1
|
Wu X, Yang C, Sun F, Zhang Y, Wang Y, Li X, Zheng F. Enterotoxigenic Bacteroides fragilis (ETBF) Enhances Colorectal Cancer Cell Proliferation and Metastasis Through HDAC3/miR-139-3p Pathway. Biochem Genet 2024; 62:3904-3919. [PMID: 38244157 DOI: 10.1007/s10528-023-10621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is believed to promote the malignant process of colorectal cancer (CRC), but the underlying molecular mechanism still needs to be revealed. CRC cells (SW480 and HCT-116) were treated with ETBF strain. Cell proliferation, invasion and, migration were evaluated by cell counting kit 8 assay, EdU assay, colony formation assay, transwell assay, and wound healing assay. Protein expression was analyzed by western blot. MicroRNA (miR)-139-3p and histone deacetylase 3 (HDAC3) expression levels in tissues and cells were determined by qRT-PCR. Xenograft tumor model was conducted to evaluate the effect of miR-139-3p on CRC tumor growth. ETBF treatment could promote CRC cell proliferation, invasion and migration. MiR-139-3p expression was decreased by ETBF, and its overexpression reversed the effect of ETBF on CRC cell progression. HDAC3 negatively regulated miR-139-3p expression, and its overexpression facilitated CRC cell behaviors via reducing miR-139-3p expression. Moreover, HDAC3 expression was increased by ETBF, and its knockdown also abolished ETBF-mediated CRC cell progression. Additionally, miR-139-3p overexpression could reduce CRC tumor growth in vivo. ETBF aggravated CRC proliferation and metastasis via the regulation of HDAC3/miR-139-3p axis. The discovery of ETBF/HDAC3/miR-139-3p axis may provide a new direction for CRC treatment.
Collapse
Affiliation(s)
- Xiaoyong Wu
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Chengrui Yang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Fangyuan Sun
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Yanzhong Zhang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Yanliang Wang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Xuzhao Li
- Department of Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750011, Ningxia, China
| | - Fengxian Zheng
- Department of Critical Care Medicine, Affiliated Danzhou People's Hospital of Hainan Medical University, No. 21-1, Datong Road, Nada Town, Danzhou City, 571747, Hainan, China.
| |
Collapse
|
2
|
Wu S, Liu L, Tao T, Xiao J, Yang H, Yu X, Chen J, Tan Z, Wu P. circPTK2 promotes proliferation, migration and invasion of trophoblast cells through the miR-619/WNT7B pathway in preeclampsia. Mol Cell Biochem 2023; 478:2621-2627. [PMID: 36913151 DOI: 10.1007/s11010-023-04688-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
It has been shown that the circular RNA (circRNA) circPTK2 modulates many types of diseases. However, the possible functions as well as the molecular mechanisms of circPTK2 in preeclampsia (PE) and their effects on trophoblast are unknown. Herein, we obtained the placental tissues from 20 pregnant women with PE who delivered in the Yueyang Maternal Child Medicine Health Hospital between 2019 and 2021 to serve as the PE group, and a normal group was composed of 20 healthy pregnant women with normal prenatal examinations. The circPTK2 level was significantly reduced in tissues from the PE group. The expression and localization of circPTK2 were verified using RT-qPCR. CircPTK2 silencing inhibited HTR-8/SVneo growth and migration in vitro. To investigate the underlying mechanism of circPTK2 in PE progression, dual-luciferase reporter assays were conducted. It was found that circPTK2 and WNT7B could bind directly to miR-619, and that circPTK2 affected WNT7B expression by sponging miR-619. To conclude, this study identified the functions and mechanisms of the circPTK2/miR-619/WNT7B axis in PE progression. In this way, circPTK2 has the potential to be used both in diagnostic and therapeutic settings for PE.
Collapse
Affiliation(s)
- Shiyuan Wu
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Lingyan Liu
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Ting Tao
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Jingyan Xiao
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China
| | - Huizhi Yang
- Department of Gynaecology and Obstetrics, the Air Force Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaoshan Yu
- Department of Gynaecology and Obstetrics, the Air Force Hospital of Southern Theater Command, Guangzhou, China
| | - Jun Chen
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Zhiqin Tan
- Department of Gynaecology and Obstetrics, the Air Force Hospital of Southern Theater Command, Guangzhou, China.
| | - Peng Wu
- Scientific Research Institute, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, China.
- Hengyang Maternal and Child Health Hospital, Hengyang, China.
| |
Collapse
|
3
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Liang D, Liu H, Yang Q, He Y, Yan Y, Li N, You W. Retracted: Long noncoding RNA RHPN1-AS1, induced by KDM5B, is involved in breast cancer via sponging miR-6884-5p. J Cell Biochem 2023; 124:1064. [PMID: 32003509 DOI: 10.1002/jcb.29645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
The above article, published online in Journal of Cellular Biochemistry on 31 January 2020 in Wiley Online Library (https://doi.org/10.1002/jcb.29645), has been retracted by agreement between the authors, the journal's Editor in Chief, Prof. Dr. Christian Behl, and Wiley Periodicals LLC. The authors asked to retract their article after substantial mistakes in experimental data were found, thus the results are considered to be invalid.
Collapse
Affiliation(s)
- Dong Liang
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Hui Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Qinheng Yang
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yaning He
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yuan Yan
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Na Li
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Wei You
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Feng L, Feng Z, Hu J, Gao J, Li A, He X, Liu L, Shen Z. Identification of hsa-miR-619-5p and hsa-miR-4454 in plasma-derived exosomes as a potential biomarker for lung adenocarcinoma. Front Genet 2023; 14:1138230. [PMID: 37252659 PMCID: PMC10213947 DOI: 10.3389/fgene.2023.1138230] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Lung cancer has long been at the forefront of all cancers in terms of incidence and mortality. Lung adenocarcinoma is the most common type of lung cancer, accounting for 40% of all lung cancer types. Exosomes can act as biomarkers of tumors and thus play an important role. Methods: In this article, high-throughput sequencing of miRNAs in plasma exosomes from lung adenocarcinoma patients and healthy individuals was performed to obtain 87 upregulated miRNAs, which were then combined with data from the GSE137140 database uploaded by others for screening. The database included 1566 preoperative lung cancer patients, 180 postoperative patients, and 1774 non-cancerous controls. We overlapped the miRNAs upregulated in the serum of lung cancer patients in the database relative to those of non-cancer controls and post-operative patients with the upregulated miRNAs obtained from our next-generation sequencing to obtain nine miRNAs. Two miRNAs that were not reported as tumor markers in lung cancer, hsa-miR-4454 and hsa-miR-619-5p, were selected from them and then validated by qRT-PCR, and further analysis of miRNAs was performed using bioinformatics. Results: Real-time quantitative PCR showed that the expression levels of hsa-miR-4454 and hsa-miR-619-5p in plasma exosomes of patients with lung adenocarcinoma were significantly up-regulated. The AUC values of hsa-miR-619-5p and hsa-miR-4454 were 0.906 and 0.975, respectively, both greater than 0.5, showing good performance. The target genes of miRNAs were screened by bioinformatics methods, and the regulatory network between miRNAs and lncRNAs and mRNAs was studied. Discussion: Our work demonstrated that hsa-miR-4454 and hsa-miR-619-5p have the potential to be used as biomarkers for the early diagnosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Linxiang Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Jie Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Jiahui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Ang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Xiaodong He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Liu Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zuojun Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| |
Collapse
|
6
|
Hussain SA, Venkatesh T. YBX1/lncRNA SBF2-AS1 interaction regulates proliferation and tamoxifen sensitivity via PI3K/AKT/MTOR signaling in breast cancer cells. Mol Biol Rep 2023; 50:3413-3428. [PMID: 36754932 DOI: 10.1007/s11033-023-08308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Y-box binding protein 1 (YBX1) is a multifunctional oncoprotein that can interact with several long non-coding RNAs (lncRNAs) to regulate metastasis in malignancies including breast cancer (BC). In the present study, we demonstrated the association of YBX1 with oncogenic lncRNA SBF2-AS1 (SET-binding factor 2 antisense RNA 1) via PI3K/AKT/mTOR signaling to regulate BC cell proliferation. We further explored the involvement of the YBX1/SBF2-AS1/PI3K/AKT/mTOR axis in the restoration of tamoxifen (TAM) sensitivity. METHODS AND RESULTS YBX1-SBF2-AS1 association was predicted in silico and verified by RNA immunoprecipitation (RIP)-qPCR assay. Transfection experiments, Real-time RT PCR, Western blots, Phospho AKT/mTOR antibody array kit, and cell proliferation/apoptosis assays were employed to detect the YBX1/SBF2-AS1/ PI3K/AKT/mTOR axis and its effects upon TAM treatment in vitro. We identified that the YBX1 protein specifically binds to lncRNA SBF2-AS1. Our transfection experiments in MCF-7 and MDA-MB-468 cells with SBF2-AS1 silenced or overexpressed YBX1 plasmids, and their negative controls revealed that YBX1 regulates the expression of SBF2-AS1 by forming a positive feedback loop for its activation. We further demonstrated YBX1-SBF2-AS1 association exerts its effects on cell proliferation via PI3K/AKT/mTOR signaling pathway. Furthermore, we observed an increase in TAM sensitivity in BC cells after the knockdown of YBX1-SBF2-AS1 marked by decreased cell proliferation through disruption of the PI3K/AKT/mTOR axis. CONCLUSION Our study has identified a novel YBX1/SBF2-AS1/PI3K/AKT/mTOR regulatory axis which may serve as a potential target to improve the effectiveness and efficacy of TAM treatment in BC.
