1
|
Ayalasomayajula Y, Hesaraghatta A, Dantuluri N, Yassine J, Saleem F, Mansour H, Chayawatto C, Rangarajan N, Rangarajan S, Krishnan S, Panguluri SK. Influence of age and sex on physical, cardiac electrical and functional alterations in progressive hyperoxia treatment: A time course study in a murine model. Exp Gerontol 2024; 191:112435. [PMID: 38636569 PMCID: PMC11495054 DOI: 10.1016/j.exger.2024.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Oxygen supplementation is a widely used treatment for ICU patients. However, it can lead to hyperoxia, which in turn can result in oxidative stress, cardiac remodeling, and even mortality. This paper expands upon previous research conducted by our lab to establish time-dependent cardiac changes under hyperoxia. In this study, both young and aged mice (male and female) underwent 72 h of hyperoxia exposure and were monitored at 24-hour intervals for cardiac electrophysiological and functional parameters using ECG and electrocardiogram data. Our analysis showed that young male mice experienced significant weight loss as well as significant lung edema by 48 h. Although young male mice were highly susceptible to physical changes, they were resistant to early cardiac functional and electrophysiological changes compared to the other groups. Both young and aged female and aged males developed functional impairments by 24 h of hyperoxia exposure. Furthermore, sex and age differences were noted in the onset of electrophysiological changes. While some groups could resist early cardiac remodeling, our data suggests that 72 h of hyperoxia exposure is sufficient to induce significant cardiac remodeling across all age and sex groups. Our data establishes that time-dependent cardiac changes due to oxygen supplementation can have devastating consequences even with short exposure periods. These findings can aid in developing clinical practices for individuals admitted to the ICU by elucidating the impact of aging, sex, and length of stay under mechanical ventilation to limit hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Yashwant Ayalasomayajula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Anagha Hesaraghatta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Neha Dantuluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jenna Yassine
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Chayapatou Chayawatto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Nishank Rangarajan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Sashank Rangarajan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Smrithi Krishnan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Kelava M, Milam AJ, Mi J, Alfirevic A, Grady P, Unai S, Elgharably H, McCurry K, Koprivanac M, Duncan A. Arterial Hyperoxemia During Cardiopulmonary Bypass Was Not Associated With Worse Postoperative Pulmonary Function: A Retrospective Cohort Study. Anesth Analg 2024; 138:1003-1010. [PMID: 37733624 PMCID: PMC10994185 DOI: 10.1213/ane.0000000000006627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Arterial hyperoxemia may cause end-organ damage secondary to the increased formation of free oxygen radicals. The clinical evidence on postoperative lung toxicity from arterial hyperoxemia during cardiopulmonary bypass (CPB) is scarce, and the effect of arterial partial pressure of oxygen (Pa o2 ) during cardiac surgery on lung injury has been underinvestigated. Thus, we aimed to examine the relationship between Pa o2 during CPB and postoperative lung injury. Secondarily, we examined the relationship between Pa o2 and global (lactate), and regional tissue malperfusion (acute kidney injury). We further explored the association with regional tissue malperfusion by examining markers of cardiac (troponin) and liver injury (bilirubin). METHODS This was a retrospective cohort study including patients who underwent elective cardiac surgeries (coronary artery bypass, valve, aortic, or combined) requiring CPB between April 2015 and December 2021 at a large quaternary medical center. The primary outcome was postoperative lung function defined as the ratio of Pa o2 to fractional inspired oxygen concentration (F io2 ); P/F ratio 6 hours following surgery or before extubation. The association between CPB in-line sample monitor Pa o2 and primary, secondary, and exploratory outcomes was evaluated using linear or logistic regression models adjusting for available baseline confounders. RESULTS A total of 9141 patients met inclusion and exclusion criteria, and 8429 (92.2%) patients had complete baseline variables available and were included in the analysis. The mean age of the sample was 64 (SD = 13), and 68% were men (n = 6208). The time-weighted average (TWA) of in-line sample monitor Pa o2 during CPB was weakly positively associated with the postoperative P/F ratio. With a 100-unit increase in Pa o2 , the estimated increase in postoperative P/F ratio was 4.61 (95% CI, 0.71-8.50; P = .02). Our secondary analysis showed no significant association between Pa o2 with peak lactate 6 hours post CPB (geometric mean ratio [GMR], 1.01; 98.3% CI, 0.98-1.03; P = .55), average lactate 6 hours post CPB (GMR, 1.00; 98.3% CI, 0.97-1.03; P = .93), or acute kidney injury by Kidney Disease Improving Global Outcomes (KDIGO) criteria (odds ratio, 0.91; 98.3% CI, 0.75-1.10; P = .23). CONCLUSIONS Our investigation found no clinically significant association between Pa o2 during CPB and postoperative lung function. Similarly, there was no association between Pa o2 during CPB and lactate levels, postoperative renal function, or other exploratory outcomes.
