1
|
Han W, Zhang D, Zhang P, Tao Q, Du X, Yu C, Dong P, Zhu Y. Danlou Recipe promotes cholesterol efflux in macrophages RAW264.7 and reverses cholesterol transport in mice with hyperlipidemia induced by P407. BMC Complement Med Ther 2023; 23:445. [PMID: 38066464 PMCID: PMC10704726 DOI: 10.1186/s12906-023-04253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Liver X Receptor (LXR) agonists could attenuate the development of atherosclerosis but bring excess lipid accumulation in the liver. Danlou Recipe was believed to be a benefit for improving the lipid profile. Thus, it is unclear whether Danlou Recipe could attenuate hyperlipidemia without excess lipid accumulated in the liver of mice. This study aimed to clarify if Danlou Recipe could alleviate the progression of hyperlipidemia in mice without extra lipids accumulated in the liver. METHODS Male murine macrophage RAW264.7 cells and murine peritoneal macrophages were used for the in vitro experiments. Cellular cholesterol efflux was determined using the fluorescent cholesterol labeling method. Those genes involved in lipid metabolism were evaluated by qRT-PCR and western blotting respectively. In vivo, a mouse model of hyperlipidemia induced by P407 was used to figure out the effect of Danlou Recipe on reverse cholesterol transport (RCT) and hyperlipidemia. Ethanol extract of Danlou tablet (EEDL) was prepared by extracting the whole powder of Danlou Prescription from ethanol, and the chemical composition was analyzed by ultra-performance liquid chromatography (UPLC). RESULTS EEDL inhibits the formation of RAW264.7 macrophage-derived foam cells, and promotes ABCA1/apoA1 conducted cholesterol efflux in RAW264.7 macrophages and mouse peritoneal macrophages. In the P407-induced hyperlipidemia mouse model, oral administration of EEDL can promote RCT in vivo and improve fatty liver induced by a high-fat diet. Consistent with the findings in vitro, EEDL promotes RCT by upregulating the LXR activities. CONCLUSION Our results demonstrate that EEDL has the potential for targeting RCT/LXR in the treatment of lipid metabolism disorders to be developed as a safe and effective therapy.
Collapse
Affiliation(s)
- Wenrun Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Dandan Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Peng Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Qianqian Tao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
| | - Xiaoli Du
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, 220 Dongting Road, TEDA, Tianjin, 300457, China
- Department of Pharmacy, Inner Mongolia Medical College, Hohhot, 010110, China
| | - Chunquan Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Pengzhi Dong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
- Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, 220 Dongting Road, TEDA, Tianjin, 300457, China.
| |
Collapse
|
2
|
Vo TTT, Kong G, Kim C, Juang U, Gwon S, Jung W, Nguyen H, Kim SH, Park J. Exploring scavenger receptor class F member 2 and the importance of scavenger receptor family in prediagnostic diseases. Toxicol Res 2023; 39:341-353. [PMID: 37398563 PMCID: PMC10313632 DOI: 10.1007/s43188-023-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 07/04/2023] Open
Abstract
Scavenger Receptor Class F Member 2 (SCARF2), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations. In contrast, other scavenger receptors have demonstrated versatile responses and have been found to aid in pathogen elimination, lipid transportation, intracellular cargo transportation, and work in tandem with various coreceptors. This review will concentrate on recent progress in comprehending SCARF2 and the functions played by members of the Scavenger Receptor Family in pre-diagnostic diseases.