Collapse
Affiliation(s)
- Shaharbhanu A Hussain
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
7
|
Chen H, Wei L, Luo M, Wang X, Zhu C, Huang H, Liu X, Lu H, Zhong Y. LINC00324 suppresses apoptosis and autophagy in nasopharyngeal carcinoma through upregulation of PAD4 and activation of the PI3K/AKT signaling pathway. Cell Biol Toxicol 2022; 38:995-1011. [PMID: 34322788 DOI: 10.1007/s10565-021-09632-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) has high incidence in Southern China and is derived from the mucosal epithelium of the nasopharynx. Accumulating evidence has revealed that peptidyl arginine deiminase 4 (PAD4) exerts carcinogenic effect on certain cancers. We designed this study to probe the specific role that PAD4 plays in NPC and its molecular mechanism. METHODS PAD4 expression in NPC cells was detected by RT-qPCR analysis. MTT, colony formation, flow cytometry, TUNEL staining, and LC3-II punctuation experiments were done to probe into the biological functions of PAD4 on NPC cellular behaviors in vitro. Subsequently, the upstream regulatory mechanism of PAD4 was investigated by luciferase reporter, RNA pull-down, and RIP assays. The impact of PAD4 on NPC tumor growth in mice was assessed by in vivo xenograft tumor assay. RESULTS PAD4 was upregulated in NPC cells. PAD4 knockdown suppressed proliferative ability and promoted apoptosis and autophagy in NPC cells. Additionally, PAD4 expression was negatively regulated by microRNA 3164 (miR-3164). LINC00324 positively upregulated PAD4 expression by interacting with miR-3164 and recruiting HuR protein. The LINC00324/miR-3164/PAD4 axis modulated the PI3K/AKT pathway in NPC cells. Moreover, PAD4 upregulation countervailed the influences of LINC00324 deficiency on NPC cell proliferation, apoptosis, and autophagy and on NPC tumor growth in mice. CONCLUSION LINC00324 promoted NPC malignancy by upregulation of PAD4 to activate the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Lining Wei
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Luo
- Department of Oncology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Xiaochen Wang
- Department of Oncology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Chaohua Zhu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Huixian Huang
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Xu Liu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China
| | - Heming Lu
- Department of Radiation Oncology, People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning, 530021, Guangxi, China.
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
8
|
Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. DISEASE MARKERS 2022; 2022:4782361. [PMID: 35968497 PMCID: PMC9374557 DOI: 10.1155/2022/4782361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular inflammatory disease. The regulatory mechanisms during AAA formation remain unclear. Bone marrow stem cells (BMSCs) are pluripotent cells capable of regulating the progression of various diseases by delivering exosomes and exosomal lncRNAs. In this study, we investigated its function in AAA by isolating BMSC exosome-derived lncRNA SBF2-AS1. The results showed that BF2-AS1 could be transferred to vascular smooth muscle cells (VSMCs) and human aortic VSMCs (HASMCs) via BMSC-derived exosomes. Depletion of SBF2-AS1 enhanced the cell viability and proliferation of VSMCs. Conversely, SBF2-AS1 knockdown inhibited VSMC apoptosis. Caspase-3 activity was inhibited by depletion of SBF2-AS1, whereas overexpression of SBF2-AS1 in VSMC promoted Caspase-3 activity. SBF2-AS1 enhances SMARCD1 expression by forming miR-520f-3p in VSMC and HASMC. Overexpression of SMARCD1 or miR-520f-3p inhibitor reversed cell viability and caspase-3 activity mediated by SBF2-AS1 depletion in VSMC and HASMC. Therefore, BMSC exosome-derived SBF2-AS1 promotes AAA formation through the miRNA-520f-3p/SMARCD1 axis. Targeting SBF2-AS1 could serve as a promising therapeutic strategy for AAA.
Collapse
|
9
|
Tan F, Chen J, Wang B, Du Z, Mou J, Wu Y, Liu Y, Zhao F, Yuan C. LncRNA SBF2-AS1: A Budding Star in Various Cancers. Curr Pharm Des 2022; 28:1513-1522. [PMID: 35440300 DOI: 10.2174/1381612828666220418131506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Long non-coding RNA (lncRNA) is a new kind of RNA with lengths over 200 nucleotides. Current frontiers revealed that lncRNAs implicate in various tumor progression, including tumorigenesis, proliferation, migration, invasion, metastasis and angiogenesis. Recently discovered long non-coding RNA SET-binding factor 2 antisense RNA 1 (lncRNA SBF2-AS1), an oncogenic antisense RNA to SBF2, locates at 11p15.1 locus and is 2708 nt long. Accumulating evidences have demonstrated that lncRNA SBF2-AS1 participates in various tumor progression including pathogenesis, diagnosis, treatment and prognosis of acute myeloid leukemia (AML), breast cancer (BC), cervical cancer (CC), clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), glioma, glioblastoma (GBM), hepatocellular carcinoma (HCC), lung cancer (LC), lung adenocarcinoma (LUAD), non-small cell lung cancer (NSCLC), osteosarcoma (OS), pancreatic cancer (PC), papillary thyroid cancer (PTC), small cell lung cancer (SCLC). Therefore, we summarized the underlying mechanisms about lncRNA SBF2-AS1 in various cancers to utilize its therapeutic function in target-selective treatment modality.
Collapse
Affiliation(s)
- Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Zhuoying Du
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Jie Mou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Yinxin Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Yuling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Fangnan Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.,Medical College,China Three Gorges University, Yichang 443002, China
| |
Collapse
|
10
|
Identification of differentially expressed miRNAs derived from serum exosomes associated with gastric cancer by microarray analysis. Clin Chim Acta 2022; 531:25-35. [PMID: 35300960 DOI: 10.1016/j.cca.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS To explore the differentially expressed microRNAs (DEMs) in serum exosomes between gastric cancer (GC) patients and healthy people to provide new targets for GC diagnosis and treatment. METHODS DEMs in serum exosomes were screened by microarray analysis and verified by RT-qPCR. The target genes of DEMs were predicted using Targetscan and miRTarBase databases and then overlapped with the DEGs of STAD in TCGA database to obtain the common target genes. Biological function and pathway enrichment were analyzed using enrichr database, and a PPI network was constructed using STRING database. The potential target genes of DEMs were identified using the MCODE and cytoHubba plug-ins of Cytoscape software. Survival analysis were conducted using KMP and TCGA databases. The DEMs -target genes-pathways network was established using Cytoscape software. A Cox proportional hazards regression model formed by optimal target genes was used to access the reliability of this prediction process. RESULTS Three serum exosomal microRNAs (exo-miRNAs, has-miR-1273 g-3p, has-miR-4793-3p, has-miR-619-5p) were identified to be highly expressed in GC patients and performed excellent diagnostic ability. A total of 179 common target genes related to GC were predicted. They were mainly involved in 79 GO functional annotations and 6 KEGG pathways. The prognostic model formed by eight optimal target genes (TIMELESS, DNA2, MELK, CHAF1B, DBF4, PAICS, CHEK1 and NCAPG2), which were low-risk genes of GC, also performed perfect prognostic ability. CONCLUSIONS Serum exosomal has-miR-1273 g-3p, has-miR-4793-3p and has-miR-619-5p can be used as new diagnostic biomarkers for GC. Among them, serum exosomal hsa-miR-1273 g-3p / hsa-miR-4793-3p targets MELK and hsa-miR-619-5p targets NCAPG2 were identified as novel mechanisms involved in the development of GC. It provides new targets for the diagnosis and treatment of GC by exo-miRNAs.
