tumors using expression data (ESTIMATE) algorithm were used to assess the tumor stroma level. Kaplan-Meier curves and the log-rank test were used to identify relationships between stromal score and prognosis. Tumor stroma biomarkers were identified by cross-validation of multiple datasets and bioinformatics methods. Cox proportional hazards regression models were constructed using four prognosis factors (age, tumor stage, the ESTIMATE stromal score, and the biomarker stromal score) in different combinations for prognosis prediction and compared. Patients with high stromal scores had a lower overall survival rate (p = 0.00016), higher risk of recurrence (p < 0.0001), and higher probability of chemotherapeutic resistance (p < 0.0001) than those with low scores. We identified 16 tumor stroma biomarkers and generated a new prognosis indicator termed the biomarker stromal score (ranging from 0 to 16) based on their expression levels. Its addition to an age/tumor stage-based model significantly improved prognosis prediction accuracy. In conclusion, the tumor stromal score is significantly negatively associated with CC survival prognosis, and the new tumor stroma indicator can improve CC prognosis stratification.
Collapse
Affiliation(s)
- Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Giulietti M, Bastianoni M, Cecati M, Ruzzo A, Bracci M, Malavolta M, Piacenza F, Giacconi R, Piva F. MetaTropismDB: a database of organ-specific metastasis induced by human cancer cell lines in mouse models. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6006230. [PMID: 33238004 PMCID: PMC7687678 DOI: 10.1093/database/baaa100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 11/12/2022]
Abstract
The organotropism is the propensity of metastatic cancer cells to colonize preferably certain distant organs, resulting in a non-random distribution of metastases. In order to shed light on this behaviour, several studies were performed by the injection of human cancer cell lines into immunocompromised mouse models. However, the information about these experiments is spread in the literature. For each xenograft experiment reported in the literature, we annotated both the experimental conditions and outcomes, including details on inoculated human cell lines, mouse models, injection methods, sites of metastasis, organs not colonized, rate of metastasis, latency time, overall survival and the involved genes. We created MetaTropismDB, a freely available database collecting hand-curated data useful to highlight the mechanisms of organ-specific metastasis. Currently, it stores the results of 513 experiments in which injections of 219 human cell lines have been carried out in mouse models. Notably, 296 genes involved in organotropic metastases have been collected. This specialized database allows the researchers to compare the current results about organotropism and plan future experiments in order to identify which tumour molecular signatures establish if and where the metastasis will develop. Database URL: http://www.introni.it/Metastasis/metastasis.html.
Collapse
Affiliation(s)
| | - Marco Bastianoni
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029, Urbino, Italy
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
29
|
Yan X, Han D, Chen Z, Han C, Dong W, Han L, Zou L, Zhang J, Liu Y, Chai J. RUNX2 interacts with BRG1 to target CD44 for promoting invasion and migration of colorectal cancer cells. Cancer Cell Int 2020; 20:505. [PMID: 33071648 PMCID: PMC7559818 DOI: 10.1186/s12935-020-01544-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in tumor invasion and metastasis. CD44 is the most commonly used marker of CSCs, with the potential to act as a determinant against the invasion and migration of CSCs and as the key factor in epithelial-mesenchymal transition (EMT)-like changes that occur in colorectal cancer (CRC). Runt-related transcription factor-2 (RUNX2) is a mesenchymal stem marker for cancer that is involved in stem cell biology and tumorigenesis. However, whether RUNX2 is involved in CSC and in inducing EMT-like changes in CRC remains uncertain, warranting further investigation. Methods We evaluated the role of RUNX2 in the invasion and migration of CRC cells as a promoter of CD44-induced stem cell- and EMT-like modifications. For this purpose, western blotting was employed to analyze the expression of differential proteins in CRC cells. We conducted sphere formation, wound healing, and transwell assays to investigate the biological functions of RUNX2 in CRC cells. Cellular immunofluorescence and coimmunoprecipitation (co-IP) assays were performed to study the relationship between RUNX2 and BRG1. Real-time quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) were performed to analyze the expressions of RUNX2, BRG1, and CD44 in the CRC tissues. Results We found that RUNX2 could markedly induce the CRC cell sphere-forming ability and EMT. Interestingly, the RUNX2-mediated EMT in CRC cell may be associated with the activation of CD44. Furthermore, RUNX2 was found to interact with BRG1 to promote the recruitment of RUNX2 to the CD44 promoter. Conclusions Our cumulative findings suggest that RUNX2 and BRG1 can form a compact complex to regulate the transcription and expression of CD44, which has possible involvement in the invasion and migration of CRC cells.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Dali Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Zhiqiang Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100069 China