Collapse
Affiliation(s)
- Thuy-Trang T. Vo
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Gyeyeong Kong
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
3
|
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B. The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 2023; 191:106726. [PMID: 36907285 DOI: 10.1016/j.phrs.2023.106726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Acute ischemic stroke (AIS) is a serious and life-threatening disease worldwide. Despite thrombolysis or endovascular thrombectomy, a sizeable fraction of patients with AIS have adverse clinical outcomes. In addition, existing secondary prevention strategies with antiplatelet and anticoagulant drugs therapy are not able to adequately decrease the risk of ischemic stroke recurrence. Thus, exploring novel mechanisms for doing so represents an urgent need for the prevention and treatment of AIS. Recent studies have discovered that protein glycosylation plays a critical role in the occurrence and outcome of AIS. As a common co- and post-translational modification, protein glycosylation participates in a wide variety of physiological and pathological processes by regulating the activity and function of proteins or enzymes. Protein glycosylation is involved in two causes of cerebral emboli in ischemic stroke: atherosclerosis and atrial fibrillation. Following ischemic stroke, the level of brain protein glycosylation becomes dynamically regulated, which significantly affects stroke outcome through influencing inflammatory response, excitotoxicity, neuronal apoptosis, and blood-brain barrier disruption. Drugs targeting glycosylation in the occurrence and progression of stroke may represent a novel therapeutic idea. In this review, we focus on possible perspectives about how glycosylation affects the occurrence and outcome of AIS. We then propose the potential of glycosylation as a therapeutic drug target and prognostic marker for AIS patients in the future.
Collapse
Affiliation(s)
- Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Jiang C, Feng D, Zhang Y, Yang K, Hu X, Xie Q. SCAT8/miR-125b-5p axis triggers malignant progression of nasopharyngeal carcinoma through SCARB1. BMC Mol Cell Biol 2023; 24:15. [PMID: 37009875 PMCID: PMC10069050 DOI: 10.1186/s12860-023-00477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Nasopharyngeal carcinoma is a tumor with high malignancy and poor prognosis, which severely affects the health of the patients. LncRNAs and microRNAs are crucial for the occurrence and development of nasopharyngeal carcinoma, which regulate the progression of nasopharyngeal carcinoma through the ceRNA network. SCARB1 plays an essential role in nasopharyngeal carcinoma. However, the mechanism underlying the regulation of SCARB1 in nasopharyngeal carcinoma through non-coding RNAs remains unclear. Our findings indicated that the SCAT8/miR-125b-5p axis promoted the malignant progression of nasopharyngeal carcinoma by driving the expression of SCARB1. Mechanistically, the expression of SCARB1 could be regulated by the lncRNA, SCAT8 and the microRNA, miR-125b-5p. Moreover, as a ceRNA of miR-125b-5p, SCAT8 can not only regulate the expression of SCARB1, but also regulate the malignant progression of nasopharyngeal carcinoma. Notably, our results reveal a novel ceRNA regulatory network in nasopharyngeal carcinoma, which could serve as a potential target for the diagnosis and treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Chunmao Jiang
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Dandan Feng
- Department of Otolaryngology Head and Neck Surgery, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Yu Zhang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Kun Yang
- Department of Health Management Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaotong Hu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, 400010, China
| | - Qian Xie
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Dunigan-Russell K, Yaeger MJ, Hodge MX, Kilburg-Basnyat B, Reece SW, Birukova A, Guttenberg MA, Novak C, Chung S, Ehrmann BM, Wallace ED, Tokarz D, Majumder N, Xia L, Christman JW, Shannahan J, Ballinger MN, Hussain S, Shaikh SR, Tighe RM, Gowdy KM. Scavenger receptor BI attenuates oxidized phospholipid-induced pulmonary inflammation. Toxicol Appl Pharmacol 2023; 462:116381. [PMID: 36681128 PMCID: PMC9983330 DOI: 10.1016/j.taap.2023.116381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.