Collapse
|
11
|
Luo Z, Hao S, Yuan J, Zhu K, Liu S, Zhang J, Yao L. Long non-coding RNA LINC00958 promotes colorectal cancer progression by enhancing the expression of LEM domain containing 1 via microRNA miR-3064-5p. Bioengineered 2021; 12:8100-8115. [PMID: 34672237 PMCID: PMC8806780 DOI: 10.1080/21655979.2021.1985259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a common cause of cancer-related death worldwide. Thus, there is an urgent need to determine the mechanism of progression of colorectal cancer. In this study, we investigated the function and mechanism of long non-coding RNA LINC00958, providing a new biomarker for colorectal cancer. The expression of LINC00958, miR-3064-5p, and LEM domain containing 1 (LEMD1) in colorectal cancer tissues and cell lines was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between LINC00958, miR-3064-5p, and LEMD1 was assessed using the luciferase assay. The viability, proliferation, migration, invasion, and apoptosis of colorectal cancer cells with silenced LINC00958, miR-3064-5p, and LEMD1 were investigated using the cell counting kit-8 (CCK-8), 5′-Bromo-2′-deoxyuridine (BrdU), flow cytometry, wound healing, and transwell assays. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein levels were measured by western blotting. LINC00958 and LEMD1 were found to have increased, while the expression of miR-3064-5p was decreased in colorectal cancer tissues and cell lines. Silencing of LINC00958 hampered cell viability, proliferation, migration, and invasion, while enhancing the apoptosis in colorectal cancer cells. Notably, LINC00958 inhibited miR-3064-5p and promoted LEMD1; the miR-3064-5p inhibitor abrogated the effect of LINC00958 silencing in colorectal cancer cells. Additionally, LEMD1 knockdown inhibited the activation of PI3K/AKT signaling. Our analyses have shown that LINC00958 could facilitate the progression of colorectal cancer by sponging miR-3064-5p and releasing LEMD1, leading to the activation of the PI3K/AKT pathway. Thus, LINC00958 may be considered as an effective biomarker for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shunxin Hao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jian Yuan
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuo Liu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lei Yao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Li Y, Tang B, Lyu K, Yue H, Wei F, Xu Y, Chen S, Lin Y, Cai Z, Guo X, Li C, Lei W. Low expression of lncRNA SBF2-AS1 regulates the miR-302b-3p/TGFBR2 axis, promoting metastasis in laryngeal cancer. Mol Carcinog 2021; 61:45-58. [PMID: 34644425 DOI: 10.1002/mc.23358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023]
Abstract
The 5-year survival rate of laryngeal cancer continues to decline, and the laryngeal particularity of the anatomy adversely affects the patient's quality of life. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are closely correlated to key steps in the malignant progression of cancer cells. In this study, we report the role of lncRNA SBF2-AS1/miR-302b-3p/TGFBR2 interactions in the metastasis of laryngeal squamous cell carcinoma (LSCC). We verified that SBF2-AS1 was significantly downregulated in LSCC tissues and cell lines using qRT-PCR analysis. Its low expression was correlated to lymph node metastasis and an advanced clinical stage. More importantly, LSCC patients with low expression of SBF2-AS1 tended to have a poor prognosis. Based on this, we performed gain-of-function and loss-of-function experiments in LSCC cell lines. The results confirmed that knocking down SBF2-AS1 can promote the metastasis of LSCC cells and enhance epithelial-mesenchymal transition phenotype, while the upregulation of SBF2-AS1 expression resulted in the opposite. Our in vivo model verified that SBF2-AS1 overexpression could inhibit LSCC cell metastasis. Subsequent mechanistic studies revealed that SBF2-AS1 acted as a competing endogenous RNA that upregulated the expression of TGFBR2 by endogenous sponging for miR-302b-3p in LSCC cell lines. Moreover, miR-302b-3p overexpression reversed the inhibitory effects on LSCC metastasis induced by upregulation of SBF2-AS1 expression, and inhibition of TGFBR2 expression reversed the effect of SBF2-AS1 on metastasis. Our study proposes SBF2-AS1 as a biomarker to predict the prognosis of LSCC patients and a novel potential therapeutic target.
Collapse
Affiliation(s)
- Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingjie Tang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kexing Lyu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanqin Wei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xu
- Department of Otolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Siyu Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhimou Cai
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueqin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Lu Q, Lou J, Cai R, Han W, Pan H. Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers. Cancer Cell Int 2021; 21:417. [PMID: 34372871 PMCID: PMC8351094 DOI: 10.1186/s12935-021-02123-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs refer to transcripts over 200 nt in length that lack the ability to encode proteins, which occupy the majority of the genome and play a crucial role in the occurrence and development of human diseases, especially cancers. SBF2-AS1, a newly identified long non-coding RNA, has been verified to be highly expressed in diversiform cancers, and is involved in processes promoting tumorigenesis, tumor progression and tumor metastasis. Moreover, upregulation of SBF2-AS1 expression was significantly related to disadvantageous clinicopathologic characteristics and indicated poor prognosis. In this review, we comprehensively summarize the up-to-date knowledge of the detailed mechanisms and underlying functions of SBF2-AS1 in diverse cancer types, highlighting the potential of SBF2-AS1 as a diagnostic and prognostic biomarker and even a therapeutic target.
Collapse
Affiliation(s)
- Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Wu YH, Yu B, Chen WX, Ai X, Zhang W, Dong W, Shao YJ. Downregulation of lncRNA SBF2-AS1 inhibits hepatocellular carcinoma proliferation and migration by regulating the miR-361-5p/TGF-β1 signaling pathway. Aging (Albany NY) 2021; 13:19260-19271. [PMID: 34341185 PMCID: PMC8386566 DOI: 10.18632/aging.203248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
SBF2-AS1 is an oncogenic long non-coding RNA (lncRNA). However, its role and mechanism in hepatocellular carcinoma (HCC) is still not completely clear. The HepG2, Hep3B, Bel-7402 and HL-7702 cell lines were used in our experiments. The CCK-8 kit and EdU staining were applied to detect cell viability and multiplication. The wound healing and Boyden chamber cell migration assays were employed to test the migration ability of cells. The levels of TGF-β1 mRNA, lncRNA SBF2-AS1, and miR-361-5p were assessed by real-time PCR. TGF-β1 protein levels were evaluated by western blotting. The direct interaction between miR-361-5p and TGF-β1 was determined by luciferase reporter assays. A xenograft mouse model (XMM) was established to comprehensively study the effect and mechanisms of lncRNA SBF2-AS1. lncRNA SBF2-AS1 concentration in HCC cells exceeded that in a normal hepatocyte cell line. The downregulation of lncRNA SBF2-AS1 upregulated miR-361-5p levels in HCC cells. And, miR-361-5p negatively regulate TGF-β1 expression in HCC cells. The suppression of miR-361-5p attenuated the influence of lncRNA SBF2-AS1 downregulation on the viability, proliferation, and migration capability of HCC cells. Further, the downregulation of lncRNA SBF2-AS1 inhibited neoplasm growth in an XMM of HCC. Simultaneously, miR-361-5p was upregulated and TGF-β1 was downregulated after lncRNA SBF2-AS1 knocked down. In conclusion, downregulation of lncRNA SBF2-AS1 inhibits HCC proliferation and migration through the regulation of the miR-361-5p/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Yan-Hui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei-Xun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Ai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Jie Shao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Zhang Q, Liu XJ, Li Y, Ying XW, Chen L. Prognostic Value of Immune-Related lncRNA SBF2-AS1 in Diffuse Lower-Grade Glioma. Technol Cancer Res Treat 2021; 20:15330338211011966. [PMID: 34159865 PMCID: PMC8226362 DOI: 10.1177/15330338211011966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
LncRNA SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1) has been proven to
play an oncogenic role in various types of tumors, but the prognostic role of
SBF2-AS1 in tumors, especially in diffuse lower-grade glioma (LGG), is still
unclear. Here, we aimed to investigate the prognostic value of SBF2-AS1 in LGG.