Collapse
Affiliation(s)
- Marta Kelava
- From the Departments of Cardiothoracic Anesthesiology
- Outcomes Research, Cleveland Clinic, Cleveland, Ohio
| | - Adam J. Milam
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, Arizona
| | - Junhui Mi
- Departments of Quantitative Health Sciences
| | | | | | - Shinya Unai
- Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Kenneth McCurry
- Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Andra Duncan
- From the Departments of Cardiothoracic Anesthesiology
- Outcomes Research, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
3
|
Abstract
Heart transplantation (HT) remains the best treatment of patients with severe heart failure who are deemed to be transplant candidates. The authors discuss postoperative management of the HT recipient by system, emphasizing areas where care might differ from other cardiac surgery patients. Working together, critical care physicians, heart transplant surgeons and cardiologists, advanced practice providers, pharmacists, transplant coordinators, nursing staff, physical therapists, occupational therapists, rehabilitation specialists, nutritionists, health psychologists, social workers, and the patient and their loved ones partner to increase the likelihood of a successful outcome.
Collapse
Affiliation(s)
- Gozde Demiralp
- Division of Critical Care Medicine, Department of Anesthesiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI 53792, USA
| | - Robert T Arrigo
- Division of Critical Care Medicine, Department of Anesthesiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Mail Code 3272, Madison, WI 53792, USA; Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Mail Code 3272, Madison, WI 53792, USA
| | - Christopher Cassara
- Division of Critical Care Medicine, Department of Anesthesiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Mail Code 3272, Madison, WI 53792, USA; Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Mail Code 3272, Madison, WI 53792, USA
| | - Maryl R Johnson
- Heart Failure and Transplant Cardiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, E5/582 CSC, Mail Code 5710, Madison, WI 53792, USA.
| |
Collapse
|
4
|
Saleem F, Mansour H, Vichare R, Ayalasomayajula Y, Yassine J, Hesaraghatta A, Panguluri SK. Influence of Age on Hyperoxia-Induced Cardiac Pathophysiology in Type 1 Diabetes Mellitus (T1DM) Mouse Model. Cells 2023; 12:1457. [PMID: 37296578 PMCID: PMC10252211 DOI: 10.3390/cells12111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Mechanical ventilation often results in hyperoxia, a condition characterized by excess SpO2 levels (>96%). Hyperoxia results in changes in the physiological parameters, severe cardiac remodeling, arrhythmia development, and alteration of cardiac ion channels, all of which can point toward a gradual increase in the risk of developing cardiovascular disease (CVD). This study extends the analysis of our prior work in young Akita mice, which demonstrated that exposure to hyperoxia worsens cardiac outcomes in a type 1 diabetic murine model as compared to wild-type (WT) mice. Age is an independent risk factor, and when present with a major comorbidity, such as type 1 diabetes (T1D), it can further exacerbate cardiac outcomes. Thus, this research subjected aged T1D Akita mice to clinical hyperoxia and analyzed the cardiac outcomes. Overall, aged Akita mice (60 to 68 weeks) had preexisting cardiac challenges compared to young Akita mice. Aged mice were overweight, had an increased cardiac cross-sectional area, and showed prolonged QTc and JT intervals, which are proposed as major risk factors for CVD like intraventricular arrhythmias. Additionally, exposure to hyperoxia resulted in severe cardiac remodeling and a decrease in Kv 4.2 and KChIP2 cardiac potassium channels in these rodents. Based on sex-specific differences, aged male Akita mice had a higher risk of poor cardiac outcomes than aged females. Aged male Akita mice had prolonged RR, QTc, and JT intervals even at baseline normoxic exposure. Moreover, they were not protected against hyperoxic stress through adaptive cardiac hypertrophy, which, at least to some extent, is due to reduced cardiac androgen receptors. This study in aged Akita mice aims to draw attention to the clinically important yet understudied subject of the effect of hyperoxia on cardiac parameters in the presence of preexisting comorbidities. The findings would help revise the provision of care for older T1D patients admitted to ICUs.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Riddhi Vichare
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Yashwant Ayalasomayajula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jenna Yassine
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Anagha Hesaraghatta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
- Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| |
Collapse
|
5
|
Broughton K, Esquer C, Echeagaray O, Firouzi F, Shain G, Ebeid D, Monsanto M, Yaareb D, Golgolab L, Gude N, Sussman MA. Surface Lin28A expression consistent with cellular stress parallels indicators of senescence. Cardiovasc Res 2023; 119:743-758. [PMID: 35880724 PMCID: PMC10409908 DOI: 10.1093/cvr/cvac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (β-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 μM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and β-gal with predominantly diploid content. CONCLUSION Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.