Collapse
Affiliation(s)
- Katelyn Dunigan-Russell
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael J Yaeger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Myles X Hodge
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, United States
| | - Brita Kilburg-Basnyat
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, United States
| | - Sky W Reece
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, United States
| | - Anastasiya Birukova
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Marissa A Guttenberg
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Caymen Novak
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brandie Michelle Ehrmann
- Deparment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E Diane Wallace
- Deparment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Debra Tokarz
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, United States
| | - Nairrita Majumder
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, United States
| | - Li Xia
- College of Human and Health Sciences, Purdue University, West Lafayette, IN, United States
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan Shannahan
- College of Human and Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Megan N Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Kymberly M Gowdy
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
6
|
Xestospongia muta Fraction-7 and Linoleic Acid: Effects on SR-BI Gene Expression and HDL Cholesterol Uptake. Mar Drugs 2022; 20:md20120762. [PMID: 36547909 PMCID: PMC9784671 DOI: 10.3390/md20120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Xestospongia muta is a marine sponge belonging to the family Petrosiidae. It is an important source of biologically active marine natural products, with different kinds of essential fatty acids. Scavenger receptor class B type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) cholesterol, which plays a pivotal role in preventing atherosclerosis. It removes cholesterol from HDL cholesterol, returning lipid-poor lipoprotein into blood circulation. The present study investigated the effects of X. muta Fraction-7 and linoleic acid on SR-BI gene expression and HDL cholesterol uptake. In vitro studies of the activity of X. muta and linoleic acid against the therapeutic target for hypercholesterolemia were conducted using the HDL receptor SR-BI via luciferase assay and HepG2 cells. In the present study, Fraction-7 of X. muta showed the highest expression level of the SR-BI gene via luciferase assay. Profiling of Fraction-7 of X. muta by GC-MS revealed 58 compounds, comprising various fatty acids, particularly linoleic acid. The in vitro study in HepG2 cells showed that the Fraction-7 of X. muta and linoleic acid (an active compound in X. muta) increased SR-BI mRNA expression by 129% and 85%, respectively, compared to the negative control. Linoleic acid increased HDL uptake by 3.21-fold compared to the negative control. Thus, the Fraction-7 of X. muta and linoleic acid have the potential to be explored as adjuncts in the treatment of hypercholesterolemia to prevent or reduce the severity of atherosclerosis development.
Collapse
|
7
|
Han H, Wang Y, Xu S, Han C, Qin Q, Wei S. High-density lipoproteins negatively regulate innate immunity and facilitate red-spotted grouper nervous necrosis virus entry via scavenger receptor B type 1. Int J Biol Macromol 2022; 215:424-433. [PMID: 35752331 DOI: 10.1016/j.ijbiomac.2022.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Lipid metabolism plays an important role in viral infections, and it can directly or indirectly affect various stages of viral infection in cells. As an important component of lipid metabolism, high-density lipoprotein (HDL) plays crucial roles in inflammation, immunity, and viral infections. Scavenger receptor B type 1 (SR-B1), a receptor of HDL, cannot be ignored in the regulation of lipid metabolism. Here, we investigate, for the first time, the role of Epinephelus coioides SR-B1 (Ec-SR-B1) in red-spotted grouper nervous necrosis virus (RGNNV) infection. Our results indicate that Ec-SR-B1 could promote RGNNV infection. We also demonstrate that Ec-SR-B1 could facilitate viral entry and interact with capsid protein (CP) of RGNNV. As the natural ligand of SR-B1, HDL significantly increased RGNNV entry in a dose-dependent manner. However, we observed no effect of HDL on Ec-SR-B1 expression. The results of the micro-scale thermophoresis assay did not reveal an association between HDL and CP, suggesting that RGNNV does not enter target cells by using HDL as a ligand to bind to its receptor. In addition, block lipid transport-1, a compound that inhibits HDL-mediated cholesterol transfer, reduced the HDL-induced enhancement of RGNNV infection, indicating a role for lipid transfer in facilitating RGNNV entry. Furthermore, HDL inhibited the expression of pro-inflammatory factors and antiviral genes in a dose-dependent manner. These findings suggest that the HDL-induced enhancement of RGNNV entry involves the complex interplay between Ec-SR-B1, HDL, and RGNNV, as well as the regulation of innate antiviral responses by HDL. In summary, we highlight the crucial role of HDL in RGNNV entry, identify a possible molecular connection between RGNNV and lipoprotein metabolism, and indicate the role of Ec-SR-B1 in RGNNV infection.