| | - Chao Han
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi Province China
| | - Wei Dong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Li Han
- Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Yan Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji-Yan Road, Jinan, 250117 Shandong Province China.,Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
30
|
Yang DP, Huang WY, Chen G, Chen SW, Yang J, He RQ, Huang SN, Gan TQ, Ma J, Yang LJ, Song JH, Mo JX, Tang ZQ, Li CB, Zhou HF, Kong JL. Clinical significance of transcription factor RUNX2 in lung adenocarcinoma and its latent transcriptional regulating mechanism. Comput Biol Chem 2020; 89:107383. [PMID: 33032037 DOI: 10.1016/j.compbiolchem.2020.107383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/21/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
RUNX family transcription factor 2 (RUNX2) overexpression has been found in various human malignancies. However, the expression levels of RUNX2 mRNA and protein in lung adenocarcinoma (LUAD) were not investigated. This study aims to thoroughly analysis the expression level and potential mechanisms of RUNX2 mRNA in LUAD. We applied in-house immunohistochemistry, high-throughput RNA-sequencing, and gene microarrays to comprehensively investigate the expression level of RUNX2 in LUAD. A pool standard mean difference (SMD) and summary receiver operating characteristic curves (SROC) were calculated to assess the integrated expression value of RUNX2 in LUAD. The hazard ratios (HRs) were integrated to evaluate the overall prognostic effect of RUNX2 on the LUAD patients. The differentially expressed genes (DEGs) of LUAD, the potential target genes of RUNX2, and its co-expressed genes were overlapped to obtain a set of specific genes for GO and KEGG enrichment analyses. RUNX2 overexpression in LUAD was validated using a large number of cases (2 418 LUAD and 1 574 non-tumor lung samples). The pooled SMD was 0.85 (95 % CI: 0.64-1.05) and the area under the curve (AUC) of the SROC was 0.86 (95 %CI: 0.83-0.89). The integrated HR was 1.20 [1.04-1.38], indicating that increased expression of RUNX2 was an independent risk factor for the poor survival of the LUAD patients. RUNX2 and its transcriptionally regulates potential target genes may promote cell proliferation and drug resistance of LUAD by modulating the cell cycle and MAPK signaling pathways. RUNX2 can provide new research directions for targeted drug therapy and drug resistance for LUAD treatment.
Collapse
Affiliation(s)
- Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, PR China.
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Su-Ning Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Jian-Hua Song
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, PR China.
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University / Wuzhou Gongren Hospital, Wuzhou, Guangxi 543000, PR China.
| | - Zhong-Qing Tang
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University / Wuzhou Gongren Hospital, Wuzhou, Guangxi 543000, PR China.
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University / Wuzhou Gongren Hospital, Wuzhou, Guangxi 543000, PR China.
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
31
|
Yang N, Wang L, Chen T, Liu R, Liu Z, Zhang L. ZNF521 which is downregulated by miR-802 suppresses malignant progression of Hepatocellular Carcinoma through regulating Runx2 expression. J Cancer 2020; 11:5831-5839. [PMID: 32913476 PMCID: PMC7477442 DOI: 10.7150/jca.45190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Zinc finger protein 521 (ZNF521) plays an important role in the tumor development and process. However, its regulatory role in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated for the first time that ZNF521 mRNA and protein was down-regulated in HCC tissues and cell lines. Down-regulated ZNF521 expression was significantly associated with malignant prognostic features, including advanced TNM stage and large tumor size. For 5-year survival, ZNF521 served as a potential prognostic marker of HCC patients. Moreover, ZNF521 inhibited cell proliferation, colony formation and cell viability through Runx2 transcriptional inhibition and AKT phosphorylation pathway. Moreover, we demonstrated that ZNF521 expression was regulated by miR-802. In HCC tissues. MiR-802 has an inverse correlation with ZNF521 expression. In conclusion, we demonstrate for the first time that ZNF521 is down-regulated in HCC tissues and inhibits HCC growth through Runx2 transcriptional inhibition and AKT inactivation, which was regulated by miR-802, suggesting the potential therapeutic value for HCC.