The LGG expression profiles from The Cancer Genome Atlas (TCGA,
n = 524) and Chinese Glioma Genome Atlas (CGGA,
n = 431) were mined by Kaplan-Meier analysis, Cox
regression analysis, Chi-square test and GSEA analysis. Through Kaplan-Meier
analysis, we found the prognosis of LGG patients with high expression of
SBF2-AS1 were worse than that of patients with low expression (Log Rank
P < 0.001). Cox analysis showed SBF2-AS1 was an
independent prognostic factor for poorer overall survival in LGG
(P < 0.05). SBF2-AS1 was found to be significantly
related to IDH mutation status and SBF2-AS1 was highly expressed in IDH wildtype
group. GSEA analysis obtained a total of 126 GO terms and 6 KEGG pathways that
were significantly enriched in SBF2-AS1 high expression phenotype (NOM
P value < 0.05). We found these 126 GO terms and KEGG
pathways were mainly related to immunity. In conclusion, lncRNA SBF2-AS1
expression is an immune-related lncRNA associated with unfavorable overall
survival in LGG. SBF2-AS1 could be a reliable prognostic biomarker for patients
with LGG.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical laboratory, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Xiao-Jun Liu
- External Liaison Office, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Yang Li
- The Emergency Department, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Xiao-Wei Ying
- Department of Hepatopancreatobiliary Surgery, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Lu Chen
- Department of Hepatopancreatobiliary Surgery, The People's Hospital of Lishui, Lishui, Zhejiang, China
| |
Collapse
|
16
|
Comprehensive analysis of long non-coding RNA and mRNA expression profile in rectal cancer. Chin Med J (Engl) 2021; 133:1312-1321. [PMID: 32224706 PMCID: PMC7289300 DOI: 10.1097/cm9.0000000000000753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Rectal cancer (RC) is a malignant tumor that seriously threatens human health. Long non-coding RNAs (lncRNAs) play a vital role in tumor regulation. Nevertheless, their exact expression features and functions remain obscure, and therefore was the aim of the current study. METHODS We utilized the Affymetrix human GeneChip to screen differentially expressed profiles of lncRNAs and mRNAs from the cancer tissues and matched paracancer tissues of 6 RC patients. Gene Ontology (GO) and pathway enrichment analyses identified crucial functions and pathways of the aberrantly expressed mRNAs. We used quantitative real-time polymerase chain reaction to verify the significant expression differences of 11 candidate lncRNAs between the cancer and paracancer tissues. LncRNA-mRNA coexpression networks were built by calculating the Pearson correlation value to identify significant correlation pairs. Online bioinformatics tools GEPIA2, ONCOMINE, and PROGgeneV2 were used to mine the expression and prognosis of three crucial mRNAs and six verified lncRNAs. Competing endogenous RNA networks were constructed by predicting microRNA response elements and calculating free energy. RESULTS We found 1658 differentially expressed lncRNAs (778 up-regulated and 880 down-regulated) and 1783 aberrantly expressed mRNAs (909 up-regulated and 874 down-regulated). GO and pathway enrichment analyses revealed the vital functions of the differentially expressed mRNAs, including cell proliferation, cell migration, angiogenesis, and cellular response to zinc ion. The canonical signaling pathways mainly included the interleukin-17, cell cycle, Wnt, and mineral absorption signaling pathways. Six lncRNAs including AC017002.2 (P = 0.039), cancer susceptibility 19 (CASC19) (P = 0.021), LINC00152 (P = 0.013), NONHSAT058834 (P = 0.007), NONHSAT007692 (P = 0.045), and ENST00000415991.1 (P = 0.045) showed significant differences in expression levels between the cancer tissue and paracancer tissue groups. AC017002.2, NONHSAT058834, NONHSAT007692, and ENST00000415991.1 have not yet been reported in RC. The crucial mRNAs myelocytomatosis viral oncogene (MYC), transforming growth factor beta induced (TGFBI), and solute carrier family 7 member 5 (SLC7A5) were selected. AC017002.2 and LINC00152 were positively correlated with MYC, TGFBI, and cytochrome P450 family 2 sub-family B member 6 (All r > 0.900, P < 0.050). NONHSAT058834 was positively associated with MYC (r = 0.930, P < 0.001), and CASC19 was positively correlated with SLC7A5 (r = 0.922, P < 0.001). CONCLUSION This study offers convincing evidence of differentially expressed lncRNAs and mRNAs as potential biomarkers in RC.
Collapse
|
17
|
Wang J, Zhong P, Hua H. The Clinical Prognostic Value of lncRNA SBF2-AS1 in Cancer Patients: A Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211004915. [PMID: 33906548 PMCID: PMC8107676 DOI: 10.1177/15330338211004915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: The mortality and recurrence of patients with cancer is of high prevalence. SET-binding factor 2 (SBF2) antisense RNA1 (lncRNA-SBF2-AS1) is a promising long non-coding RNA. There is increasing evidence that SBF2-AS1 is abnormally expressed in various tumors and is associated with cancer prognosis. However, the identification of the effect of lncRNA SBF2-AS1 in tumors remains necessary. Materials and Methods: Up to November 2, 2020, electronic databases, including PubMed, Cochrane Library, EMBASE, Medline, and Web of Science, were searched. The results were evaluated by pooled odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs). Results: A total of 11 literatures on cancer patients were included for the present meta-analysis. The combined results revealed that high expression of SBF2-AS1 was significantly associated with unfavorable overall survival (OS) (HR = 1.48, 95% CI: 1.34-1.62, P < 0.00001) in a variety of cancers. In additional, the increase in SBF2-AS1 expression was also correlated with tumor size ((larger vs. smaller) OR = 2.34, 95% CI: 1.47-3.70, P = 0.0003), advanced TNM stage ((III/IV vs. I/II) OR = 2.78, 95% CI: 1.75-4.41, P < 0.0001), lymph node metastasis ((Positive vs. Negative) OR = 3.06, 95% CI: 1.93-4.86, P < 0.00001), and histological grade ((poorly vs. well/moderately) OR = 2.58, 95% CI: 1.47-4.52, P = 0.001) in patients with cancer. Furthermore, The Cancer Genome Atlas (TCGA) dataset valuated that SBF2-AS1 was upregulated in a variety of tumors, and predicted the worse prognosis. Conclusions: Our results of this meta-analysis demonstrate that high SBF2-AS1 expression may become a potential target for predicting the prognosis of human cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The 371971First People's Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|
18
|
Woźniak E, Reszka E, Jabłońska E, Michałowicz J, Huras B, Bukowska B. Glyphosate and AMPA Induce Alterations in Expression of Genes Involved in Chromatin Architecture in Human Peripheral Blood Mononuclear Cells (In Vitro). Int J Mol Sci 2021; 22:2966. [PMID: 33803994 PMCID: PMC7998550 DOI: 10.3390/ijms22062966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
We have determined the effect of glyphosate and aminomethylphosphonic acid (AMPA) on expression of genes involved in chromatin architecture in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with glyphosate and AMPA in the concentrations ranging from 0.5 to 100 μM and from 0.5, to 250 μM, respectively. The expression profile of the following genes by quantitative Real-Time PCR was evaluated: Genes involved in the DNA methylation (DNMT1, DNMT3A) and DNA demethylation process (TET3) and those involved in chromatin remodeling: genes involved in the modification of histone methylation (EHMT1, EHMT2) and genes involved in the modification of histone deacetylation (HDAC3, HDAC5). Gene profiling showed that glyphosate changed the expression of DNMT1, DMNT3A, and HDAC3, while AMPA changed the expression of DNMT1 and HDAC3. The results also revealed that glyphosate at lower concentrations than AMPA upregulated the expression of the tested genes. Both compounds studied altered expression of genes, which are characteristic for the regulation of transcriptionally inactive chromatin. However, the unknown activity of many other proteins involved in chromatin structure regulation prevents to carry out an unambiguous evaluation of the effect of tested xenobiotics on the studied process. Undoubtedly, we have observed that glyphosate and AMPA affect epigenetic processes that regulate chromatin architecture.
Collapse
Affiliation(s)
- Ewelina Woźniak
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.W.); (J.M.)
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Teresy 8, 91-348 Lodz, Poland; (E.R.); (E.J.)
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Teresy 8, 91-348 Lodz, Poland; (E.R.); (E.J.)