Collapse
Affiliation(s)
- Honglin Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Hinuma S, Kuroda S. Binding of Hepatitis B Virus Pre-S1 Domain-Derived Synthetic Myristoylated Peptide to Scavenger Receptor Class B Type 1 with Differential Properties from Sodium Taurocholate Cotransporting Polypeptide. Viruses 2022; 14:v14010105. [PMID: 35062309 PMCID: PMC8780415 DOI: 10.3390/v14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The myristoylated pre-S1 peptide (Myr47) synthesized to mimic pre-S1 domain (2-48) in large (L) surface protein of hepatitis B virus (HBV) prevents HBV infection to hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP). We previously demonstrated that yeast-derived nanoparticles containing L protein (bio-nanocapsules: BNCs) bind scavenger receptor class B type 1 (SR-B1). In this study, we examined the binding of Mry47 to SR-B1. (2) Methods: The binding and endocytosis of fluorescence-labeled Myr47 to SR-B1 (and its mutants)-green fluorescence protein (GFP) fusion proteins expressed in HEK293T cells were analyzed using flow cytometry and laser scanning microscopy (LSM). Various ligand-binding properties were compared between SR-B1-GFP and NTCP-GFP. Furthermore, the binding of biotinylated Myr47 to SR-B1-GFP expressed on HEK293T cells was analyzed via pull-down assays using a crosslinker and streptavidin-conjugated beads. (3) Conclusions: SR-B1 bound not only Myr47 but also its myristoylated analog and BNCs, but failed to bind a peptide without myristoylation. However, NTCP only bound Myr47 among the ligands tested. Studies using SR-B1 mutants suggested that both BNCs and Myr47 bind to similar sites of SR-B1. Crosslinking studies indicated that Myr47 binds preferentially SR-B1 multimer than monomer in both HEK293T and HepG2 cells.
Collapse
|
9
|
Hou X, Malainer C, Atanasov AG, Heiß EH, Dirsch VM, Wang L, Wang K. Evodiamine Lowers Blood Lipids by Up-Regulating the PPARγ/ABCG1 Pathway in High-Fat-Diet-Fed Mice. JOURNAL OF NATURAL PRODUCTS 2021; 84:3110-3116. [PMID: 34902249 DOI: 10.1021/acs.jnatprod.1c00881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The natural alkaloid evodiamine enhances cholesterol efflux from cultured THP-1-derived macrophages, but whether it has any impact on blood lipids in vivo remains unknown. In this study, the effect of evodiamine on hyperlipidemia induced by a high-fat diet (HFD) was investigated in mice. Intragastric administrations of evodiamine (10 and 20 mg/kg) for 8 weeks resulted in a significant improvement of metabolic lipid profiles by reducing the plasma levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Evodiamine also significantly decreased hepatic lipid accumulation and hepatic total bile acids (TBA). Mechanistically, evodiamine increased ATP-binding cassette transporter G1 (ABCG1) mRNA and protein expression and up-regulated peroxisome proliferator-activated receptor gamma (PPARγ) expression in the liver. Taken together, the natural product evodiamine lowers blood lipids in HFD-fed mice likely through promoting the PPARγ-ABCG1 signaling pathway.