Collapse
Affiliation(s)
- Nan Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Lei Zhang
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
32
|
Ma F, Xie Y, Lei Y, Kuang Z, Liu X. The microRNA-130a-5p/RUNX2/STK32A network modulates tumor invasive and metastatic potential in non-small cell lung cancer. BMC Cancer 2020; 20:580. [PMID: 32571328 PMCID: PMC7310151 DOI: 10.1186/s12885-020-07056-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) remains a huge health burden for human health and life worldwide. Our study here was to illuminate the relevance of microRNA-130a-5p (miR-130a-5p) on growth and epithelial mesenchymal transition (EMT) in NSCLC cells along with metastasis in vivo, and to explore the underlying mechanism. Methods RT-qPCR was carried out for miR-130a-5p expression determination in NSCLC cells and tissue samples. Dual-luciferase reporter gene assay, RT-qPCR and western blot were carried out to study the potential targets of miR-130a-5p. Effects of miR-130a-5p, runt-related transcription factor 2 (RUNX2) and encoding serine/threonine kinase 32A (STK32A) on NSCLC proliferation, migration, invasion as well as EMT processes were assessed by cell counting kits-8, colony formation, Transwell and western blot assays. Results miR-130a-5p was diminished in NSCLC tissues and cells versus their counterparts. miR-130a-5p exerted its repressive role in NSCLC by curtailing cell viability, migration, invasion as well as EMT, while facilitating apoptosis. miR-130a-5p directly targeted RUNX2, a transcription factor, and conversely regulated its expression. RUNX2 was found to interact with STK32A to promote its expression. Following the validation of the supporting role of STK32A in NSCLC cells and NF-κB p65 phosphorylation, RUNX2 overexpression was monitored to reverse miR-130a-5p-inhibited NSCLC tumor volume and weight through enhancing STK32A expression in vivo. Conclusions miR-130a-5p diminished the growth and EMT of NSCLC cells by regulating the RUNX2/STK32A/NF-κB p65 axis, offering possible targets for the treatment for NSCLC.
Collapse
Affiliation(s)
- Fang Ma
- Department of Oncology, the Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410000, Hunan, P.R. China
| | - Yangchun Xie
- Department of Oncology, the Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410000, Hunan, P.R. China
| | - Yiyu Lei
- Department of Oncology, the Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410000, Hunan, P.R. China
| | - Zengshuyu Kuang
- Department of Oncology, Zhuzhou 331 Hospital, Zhuzhou, 412000, Hunan, P.R. China
| | - Xianling Liu
- Department of Oncology, the Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410000, Hunan, P.R. China.
| |
Collapse
|
33
|
Li M, Jin X, Li H, Yang C, Deng S, Wu G. Comprehensive Analysis of Key Genes and Regulatory Elements in Osteosarcoma Affected by Bone Matrix Mineral With Prognostic Values. Front Genet 2020; 11:533. [PMID: 32582282 PMCID: PMC7283541 DOI: 10.3389/fgene.2020.00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma is one of the most common types of bone sarcoma with a poor prognosis. However, genes involved in the mineral metabolism in the microenvironment of the bone affected by osteosarcoma are, to date, largely unknown. A public data series (GSE114237) was used to identify differentially expressed genes (DEGs) between osteosarcoma cells adhering to demineralized osseous surfaces and mineralized osseous surfaces. Functional enrichment analysis of DEGs and hub genes, protein-protein interaction network of DEGs and regulatory network (miRNA-mRNA network and transcription factor (TF)-mRNA network), survival analysis of hub genes was visualized. The prognostic hub genes were considered as candidate genes and their functional predictions were analyzed. A total of 207 DEGs were mainly enriched in extracellular space and thirteen hub genes were mainly enriched in the function of epithelial to mesenchymal transition. However, out of these, only one candidate gene was found to be suitable as a candidate gene. Besides that, 297 miRNAs and 349 TFs interacting with the hub genes were screened. In conclusion, the DEGs, hub genes, miRNAs and TFs screened out in this research could contribute to comprehend the latent mechanisms in osteosarcoma affected by matrix mineral and provide potential research molecular for further study.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Huang J, Chang S, Lu Y, Wang J, Si Y, Zhang L, Cheng S, Jiang WG. Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells. Cancer Cell Int 2019; 19:306. [PMID: 31832019 PMCID: PMC6873507 DOI: 10.1186/s12935-019-1033-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Increased cell mobility is a signature when tumor cells undergo epithelial-to-mesenchymal transition. TGF-β is a key stimulating factor to promote the transcription of a variety of downstream genes to accelerate cancer progression and metastasis, including osteopontin (OPN) which exists in several functional forms as different splicing variants. In non-small cell lung cancer cells, although increased total OPN expression was observed under various EMT conditions, the exact constitution and the underlining mechanism towards the generation of such OPN splicing isoforms was poorly understood. Methods We investigated the possible mechanisms of osteopontin splicing variant and its role in EMT and cancer metastasis using NSCLC cell line and cell and molecular biology techniques. Results In this study, we determined that OPNc, an exon 4 excluded shorter form of Opn gene products, appeared to be more potent to promote cell invasion. The expression of OPNc was selectively increased to higher abundance during EMT following TGF-β induction. The switching from OPNa to OPNc could be enhanced by RUNX2 (a transcription factor that recognizes the Opn gene promoter) overexpression, but appeared to be strictly in a HDAC dependent manner in A549 cells. The results suggested the increase of minor splicing variant of OPNc required both (1) the enhanced transcription from its coding gene driven by specific transcription factors; and (2) the simultaneous modulation or fluctuation of the coupled splicing process that depends to selective classed of epigenetic regulators, predominately HDAC family members. Conclusion Our study not only emphasized the importance of splicing variant for its role in EMT and cancer metastasis, but also helped to understand the possible mechanisms of the epigenetic controls for defining the levels and kinetic of gene splicing isoforms and their generations.
Collapse
Affiliation(s)
- Jing Huang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Siyuan Chang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Yabin Lu
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Wang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yang Si
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Lijian Zhang
- 3Department of Thoracic Surgery, Key Laboratory for Carcinogenesis and Translational Research Ministry of Education, Peking University Hospital, Beijing, 100142 China
| | - Shan Cheng
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Wen G Jiang
- 4Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN UK
| |
Collapse
|
36
|
Jerez S, Araya H, Hevia D, Irarrázaval CE, Thaler R, van Wijnen AJ, Galindo M. Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis. Gene 2019; 710:246-257. [PMID: 31176732 DOI: 10.1016/j.gene.2019.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common primary bone tumor during childhood and adolescence. Several reports have presented data on serum biomarkers for osteosarcoma, but few reports have analyzed circulating microRNAs (miRNAs). In this study, we used next generation miRNA sequencing to examine miRNAs isolated from microvesicle-depleted extracellular vesicles (EVs) derived from six different human osteosarcoma or osteoblastic cell lines with different degrees of metastatic potential (i.e., SAOS2, MG63, HOS, 143B, U2OS and hFOB1.19). EVs from each cell line contain on average ~300 miRNAs, and ~70 of these miRNAs are present at very high levels (i.e., >1000 reads per million). The most prominent miRNAs are miR-21-5p, miR-143-3p, miR-148a-3p and 181a-5p, which are enriched between 3 and 100 fold and relatively abundant in EVs derived from metastatic SAOS2 cells compared to non-metastatic MG63 cells. Gene ontology analysis of predicted targets reveals that miRNAs present in EVs may regulate the metastatic potential of osteosarcoma cell lines by potentially inhibiting a network of genes (e.g., MAPK1, NRAS, FRS2, PRCKE, BCL2 and QKI) involved in apoptosis and/or cell adhesion. Our data indicate that osteosarcoma cell lines may selectively package miRNAs as molecular cargo of EVs that could function as paracrine agents to modulate the tumor micro-environment.
Collapse
Affiliation(s)
- Sofía Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Héctor Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniel Hevia
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Los Andes, Chile
| | - Carlos E Irarrázaval
- Laboratorio de Fisiología Integrativa y Molecular, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Los Andes, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|