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.W.); (J.M.)
| | - Bogumiła Huras
- Łukasiewicz Research Network, Institute of Industrial Organic Chemistry, Annopol 6 Str, 03-236 Warsaw, Poland;
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.W.); (J.M.)
| |
Collapse
|
19
|
Liu W, Li S. LncRNA ILF3-AS1 Promotes the Progression of Colon Adenocarcinoma Cells Through the miR-619-5p/CAMK1D Axis. Onco Targets Ther 2021; 14:1861-1872. [PMID: 33737811 PMCID: PMC7966390 DOI: 10.2147/ott.s296441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Colon adenocarcinoma (COAD) is the third most common tumor of the digestive tract. Recent studies reported that lncRNA’s abnormal expression might play a vital role in the occurrence and development of COAD. Methods In the present study, we investigated the expression of ILF3-AS1 in COAD cell lines, human normal colon epithelial cell line, patient tumor tissues and adjacent normal tissues by real-time quantitative PCR (RT-qPCR). Small interfering RNAs (siRNAs) were transfected into COAD cells to inhibit the expression of ILF3-AS1. The effects of ILF3-AS1 on cell proliferation, migration, invasion and apoptosis were measured by CCK-8 assay, transwell migration and invasion assay, and flow cytometry apoptosis assay, respectively. The direct binding of ILF3-AS1 and miR-619-5p/CAMK1D was validated by the luciferase reporter assay. The expression of CAMK1D and epithelial-mesenchymal transformation (EMT)-related proteins was detected by Western Blot analysis. Besides, in vivo experiments were conducted to demonstrate the oncogenic role of ILF3-AS1 in COAD. Results The results showed that the expression of ILF3-AS1 was significantly higher in COAD tissue than in normal adjacent samples, and this conclusion was confirmed in the available public datasets. After ILF3-AS1 knockdown, the proliferation of COAD cell lines SW480 and HT29 was significantly inhibited. At the same time, the apoptosis was increased, and the invasion and migration abilities were decreased. After further exploring the mechanisms, we found that ILF3-AS1 serves as a competitive endogenous RNA of mir-619-5p. It can bind to mir-619-5p and reduce its expression, thus regulating the target gene CAMK1D. In addition, we found that high expression of ILF3-AS1 was significantly associated with tumor grade, tumor size, and distant metastasis in COAD samples. In vivo experiments confirmed that ILF3-AS1 promotes tumor growth in COAD models. Conclusion The present study demonstrated that ILF3-AS1 plays an oncogenic role in COAD through regulating the miR-619-5p/CAMK1D axis, and inhibition of ILF3-AS1 may pave the way for COAD treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Gastrointestinal Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, 433000, People's Republic of China
| | - Shan Li
- Department of Endocrinology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, 433000, People's Republic of China
| |
Collapse
|
20
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Liu J, Huang S, Liao X, Chen Z, Li L, Yu L, Zhan W, Li R. LncRNA EWSAT1 Promotes Colorectal Cancer Progression Through Sponging miR-326 to Modulate FBXL20 Expression. Onco Targets Ther 2021; 14:367-378. [PMID: 33469313 PMCID: PMC7812937 DOI: 10.2147/ott.s272895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ewing sarcoma-associated transcript 1 (EWSAT1) has been reported to be a pivotal modulator in a series of cancers. However, the function of EWSAT1 in colorectal cancer (CRC) has not been elaborated. This study aimed to explore the role of EWSAT1 in CRC progression and the underlying mechanisms. METHODS The expression patterns of EWSAT1, miR-326 and FBXL20 were examined by qCRCR. Si-EWSAT1 was transfected to study the effects of EWSAT1 on cell proliferation and metastasis. Rescue experiments were performed to investigate the underlying mechanisms in vitro. Xenograft models were used to evaluate the role of EWSAT1 in vivo. RESULTS We found that EWSAT1 was highly expressed in CRC tissues and cell lines and associated with poor overall survival. In vitro, knockdown of EWSAT1 suppressed the cell proliferation, migration and invasion. Moreover, miR-326 was found to be a target of EWSAT1, and miR-326 inhibitor could partially reverse the effects on CRC cell progression induced by si-EWSAT1. Subsequently, we validated FBXL20 as a vital downstream target for miR-326, and EWSAT1 positively regulated FBXL20 via miR-326 in vitro. In addition, these findings were confirmed by in vivo experiments. CONCLUSION Taken together, the data showed that EWSAT1 promoted CRC progression via targeting miR-326/FBXL20 pathway, which might provide a novel therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Jing Liu
- Imaging Department, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shimei Huang
- Forensic Clinical Teaching and Research Office, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Xin Liao
- Imaging Department, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhongsheng Chen
- Surgery, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lianghe Li
- Surgery, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang, People’s Republic of China
| | - Wei Zhan
- General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People’s Hospital, Guiyang, People’s Republic of China
| |
Collapse
|
22
|
Wu M, Zhao Y, Peng N, Tao Z, Chen B. Identification of chemoresistance-associated microRNAs and hub genes in breast cancer using bioinformatics analysis. Invest New Drugs 2021; 39:705-712. [PMID: 33394259 DOI: 10.1007/s10637-020-01059-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Breast cancer threatens women's health. Although there are a lot of methods to treat breast cancer, chemotherapy resistance still hinders the effectiveness of treatment. This study attempts to explore the mechanism of chemotherapy resistance from the perspective of miRNA and look for several new targets for developing new drugs. Three datasets (GSE73736, GSE71142 and GSE6434) from Gene Expression Omnibus (GEO) were used for the bioinformatics analysis. Differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DE-genes) were obtained by using R package "limma". DAVID tool was used to perform gene ontology annotation analysis (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the overlapping genes. Protein-protein interaction (PPI) network was established by STRING database and visualized by software Cytoscape. Hub genes were identified by software Cytoscape. The prognostic value of hub genes was assessed through Kaplan-Meier plotter website. In total, 22 DE-miRNAs, 1932 DE-genes and top 10 hub genes were obtained. The genes were mainly enriched in cell signaling pathways like ErbB signaling pathway and PI3K / AKT/mTOR pathway. These pathways have a significant impact on the proliferation, invasion and drug resistance in cancer. MiRNA-Gene interaction may provide new insight for exploring the mechanism of chemotherapy resistance in breast cancer. Our study ultimately identified effective biomarkers and potential drug targets, which may enhance the effect of chemotherapy in patients with breast cancer.
Collapse
Affiliation(s)
- Ming Wu
- Departments of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yujie Zhao
- Departments of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Nanxi Peng
- Departments of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Zuo Tao
- Departments of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Bo Chen
- Departments of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
23
|
Yu XH, Deng WY, Chen JJ, Xu XD, Liu XX, Chen L, Shi MW, Liu QX, Tao M, Ren K. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis 2020; 11:1043. [PMID: 33293505 PMCID: PMC7723992 DOI: 10.1038/s41419-020-03263-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Kcnq1 overlapping transcript 1 (kcnq1ot1), an imprinted antisense lncRNA in the kcnq1 locus, acts as a potential contributor to cardiovascular disease, but its role in atherosclerosis remains unknown. The aim of this study was to explore the effects of kcnq1ot1 on atherogenesis and the underlying mechanism. Our results showed that kcnq1ot1 expression was significantly increased in mouse aorta with atherosclerosis and lipid-loaded macrophages. Lentivirus-mediated kcnq1ot1 overexpression markedly increased atherosclerotic plaque area and decreased plasma HDL-C levels and RCT efficiency in apoE-/- mice fed a Western diet. Upregulation of kcnq1ot1 also reduced the expression of miR-452-3p and ABCA1 but increased HDAC3 levels in mouse aorta and THP-1 macrophages. Accordingly, kcnq1ot1 overexpression inhibited cholesterol efflux and promoted lipid accumulation in THP-1 macrophages. In contrast, kcnq1ot1 knockdown protected against atherosclerosis in apoE-/- mice and suppressed lipid accumulation in THP-1 macrophages. Mechanistically, kcnq1ot1 enhanced HDAC3 expression by competitively binding to miR-452-3p, thereby inhibiting ABCA1 expression and subsequent cholesterol efflux. Taken together, these findings suggest that kcnq1ot1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the miR-452-3p/HDAC3/ABCA1 pathway.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Jiao-Jiao Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xian-Xia Liu
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Meng-Wen Shi
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qi-Xian Liu
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Min Tao
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Kun Ren
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China. .,Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
24
|
Li J, Hu M, Liu N, Li H, Yu Z, Yan Q, Zhou M, Wang Y, Song Y, Pan G, Liang F, Chen R. HDAC3 deteriorates colorectal cancer progression via microRNA-296-3p/TGIF1/TGFβ axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:248. [PMID: 33203425 PMCID: PMC7670781 DOI: 10.1186/s13046-020-01720-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Background The mechanism of histone deacetylase 3 (HDAC3) in colorectal cancer (CRC) has already been discussed. However, the feedback loop of HDAC3/microRNA (miR)-296-3p and transforming growth factor β-induced factor 1 (TGIF1) in CRC has not been explained clearly. Thus, the mainstay of this study is to delve out the mechanism of this axis in CRC. Methods To demonstrate that HDAC3 regulates the miR-296-3p/TGIF1/TGFβ axis and is involved in CRC progression, a series of cell biological, molecular and biochemical approaches were conducted from the clinical research level, in vitro experiments and in vivo experiments. These methods included RT-qPCR, Western blot assay, cell transfection, MTT assay, EdU assay, flow cytometry, scratch test, Transwell assay, dual luciferase reporter gene assay, chromatin immunoprecipitation, nude mouse xenograft, H&E staining and TUNEL staining. Results Higher HDAC3 and TGIF1 and lower miR-296-3p expression levels were found in CRC tissues. HDAC3 was negatively connected with miR-296-3p while positively correlated with TGIF1, and miR-296-3p was negatively connected with TGIF1. Depleted HDAC3 elevated miR-296-3p expression and reduced TGIF1 expression, decreased TGFβ pathway-related proteins, inhibited CRC proliferation, invasion, and migration in vitro and slowed down tumor growth and induction of apoptosis in vivo, which were reversed by miR-296-3p knockdown. Restored miR-296-3p suppressed TGIF1 and reduced TGFβ pathway-related proteins, inhibited CRC proliferation, invasion, and migration in vitro and slowed down tumor growth and induction of apoptosis in vivo, which were reversed by TGIF1 overexpression. Conclusion This study illustrates that down-regulation of HDAC3 or TGIF1 or up-regulation of miR-296-3p discourages CRC cell progression and slows down tumor growth, which guides towards a novel direction of CRC treatment.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Man Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Na Liu
- Rehabilitation Department of traditional Chinese Medicine, Union Red Cross Hospital, Wuhan, 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Zhaomin Yu
- Department of oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430071, China
| | - Qian Yan
- First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Yayuan Wang
- College of Acupuncture & Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Yanjuan Song
- College of Acupuncture & Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Guangtao Pan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Fengxia Liang
- College of Acupuncture & Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, 430060, China.