Collapse
Affiliation(s)
- Xingming Hou
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, Shandong, China
| | - Clemens Malainer
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Elke H Heiß
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Limei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, Shandong, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, Shandong, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, Shandong, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
10
|
Cheng C, Zheng E, Yu B, Zhang Z, Wang Y, Liu Y, He Y. Recognition of lipoproteins by scavenger receptor class A members. J Biol Chem 2021; 297:100948. [PMID: 34252459 PMCID: PMC8353498 DOI: 10.1016/j.jbc.2021.100948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptor class A (SR-A) proteins are type II transmembrane glycoproteins that form homotrimers on the cell surface. This family has five known members (SCARA1 to 5, or SR-A1 to A5) that recognize a variety of ligands and are involved in multiple biological pathways. Previous reports have shown that some SR-A family members can bind modified low-density lipoproteins (LDLs); however, the mechanisms of the interactions between the SR-A members and these lipoproteins are not fully understood. Here, we systematically characterize the recognition of SR-A receptors with lipoproteins and report that SCARA1 (SR-A1, CD204), MARCO (SCARA2), and SCARA5 recognize acetylated or oxidized LDL and very-low-density lipoprotein in a Ca2+-dependent manner through their C-terminal scavenger receptor cysteine-rich (SRCR) domains. These interactions occur specifically between the SRCR domains and the modified apolipoprotein B component of the lipoproteins, suggesting that they might share a similar mechanism for lipoprotein recognition. Meanwhile, SCARA4, a SR-A member with a carbohydrate recognition domain instead of the SRCR domain at the C terminus, shows low affinity for modified LDL and very-low-density lipoprotein but binds in a Ca2+-independent manner. SCARA3, which does not have a globular domain at the C terminus, was found to have no detectable binding with these lipoproteins. Taken together, these results provide mechanistic insights into the interactions between SR-A family members and lipoproteins that may help us understand the roles of SR-A receptors in lipid transport and related diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Enlin Zheng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Yu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ze Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, China.
| |
Collapse
|
11
|
Hinuma S, Fujita K, Kuroda S. Binding of Nanoparticles Harboring Recombinant Large Surface Protein of Hepatitis B Virus to Scavenger Receptor Class B Type 1. Viruses 2021; 13:v13071334. [PMID: 34372540 PMCID: PMC8310236 DOI: 10.3390/v13071334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
(1) Background: As nanoparticles containing the hepatitis B virus (HBV) large (L) surface protein produced in yeast are expected to be useful as a carrier for targeting hepatocytes, they are also referred to as bio-nanocapsules (BNCs). However, a definitive cell membrane receptor for BNC binding has not yet been identified. (2) Methods: By utilizing fluorescence-labeled BNCs, we examined BNC binding to the scavenger receptor class B type 1 (SR-B1) expressed in HEK293T cells. (3) Results: Analyses employing SR-B1 siRNA and expression of SR-B1 fused with a green fluorescent protein (SR-B1-GFP) indicated that BNCs bind to SR-B1. As mutagenesis induced in the SR-B1 extracellular domain abrogates or attenuates BNC binding and endocytosis via SR-B1 in HEK293T cells, it was suggested that the ligand-binding site of SR-B1 is similar or close among high-density lipoprotein (HDL), silica, liposomes, and BNCs. On the other hand, L protein was suggested to attenuate an interaction between phospholipids and SR-B1. (4) Conclusions: SR-B1 can function as a receptor for binding and endocytosis of BNCs in HEK293T cells. Being expressed various types of cells, it is suggested that functions as a receptor for BNCs not only in HEK293T cells but also in other types of cells.
Collapse
Affiliation(s)
- Shuji Hinuma
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki 567-0047, Osaka, Japan
- Correspondence: (S.H.); (S.K.)
| | - Kazuyo Fujita
- Faculty of Human Life Science, Senri Kinran University, Fujisirodai 5-25-1, Suita 565-0873, Osaka, Japan;
| | - Shun’ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki 567-0047, Osaka, Japan
- Correspondence: (S.H.); (S.K.)
| |
Collapse
|
12
|
Association between a genetic variant in scavenger receptor class B type 1 and its role on codon usage bias with increased risk of developing coronary artery disease. Clin Biochem 2021; 95:60-65. [PMID: 34097878 DOI: 10.1016/j.clinbiochem.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Coronary artery disease (CAD) as an important cause of morbidity and mortality globally. The scavenger receptor class B type 1 (SCARB1) plays an essential role in the reverse cholesterol transport. We have explored the association between a genetic variant, rs5888, in the SCARB1 gene with CAD and serum HDL-C levels. METHODS Patients were categorized into two groups' angiogram positive (>50% coronary stenosis) and angiogram negative (<50% coronary stenosis). Genotyping was carried out using polymerase chain reaction-amplification refractory mutation system. The association between the SNP rs5888 and serum HDL-C was analyzed using a logistic regression model. RESULTS The results showed that the subjects carrying a T allele was associated with a decreased serum HDL-C levels compared to the C allele in total population (p < 0.001). The risk of angiogram positivity in subjects carrying a T allele was 3.1-fold higher than for the control group (p < 0.001). CONCLUSION CVD patients carrying the T allele of rs5888 variant in the SCARB1 gene was associated with decreased serum level of HDL.