Collapse
Affiliation(s)
- Kathleen Broughton
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Esquer
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Oscar Echeagaray
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Grant Shain
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - David Ebeid
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan Monsanto
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Dena Yaareb
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Leila Golgolab
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie Gude
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Mancardi D, Ottolenghi S, Attanasio U, Tocchetti CG, Paroni R, Pagliaro P, Samaja M. Janus, or the Inevitable Battle Between Too Much and Too Little Oxygen. Antioxid Redox Signal 2022; 37:972-989. [PMID: 35412859 DOI: 10.1089/ars.2021.0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Oxygen levels are key regulators of virtually every living mammalian cell, under both physiological and pathological conditions. Starting from embryonic and fetal development, through the growth, onset, and progression of diseases, oxygen is a subtle, although pivotal, mediator of key processes such as differentiation, proliferation, autophagy, necrosis, and apoptosis. Hypoxia-driven modifications of cellular physiology are investigated in depth or for their clinical and translational relevance, especially in the ischemic scenario. Recent Advances: The mild or severe lack of oxygen is, undoubtedly, related to cell death, although abundant evidence points at oscillating oxygen levels, instead of permanent low pO2, as the most detrimental factor. Different cell types can consume oxygen at different rates and, most interestingly, some cells can shift from low to high consumption according to the metabolic demand. Hence, we can assume that, in the intracellular compartment, oxygen tension varies from low to high levels depending on both supply and consumption. Critical Issues: The positive balance between supply and consumption leads to a pro-oxidative environment, with some cell types facing hypoxia/hyperoxia cycles, whereas some others are under fairly constant oxygen tension. Future Directions: Within this frame, the alterations of oxygen levels (dysoxia) are critical in two paradigmatic organs, the heart and brain, under physiological and pathological conditions and the interactions of oxygen with other physiologically relevant gases, such as nitric oxide, can alternatively contribute to the worsening or protection of ischemic organs. Further, the effects of dysoxia are of pivotal importance for iron metabolism. Antioxid. Redox Signal. 37, 972-989.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Sara Ottolenghi
- Department of Health Sciences, University of Milano, Milan, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Umberto Attanasio
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michele Samaja
- Department of Health Sciences, University of Milano, Milan, Italy
- MAGI GROUP, San Felice del Benaco, Italy
| |
Collapse
|
7
|
Liu S, Zhang R, Han T, Pan Y, Zhang G, Long X, Zhao C, Wang M, Li X, Yang F, Sang Y, Zhu L, He X, Li J, Zhang Y, Li C, Jiang Y, Yang M. Validation of photoacoustic/ultrasound dual imaging in evaluating blood oxygen saturation. BIOMEDICAL OPTICS EXPRESS 2022; 13:5551-5570. [PMID: 36425613 PMCID: PMC9664893 DOI: 10.1364/boe.469747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI) was performed to evaluate oxygen saturation (sO2) of blood-mimicking phantoms, femoral arteries in beagles, and radial arteries in humans at various sO2 plateaus. The accuracy (root mean square error, RMSE) of PAI sO2 compared with reference sO2 was calculated. In blood-mimicking phantoms, PAI achieved an accuracy of 1.49% and a mean absolute error (MAE) of 1.09% within 25 mm depth, and good linearity (R = 0.968; p < 0.001) was obtained between PAI sO2 and reference sO2. In canine femoral arteries, PAI achieved an accuracy of 2.16% and an MAE of 1.58% within 8 mm depth (R = 0.965; p < 0.001). In human radial arteries, PAI achieved an accuracy of 3.97% and an MAE of 3.28% in depth from 4 to 14 mm (R = 0.892; p < 0.001). For PAI sO2 evaluation at different depths in healthy volunteers, the RMSE accuracy of PAI sO2 increased from 2.66% to 24.96% with depth increasing from 4 to 14 mm. Through the multiscale method, we confirmed the feasibility of the hand-held photoacoustic/ultrasound (PA/US) in evaluating sO2. These results demonstrate the potential clinical value of PAI in evaluating blood sO2. Consequently, protocols for verifying the feasibility of medical devices based on PAI may be established.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- The authors contributed equally to this manuscript