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China.
| |
Collapse
|
25
|
Tang H, Han X, Feng Y, Hao Y. linc00968 inhibits the tumorigenesis and metastasis of lung adenocarcinoma via serving as a ceRNA against miR-9-5p and increasing CPEB3. Aging (Albany NY) 2020; 12:22582-22598. [PMID: 33159015 PMCID: PMC7746359 DOI: 10.18632/aging.103833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence confirms that long noncoding RNAs (lncRNAs) exert vital functions in multiple biological process among malignant cancers. In the current study, we uncovered that linc00968 was downregulated in lung adenocarcinoma (LUAD). Furthermore, the low level of linc00968 was correlated with worse prognosis in patients with LUAD. Upregulation of linc00968 restrained the growth and metastatic phenotypes of LUAD cell in vitro and in vivo. Using bioinformation methods and luciferase reporter assay, we identified that linc00968 acted as a competing endogenous RNA (ceRNA) via sponging miR-9-5p to modulate the level of Cytoplasmic Polyadenylation Element Binding Protein 3 (CPEB3) in LUAD. In addition, LUAD cell migration, colony formation and epithelial-mesenchymal transition (EMT) process were suppressed by linc00968 while these aggressive traits were reversed by miR-142-5p or CPEB3 silencing. Altogether, our work disclosed that linc00968 played a critical role in LUAD and linc00968/miR-9-5p/CPEB3 regulatory axis might be a potential treatment target in LUAD.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xiaolei Han
- Health Office, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yan Feng
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yueqin Hao
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
26
|
Wu G, Xia P, Yan S, Chen D, Xie L, Fan G. Identification of unique long non-coding RNAs as putative biomarkers for chromophobe renal cell carcinoma. Per Med 2020; 18:9-19. [PMID: 33052074 DOI: 10.2217/pme-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate whether long non-coding RNAs (lncRNAs) can be utilized as molecular biomarkers in predicting the occurrence and progression of chromophobe renal cell carcinoma. Methods & results: Genetic and related clinical traits of chromophobe renal cell carcinoma were downloaded from the Cancer Genome Atlas and used to construct modules using weighted gene coexpression network analysis. In total, 44,889 genes were allocated into 21 coexpression modules depending on intergenic correlation. Among them, the green module was the most significant key module identified by module-trait correlation calculations (R2 = 0.43 and p = 4e-04). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that genes in the green module were enriched in many pathways. Coexpression, protein-protein interaction networks, screening for differentially expressed genes, and survival analysis were used to select hub lncRNAs. Five hub lncRNAs (TTK, CENPE, KIF2C, BUB1, and RAD51AP1) were selected out. Conclusion: Our findings suggest that the five lncRNAs may act as potential biomarkers for chromophobe renal cell carcinoma progression and prognosis.
Collapse
Affiliation(s)
- Guanlin Wu
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Pengfei Xia
- Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Shixian Yan
- Experimental & Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin-Buch, Germany.,Max DelbrückCenter for Molecular Medicine (MDC) in the Helmholtz Association, Berlin-Buch, Germany
| | - Dongming Chen
- Department of Cerebral Surgery, First People's Hospital of Tianmen, Tianmen, PR China
| | - Lei Xie
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, PR China
| |
Collapse
|
27
|
Chen Q, Guo SM, Huang HQ, Huang GP, Li Y, Li ZH, Huang R, Xiao L, Fan CR, Yuan Q, Zheng SL. Long noncoding RNA SBF2-AS1 contributes to the growth and metastatic phenotypes of NSCLC via regulating miR-338-3p/ADAM17 axis. Aging (Albany NY) 2020; 12:17902-17920. [PMID: 32976115 PMCID: PMC7585082 DOI: 10.18632/aging.103332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a type of refractory malignant lung cancer with a high rate of metastasis and mortality. Currently, long non-coding RNA (lncRNA) SBF2 Antisense RNA 1 (SBF2-AS1) is considered as a biomarker for a variety of tumors. However, the function of SBF2-AS1 in the growth and metastasis of NSCLC needs to be further studied. In this study, we revealed that SBF2-AS1 was overexpressed in NSCLC tissues compared with that in normal tissues. SBF2-AS1 silencing restrained the growth and aggressive phenotypes of NSCLC cell in vitro. Consistently, SBF2-AS1 knockdown hindered the growth of NSCLC cell in nude mice. The following luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay suggested the relationship between miR-338-3p and SBF2-AS1. The rescue experiments showed that miR-338-3p inhibitor abolished SBF2-AS1 silencing caused inhibition on the growth, migration and invasiveness of NSCLC cell. The luciferase reporter assay and immunoblotting assay validated that A Disintegrin and Metalloprotease 17 (ADAM17) was a target of miR-338-3p. In addition, SBF2-AS1 positively regulated the level of ADAM17 through sponging for miR-338-3p. Finally, we revealed that SBF2-AS1 contributed to the proliferation and metastatic phenotypes of NSCLC cell via regulating miR-338-3p/ADAM17 axis.
Collapse
Affiliation(s)
- Qi Chen
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sheng Min Guo
- Rehabilitation Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hou Qiang Huang
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guo Ping Huang
- Laboratory Medicine, Zigong Maternal and Child Care Service Centre, Zigong 643000, Sichuan, China
| | - Yi Li
- School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zi Hui Li
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Run Huang
- School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lu Xiao
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chun Rong Fan
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qing Yuan
- School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Si Lin Zheng
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
28
|
LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway. Oncogene 2020; 39:6879-6892. [PMID: 32978519 PMCID: PMC7644463 DOI: 10.1038/s41388-020-01466-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/05/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Glioma is the most common malignant tumor in the central nervous system. Altered long noncoding RNAs (lncRNAs) are playing regulatory roles in physiological and pathogenic processes in cancer. Here, we uncovered a differentially expressed lncRNA called brain cytoplasmic RNA 1 (BCYRN1), and elucidated its function and molecular mechanism in the progression and development of glioma. Three fresh tumor tissues from glioma patients and three normal brain tissues from craniocerebral trauma patients were prepared for high-throughput RNA sequencing. Differential RNA transcripts and BCYRN1 were identified by RT-qPCR in glioma samples and controls. CCK-8, colony formation assays, flow cytometry, TUNEL assays, cell migration assays, wound-healing assays, and xenograft model were established to investigate the biological function of BCYRN1 both in vitro and in vivo. Various bioinformatics analysis, dual-luciferase reporter assays, biotinylated RNA pulldown assays, and rescue experiments were conducted to reveal the underlying mechanisms of competitive endogenous RNAs (ceRNAs). 183 lncRNAs were identified with significant dysregulation in glioma and randomly selected differential RNAs were further confirmed by RT-qPCR. Among them, BCYRN1 was the most downregulated lncRNA, and its low expression positively correlated with glioma progression. Functionally, BCYRN1 overexpression inhibited cell proliferation, migration in glioma cell lines, whereas BCYRN1 depletion resulted in the opposite way. MiR-619-5p was further confirmed as the direct target of BCYRN1. Mechanistically, miR-619-5p specifically targeted the CUE domain containing protein 2 (CUEDC2), and BCYRN1/miR-619-5p suppressed glioma tumorigenesis by inactivating PTEN/AKT/p21 pathway in a CUEDC2-dependent manner. Overall, our data presented that the reduced expression of BCYRN1 was associated with poor patient outcome in glioma. BCYRN1 functioned as a ceRNA to inhibit glioma progression by sponging miR-619-5p to regulate CUEDC2 expression and PTEN/AKT/p21 pathway. Our results indicated that BCYRN1 exerted tumor suppressor potential and might be a candidate in the diagnosis and treatment of glioma.