Collapse
|
13
|
Binding of liposomes composed of phosphatidylcholine to scavenger receptor class B type 1 and its modulation by phosphatidic acid in HEK293T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119043. [PMID: 33862056 DOI: 10.1016/j.bbamcr.2021.119043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
In this study, we developed a method to analyze liposomal binding to a cell membrane receptor using fluorescence-labeled liposomes and demonstrated that scavenger class B type 1 (SR-B1) plays a crucial role in binding of liposomes containing phosphatidylcholine (PC) to HEK293T cell membrane and phosphatidic acid (PA) can modulate it. Site-directed mutagenesis of SR-B1 revealed that S112F and T175A mutations in its ectodomain abrogated binding and endocytosis of PC liposomes in HEK293T cells. K151A and K156A mutations attenuated their binding and endocytosis too. Although the effects of mutations on binding and endocytosis were similar between PC liposomes and PC/PA and PA liposomes, SR-B1 dependency appeared to be PC > PC/PA > PA liposomes. Our data indicate that (i) nanoparticles including high-density lipoprotein (HDL), silica, and liposomes bind to a common or close site of SR-B1, and (ii) PC/PA and PA liposomes bind not only to SR-B1 but also other receptor(s) in HEK293T cells. In addition, PC/PA liposomes induced lipid droplet (LD) formation in HEK293T cells more than PC liposomes. Treatment of HEK293T cells with SR-B1 siRNA suppressed PC/PA liposome-induced LD formation. Taken together, our results demonstrate that SR-B1 plays an essential role in binding PC-containing liposomes and the subsequent induction of cellular responses, while PA can modulate them.
Collapse
|
14
|
Hou X, Zhang C, Wang L, Wang K. Natural Piperine Improves Lipid Metabolic Profile of High-Fat Diet-Fed Mice by Upregulating SR-B1 and ABCG8 Transporters. JOURNAL OF NATURAL PRODUCTS 2021; 84:373-381. [PMID: 33492139 DOI: 10.1021/acs.jnatprod.0c01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural piperine from black pepper is known to function as hypocholesterolemic agent, but how it lowers the blood cholesterol remains unclear. In this study, we found that intragastric administrations of piperine (25 mg/kg/day) for 8 weeks significantly reduced the plasma triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in high-fat diet (HFD)-fed mice. H&E staining indicated that piperine significantly decreased hepatic lipid accumulation compared with the control group. The Oil Red O staining further showed that piperine attenuated lipid deposition in liver HepG2 cells in a concentration-dependent manner. Mechanistically, piperine treatment caused a significant upregulation of hepatic scavenger receptor B1 (SR-B1) in the liver and transporter protein of ATP binding cassette SGM8 (ABCG8) in the small intestine. Taken together, our findings demonstrate the role of natural piperine in improving lipid metabolic profile that is involved in the reverse cholesterol transport (RCT)-mediated mechanism through upregulation of SR-B1 in the liver and ABCG8 in the small intestine.