| | - Rui Zhang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- The authors contributed equally to this manuscript
| | - Tao Han
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yinhao Pan
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Guangjie Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Xing Long
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Chenyang Zhao
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Wang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Yang
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Yuchao Sang
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Lei Zhu
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Xujin He
- Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China
| | - Jianchu Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Kraus AC, De Miguel C. Hyperoxia and Acute Kidney Injury: A Tale of Oxygen and the Kidney. Semin Nephrol 2022; 42:151282. [PMID: 36404211 PMCID: PMC9825666 DOI: 10.1016/j.semnephrol.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although oxygen supplementation is beneficial to support life in the clinic, excessive oxygen therapy also has been linked to damage to organs such as the lung or the eye. However, there is a lack of understanding of whether high oxygen therapy directly affects the kidney, leading to acute kidney injury, and what molecular mechanisms may be involved in this process. In this review, we revise our current understanding of the mechanisms by which hyperoxia leads to organ damage and highlight possible areas of investigation for the scientific community interested in novel mechanisms of kidney disease. Overall, we found a significant need for both animal and clinical studies evaluating the role of hyperoxia in inducing kidney damage. Thus, we urge the research community to further investigate oxygen therapy and its impact on kidney health with the goal of optimizing oxygen therapy guidelines and improving patient care.
Collapse
Affiliation(s)
- Abigayle C Kraus
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
9
|
Minasyan H. Oxygen therapy for sepsis and prevention of complications. Acute Crit Care 2022; 37:137-150. [PMID: 35545238 PMCID: PMC9184979 DOI: 10.4266/acc.2021.01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with sepsis have a wide range of respiratory disorders that can be treated with oxygen therapy. Experimental data in animal sepsis models show that oxygen therapy significantly increases survival, while clinical data on the use of different oxygen therapy protocols are ambiguous. Oxygen therapy, especially hyperbaric oxygenation, in patients with sepsis can aggravate existing oxidative stress and contribute to the development of disseminated intravascular coagulation. The purpose of this article is to compare experimental and clinical data on oxygen therapy in animals and humans, to discuss factors that can influence the results of oxygen therapy for sepsis treatment in humans, and to provide some recommendations for reducing oxidative stress and preventing disseminated intravascular coagulation during oxygen therapy.
Collapse
|
10
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
11
|
Cardiovascular Risks Associated with Gender and Aging. J Cardiovasc Dev Dis 2019; 6:jcdd6020019. [PMID: 31035613 PMCID: PMC6616540 DOI: 10.3390/jcdd6020019] [Citation(s) in RCA: 455] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
The aging and elderly population are particularly susceptible to cardiovascular disease. Age is an independent risk factor for cardiovascular disease (CVD) in adults, but these risks are compounded by additional factors, including frailty, obesity, and diabetes. These factors are known to complicate and enhance cardiac risk factors that are associated with the onset of advanced age. Sex is another potential risk factor in aging adults, given that older females are reported to be at a greater risk for CVD than age-matched men. However, in both men and women, the risks associated with CVD increase with age, and these correspond to an overall decline in sex hormones, primarily of estrogen and testosterone. Despite this, hormone replacement therapies are largely shown to not improve outcomes in older patients and may also increase the risks of cardiac events in older adults. This review discusses current findings regarding the impacts of age and gender on heart disease.
Collapse
|