Collapse
|
29
|
Zhao X, Weng W, Long Y, Pan W, Li Z, Sun F. LINC00665/miR-9-5p/ATF1 is a novel axis involved in the progression of colorectal cancer. Hum Cell 2020; 33:1142-1154. [PMID: 32776307 DOI: 10.1007/s13577-020-00393-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are abnormally expressed in many malignant tumors and involved in regulating the malignant phenotypes of cancer cells. However, the role of LINC00665 in colorectal cancer (CRC) and its regulatory mechanism remain unclear. In this study, real-time polymerase chain reaction (RT-PCR) was used to detect the expressions of LINC00665, miR-9-5p and activating transcription factor 1 (ATF1) mRNA in CRC tissues. The expression of ATF1 in CRC tissues was also detected by immunohistochemistry and Western blot. CCK-8 and colony formation assays were employed to detect cell proliferation. Cell cycle and apoptosis were detected by flow cytometry analysis. Scratch healing assay and Transwell test were exploited to detect cell migration and invasion. The targeting relationships between LINC00665 and miR-9-5p, and miR-9-5p and ATF1 were validated by dual luciferase reporter assay. We found that LINC00665 was significantly overexpressed in CRC tissues, and it was also negatively correlated with the expression of miR-9-5p and positively associated with the expression of ATF1. Besides, LINC00665 promoted the proliferation, migration and invasion of CRC cells, and inhibited cell apoptosis by sponging miR-9-5p. ATF1 was proved to be the downstream target of miR-9-5p and was indirectly regulated by LINC00665. Collectively, it is concluded that LINC00665 contributes to the progression of CRC by regulating miR-9-5p/ATF1 axis.
Collapse
Affiliation(s)
- Xuhong Zhao
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Yin Long
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Weijie Pan
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Zhi Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China.
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai 10th People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
30
|
Downregulation of LINC00958 inhibits proliferation, invasion and migration, and promotes apoptosis of colorectal cancer cells by targeting miR‑3619‑5p. Oncol Rep 2020; 44:1574-1582. [PMID: 32945474 PMCID: PMC7448424 DOI: 10.3892/or.2020.7707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aberrant expression of long non-coding RNAs (lncRNAs), including LINC00958, has been demonstrated in several types cancers. The present study aimed to investigate the role of LINC00958 in colorectal cancer (CRC) and identify the possible underlying mechanisms. The expression of LINC00958 and microRNA (miR)-3619-5p was detected in several human CRC cell lines using reverse transcription-quantitative PCR. Then, short hairpin RNA (shRNA)-LINC00958 was transfected into the cells. The results revealed that the expression of LINC00958 was notably upregulated, whereas miR-3619-5p was downregulated in CRC cells. Transfection with shRNA-LINC00958 inhibited the proliferation, invasion and migration of CRC cells. Moreover, the rate of apoptosis was enhanced, accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax and caspase-3. A luciferase reporter assay was conducted to verify the target binding site between LINC00958 and miR-3619-5p. The luciferase reporter assay confirmed that miR-3619-5p could be directly targeted by LINC00958. Furthermore, the miR-3619-5p inhibitor reversed the effects of LINC00958 silencing on proliferation, invasion, migration and apoptosis. Taken together, the findings suggest that the downregulation of LINC00958 suppresses the proliferation, invasion and migration, and promotes the apoptosis of CRC cells by targeting miR-3619-5p in vitro, which provides a theoretical basis and therapeutic strategy for the treatment of CRC.
Collapse
|
31
|
Downregulation of SBF2-AS1 functions as a tumor suppressor in clear cell renal cell carcinoma by inhibiting miR-338-3p-targeted ETS1. Cancer Gene Ther 2020; 28:813-827. [DOI: 10.1038/s41417-020-0197-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022]
|
32
|
Long Noncoding RNASBF2-AS1 Promotes Gastric Cancer Progression via Regulating miR-545/EMS1 Axis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6590303. [PMID: 32626753 PMCID: PMC7306839 DOI: 10.1155/2020/6590303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Objective Long noncoding RNA (LncRNA) SBF2-AS1 was reportedly to function as an oncogene in several types of cancers, such as hepatocellular carcinoma, nonsmall cell lung cancer, glioma, and colorectal cancer. However, the biological roles and regulatory mechanisms of SBF2-AS1 in gastric cancer (GC) are unknown. Methods The expression of SBF2-AS1 and miR-545 were examined in GC tissues and cell lines via real-time quantitative PCR. The relationship of SBF2-AS1 with miR-545 was verified via dual-luciferase reporter gene assay and RNA immunoprecipitation. The influences of SBF2-AS1 on cell proliferation, migration, and invasion were determined using cell counting Kit-8 (CCK-8), wound healing, and transwell invasion assays, respectively. Results LncRNA SBF2-AS1 expression was upregulated in GC tissues, especially in advanced clinical stage cases. Moreover, increased SBF2-AS1 indicated a poor survival rate. Functionally, the downregulation of SBF2-AS1 by siRNA in GC cells suppressed the proliferation, migration, and invasion. In terms of mechanism, SBF2-AS1 can directly bind to miR-545 and regulate its expression. Moreover, SBF2-AS1 knockdown significantly decreased the expression of EMS1, which was the direct target of miR-545. Importantly, inhibition of miR-545 or overexpression of EMS1 partially reversed SBF2-AS1-depletion-caused suppression on proliferation, migration, and invasion. Conclusion These findings elucidated a crucial role of SBF2-AS1 as a miR-545 sponge in GC cells, suggesting that SBF2-AS1 might be a potential target for GC.
Collapse
|
33
|
Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y, Hou B, Zhang C. Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development. J Cell Mol Med 2020; 24:5028-5038. [PMID: 32301277 PMCID: PMC7205800 DOI: 10.1111/jcmm.15125] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Evidence has indicated that M2 macrophages promote the progression of cancers, but few focus on the ability of M2 macrophage‐derived exosomes in pancreatic cancer (PC). This study aims to explore how M2 macrophages affect malignant phenotypes of PC through regulating long non‐coding RNA SET‐binding factor 2 antisense RNA 1 (lncRNA SBF2‐AS1)/microRNA‐122‐5p (miR‐122‐5p)/X‐linked inhibitor of apoptosis protein (XIAP) axis. THP‐1 cells were transformed into M1 macrophages by lipopolysaccharide and interferon‐γ treatment, and into M2 macrophages after interleukin‐4 treatment. The PANC‐1 PC cell line with the largest lncRNA SBF2‐AS1 expression was selected, and M2 macrophage‐derived exosomes were isolated and identified. A number of assays were applied for the examination of lncRNA SBF2‐AS1 expression, PC cell biological functions and subcellular localization of lncRNA SBF2‐AS1. XIAP expression was detected, along with the interaction among lncRNA SBF2‐AS1, miR‐122‐5p and XIAP. M2 macrophage exosomal lncRNA SBF2‐AS1 expression's effects on the tumorigenic ability of PANC‐1 cells in nude mice were also investigated. M2 macrophage‐derived exosomes promoted progression of PC cells. Overexpressed lncRNA SBF2‐AS1 promoted progression of PC cells. LncRNA SBF2‐AS1 was found to act as a competing endogenous RNA to repress miR‐122‐5p and up‐regulate XIAP. Constrained lncRNA SBF2‐AS1 in M2 macrophage‐derived exosomes contributed to restraining tumorigenic ability of PC cells. Collectively, our study reveals that constrained lncRNA SBF2‐AS1 in M2 macrophage‐derived exosomes increases miR‐122‐5p expression to restrain XIAP expression, which further inhibits PC progression.