Collapse
Affiliation(s)
- Xingming Hou
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266071, China
| | - Congxiao Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266071, China
| | - Limei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266071, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266071, China
| |
Collapse
|
15
|
Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 2020; 117:1033-1045. [PMID: 32886765 DOI: 10.1093/cvr/cvaa252] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is a post-translational modification consisting in the enzymatic attachment of carbohydrate chains to specific residues of the protein sequence. Several types of glycosylation have been described, with N-glycosylation and O-glycosylation being the most common types impacting on crucial biological processes, such as protein synthesis, trafficking, localization, and function. Genetic defects in genes involved in protein glycosylation may result in altered production and activity of several proteins, with a broad range of clinical manifestations, including dyslipidaemia and atherosclerosis. A large number of apolipoproteins, lipoprotein receptors, and other proteins involved in lipoprotein metabolism are glycosylated, and alterations in their glycosylation profile are associated with changes in their expression and/or function. Rare genetic diseases and population genetics have provided additional information linking protein glycosylation to the regulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| |
Collapse
|
16
|
Ma B, Jia J, Wang X, Zhang R, Niu S, Ni L, Di X, Liu C. Differential roles of Scavenger receptor class B type I: A protective molecule and a facilitator of atherosclerosis (Review). Mol Med Rep 2020; 22:2599-2604. [PMID: 32945418 PMCID: PMC7453654 DOI: 10.3892/mmr.2020.11383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The scavenger receptor class B type I (SR-BI) is a multi-ligand membrane protein receptor that binds to high-density lipoprotein (HDL) under physiological conditions, promoting the selective uptake of cholesterol esters from HDL into cells. SR-BI also promotes the reverse transport of excess cholesterol from peripheral tissues to the liver, contributing to the synthesis of bile acids for excretion and the removal of excess cholesterol from the body, thereby lowering the cholesterol load and exerting anti-atherosclerotic effects. Studies in mice and humans have demonstrated that a functional defect of SR-BI can cause atherosclerotic lesions and cardiovascular diseases, such as myocardial infarction and stroke. Additionally, SR-BI in vascular endothelial cells promoted the deposition of low-density lipoprotein under the endothelium. Although SR-BI is widely expressed in various tissues and cell types throughout the body, its expression level and function vary accordingly. The present review focuses on the biological functions and mechanisms of SR-BI in regulating atherosclerosis.
Collapse
Affiliation(s)
- Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xuebin Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
17
|
Jia XJ, Du Y, Jiang HJ, Li YZ, Xu YN, Si SY, Wang L, Hong B. Identification of Novel Compounds Enhancing SR-BI mRNA Stability through High-Throughput Screening. SLAS DISCOVERY 2019; 25:397-408. [PMID: 31858876 DOI: 10.1177/2472555219894543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases. Reverse cholesterol transport (RCT) is a main mechanism of cholesterol homeostasis and involves the direct transport of high-density lipoprotein (HDL) cholesteryl ester by selective cholesterol uptake. Hepatic scavenger receptor class B member 1 (SR-BI) overexpression can effectively promote RCT and reduce atherosclerosis. SR-BI may be an important target for prevention or treatment of atherosclerotic disease. In our study, we inserted human SR-BI mRNA 3' untranslated region (3'UTR) downstream of the luciferase reporter gene, to establish a high-throughput screening model based on stably transfected HepG2 cells and to screen small-molecule compounds that can significantly enhance the mRNA stability of the SR-BI gene. Through multiple screenings of 25 755 compounds, the top five active compounds that have similar structures were obtained, with a positive rate of 0.19%. The five positive compounds could enhance the SR-BI expression and uptake of DiI-HDL in the hepatocyte HepG2. E238B-63 could also effectively extend the half-life of SR-BI mRNA and enhance the SR-BI mRNA and protein level and the uptake of DiI-HDL in hepatocytes in a time-dependent and dose-dependent manner. The structure-activity relationship analysis showed that the structure N-(3-hydroxy-2-pyridyl) carboxamide is possibly the key pharmacophore of the active compound, providing reference for acquiring candidate compounds with better activity. The positive small molecular compounds obtained in this study might become new drug candidates or lead compounds for the treatment of cardiovascular diseases and contribute to the further study of the posttranscriptional regulation mechanism of the SR-BI gene.
Collapse
Affiliation(s)
- Xiao-Jian Jia
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen University Health Science Center, Shenzhen, PR China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hua-Jun Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yong-Zhen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan-Ni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shu-Yi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|