Collapse
Affiliation(s)
- Zi Yin
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhou
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tingting Ma
- Obstetrics and Gynecology Department, Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sheng Chen
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ning Shi
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yiping Zou
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- General Surgery Department, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Xia W, Liu Y, Cheng T, Xu T, Dong M, Hu X. Down-regulated lncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast cancer by sponging microRNA-143 and repressing RRS1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:18. [PMID: 31952549 PMCID: PMC6969426 DOI: 10.1186/s13046-020-1520-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Background Recently, the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in human diseases have been unveiled, this research was conducted to explore the impacts of lncRNA SET-binding factor 2-antisense RNA1 (SBF2-AS1), miR-143 and resistance to ralstonia solanacearum 1 (RRS1) on breast cancer (BC) development. Methods The expression of SBF2-AS1, miR-143 and RRS1 in BC tissues, as well as in MDA-MB-231 and MCF-7 cell lines were assessed. Subsequently, the cells were transfected with miR-143 mimics or/and silenced or overexpressed SBF2-AS1 plasmids, and their negative controls. Then the proliferation, colony formation ability, cell cycle arrest, apoptosis, invasion and migration of the cells were assessed through gain- and loss-of-function experiments. Furthermore, the tumor growth, ki-67 expression and apoptosis in vivo were observed by subcutaneous tumorigenesis in nude mice. Binding relation between SBF2-AS1 and miR-143, and that between miR-143 and RRS1 were confirmed. Results SBF2-AS1 and RRS1 were amplified, while miR-143 was reduced in BC tissues and cells. Reduced SBF2-AS1 and elevated miR-143 could repress the proliferation, invasion and migration via restraining RRS1 expression. Moreover, knockdown of SBF2-AS1 up-regulated miR-143 to promote the apoptosis of BC cells by downregulating RRS1, resulting in a prohibitive effect on the tumorigenesis and progression of BC. Results of in vivo experiments indicated that the inhibited SBF2-AS1 and overexpressed miR-143 could restrict BC cell proliferation and promote apoptosis, and decelerate tumor growth in xenografts. Conclusion We have discovered in this study that down-regulated SBF2-AS1 could inhibit tumorigenesis and progression of BC by up-regulation miR-143 and repressing RRS1, which provides basic therapeutic considerations for a novel target against BC.
Collapse
Affiliation(s)
- Wenfei Xia
- Department of Breast and Thyroid surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, Hubei Province, 430030, People's Republic of China
| | - Yun Liu
- Department of ENT, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, People's Republic of China
| | - Teng Cheng
- Department of Breast and Thyroid surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, Hubei Province, 430030, People's Republic of China
| | - Tao Xu
- Department of Breast and Thyroid surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, Hubei Province, 430030, People's Republic of China
| | - Menglu Dong
- Department of Breast and Thyroid surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, Hubei Province, 430030, People's Republic of China
| | - Xiaopeng Hu
- Department of Breast and Thyroid surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan City, Hubei Province, 430030, People's Republic of China.
| |
Collapse
|
35
|
Li S, Wu T, Zhang D, Sun X, Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol 2020; 47:703-712. [PMID: 31854468 DOI: 10.1111/1440-1681.13230] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/03/2023]
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as key regulators of the occurrence and progression of various human cancers, including colorectal cancer. However, the regulatory mechanism of lncRNAs in the tumorigenesis of colorectal cancer remains poorly understood. In this study, we aimed to elucidate the potential role of lncRNA HCG18 in colorectal cancer. Herein, we found that HCG18 expression was significantly upregulated in colorectal cancer tissues and cell lines. Knockdown of HCG18 significantly inhibited the growth and invasion of colorectal cancer cells, while its overexpression had the opposite effect. Moreover, HCG18 was identified as a sponge of miR-1271. Our results showed that knockdown of HCG18 markedly upregulated miR-1271 expression in colorectal cancer cells. Notably, HCG18 expression was inversely correlated with miR-1271 expression in colorectal cancer specimens. Further investigation revealed that HCG18 contributed to the enhancement of MTDH/Wnt/β-catenin signalling in colorectal cancer cells. The antitumour effect of HCG18 inhibition was significantly reversed by miR-1271 inhibition or MTDH overexpression. Overall, the results of our study demonstrate that HCG18 exerts a potential oncogenic function in colorectal cancer by enhancing MTDH/Wnt/β-catenin signalling via sponging of miR-1271, highlighting the importance of HCG18/miR-1271/ MTDH/Wnt/β-catenin signalling in the progression of colorectal cancer.
Collapse
Affiliation(s)
- Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Sun
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinwu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Li M, Long S, Hu J, Wang Z, Geng C, Ou S. Systematic identification of lncRNA-based prognostic biomarkers for glioblastoma. Aging (Albany NY) 2019; 11:9405-9423. [PMID: 31692451 PMCID: PMC6874448 DOI: 10.18632/aging.102393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/21/2019] [Indexed: 12/03/2022]
Abstract
Glioblastoma (GBM), a primary malignant tumor of the central nervous system, has a very poor prognosis. Analysis of global GBM samples has revealed a variety of long non-coding RNAs (lncRNAs) associated with prognosis; nevertheless, there remains a lack of accurate prognostic markers. Using RNA-Seq, methylation, copy number variation (CNV), mutation and clinical follow-up data for GBM patients from The Cancer Genome Atlas, we performed univariate analysis, multi-cluster analysis, differential analysis of different subtypes of lncRNA and coding genes, weighted gene co-expression network analyses, gene set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes analysis, Gene Ontology analysis, and lncRNA CNV analyses. Our analyses yielded five lncRNAs closely related to survival and prognosis for GBM. To verify the predictive role of these five lncRNAs on the prognosis of GBM patients, the corresponding RNA-seq data from Chinese Glioma Genome Atlas were downloaded and analyzed, and comparable results were obtained. The role of one lncRNA LINC00152 has been observed previously; the others are novel findings. Expression of these lncRNAs could become effective predictors of survival and potential prognostic biomarkers for patients with GBM.
Collapse
Affiliation(s)
- Mingdong Li
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengrong Long
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinqu Hu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zan Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chao Geng
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shaowu Ou
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Zhang C, Li Z, Hu J, Qi F, Li X, Luo J. Identification of five long noncoding RNAs signature and risk score for prognosis of bladder urothelial carcinoma. J Cell Biochem 2019; 121:856-866. [PMID: 31373406 DOI: 10.1002/jcb.29330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Nowadays, an increasing number of studies illustrated that bladder urothelial cancer (BLCA) may act as the most common subtype of urological malignancies with a high rate of recurrence and metastasis. In this study, we attempted to establish a prognostic model and identify the possible pathway crosstalk. Long noncoding RNAs (lncRNAs) and mRNA expression and corresponding clinical information of patients with BLCA were downloaded from The Cancer Genome Atlas (TCGA). The differentially expressed genes analysis, univariate Cox analysis, the least absolute shrinkage, and selection operator Cox (LASSO Cox) regression model were then applied to identify five crucial lncRNAs (AC092725.1, AC104071.1, AL023584.1, AL132642.1, and AL137804.1). The multivariate cox analysis was utilized to calculate the regression coefficients (βi ). The risk-score model was subsequently constructed as follows: (0.13541AC092725.1) + (0.20968AC104071.1) + (0.1525AL023584.1) - (0.14768AL132642.1) + (0.14387AL137804.1). Nomogram and assessment of overall survival (OS) prediction were verificated by the receiver operating characteristic curve in the testing group. As to 3-, 5-year OS prediction, the area under curve (AUC) for the nomogram of training data set was 0.83 and 0.86. Besides, the AUC (0.883 and 0.879) presented excellent predictive power in the testing group. In addition, the calibration plots validated the predictive performance of the nomogram. Weighted correlation network analysis (WGCNA) coupled with functional enrichment analysis contributed to explore the potential pathways, including PI3K-Akt, HIF-1, and Jak-STAT signaling pathways. Construction of the risk-score model and data analysis were both derived from multiple packages on the basis of the R platform chiefly.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zongtai Li
- Department of Medical Oncology, Gaozhou People's Hospital, Gaozhou, China
| | - Jiateng Hu
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Hongkou District, Shanghai, China
| |
Collapse
|