1
|
wu Z, Xu Y, Zhou C, Zhang Y, Chen J. tsRNA in head and neck tumors: Opportunities and challenges in the field. Noncoding RNA Res 2025; 10:223-230. [PMID: 39468996 PMCID: PMC11513501 DOI: 10.1016/j.ncrna.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly recognized class of small non-coding RNAs that are implicated in a variety of cancers, including head and neck tumors. Studies have identified tsRNAs with differential expression profiles in head and neck malignancies, highlighting their potential as biomarkers for diagnosis and prognosis. Functional analyses show that tsRNAs are involved in regulating critical cellular pathways, including those related to cell proliferation, migration, and metabolic processes. Despite these encouraging insights, there are myriad challenges that must be tackled. In summary, tsRNAs present considerable potential as therapeutic targets and biomarkers in the realm of head and neck tumors, meriting further investigation and clinical application to optimize outcomes in the management of these complex diseases. This literature review synthesizes current research on tsRNAs, tsRNAs hold significant promise as biomarkers and therapeutic targets, with the potential to transform diagnostic and treatment strategies for head and neck tumors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yufeng Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| | - Changzeng Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yongbo Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| |
Collapse
|
2
|
Tang M, Bi H, Dong Z, Zeng L. Abnormal tRNA epigenetic modifications and related impact on neurodegenerative diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024:1-12. [PMID: 39608797 DOI: 10.3724/zdxbyxb-2024-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Neurodegenerative diseases are a heterogeneous group of neurological disorders characterized by the progressive loss of neurons in the central or peripheral nervous system. Research on the pathogenesis and drug targets of these diseases still faces many challenges due to the complex etiology. In recent years, the role of transfer RNA (tRNA) epigenetic modifications in neurodegenerative diseases has attracted widespread attention. The tRNA modification is crucial for regulating codon recognition, maintaining molecular structural stability, and the generation of tRNA-derived fragments (tRFs). Recent studies have highlighted a close association between abnormal tRNA modifications and the pathogenesis of various neurodegenerative diseases; especially for abnormalities of elongator complex-dependent tRNA modification and methylation modification, which impact the translation process and tRFs levels. These changes regulate protein homeostasis and cellular stress responses, ultimately influencing the survival of neuronal cells. Moreover, significant changes in tRFs levels have been noted in neurodegenerative diseases, and special tRFs show distinct effects on neurodegenerative diseases. This review aims to provide an overview of the physiological functions of tRNA epigenetic modifications and their regulatory mechanisms in neurodegenerative diseases, covering both classical functions such as codon recognition and non-classical functions such as tRFs biogenesis. Additionally, the potential of targeting tRNA modifications for therapeutic applications is also discussed.
Collapse
Affiliation(s)
- Mingmin Tang
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hongyun Bi
- Liangzhu Laboratory, Hangzhou 311121, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zijing Dong
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
3
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Chen Y, Tang Y, Zhu T, Li F, Luo J, Chen J, Tan Y, Wang T, Peng J, Jiang G, Li J. Dynamic PAH-Related Changes: A Dataset of tRNA-Derived Small RNA Transcriptome Across Multiple Organs. Sci Data 2024; 11:1257. [PMID: 39567524 PMCID: PMC11579324 DOI: 10.1038/s41597-024-04115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disease characterized by elevated pulmonary artery pressure and cardiac dysfunction, often leading to heart failure and even death. Despite the complexity of its mechanisms, the molecular basis of PAH remains unclear. tRNA-derived small RNAs (tsRNAs) are noncoding RNAs that play regulatory roles in various diseases. We collected plasma samples from PAH patients and healthy controls for small RNA microarray, and we established a monocrotaline-induced PAH rat model to collect right ventricular and lung tissues for tsRNA sequencing. Our analysis revealed 2,716 unique tsRNAs in human plasma and 4,733 in rat tissues, with a 7.84% overlap. Additionally, 204 tsRNAs were highly conserved across plasma, lung tissue, and right ventricle samples. The reproducibility of the expression profiles was confirmed through Pearson correlation and principal component analysis. KEGG pathway enrichment analysis indicated that tsRNAs are involved in key pathways, such as the MAPK and cancer signalling pathways. These datasets offer valuable insights for researching the epigenetic mechanisms underlying PAH and potential therapeutic targets.
Collapse
Affiliation(s)
- Yusi Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yi Tang
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, China.
| | - Tengteng Zhu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University(Shandong Provincial Qianfoshan Hospital), Jinan, Shandong Province, China
| | - Fang Li
- Department of Radiology and Imaging, Zhuzhou Central Hospital of Central South University, Zhuzhou, Hunan Province, China
| | - Jun Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yingjie Tan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tianyu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jianqiang Peng
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
| | - Jiang Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Lan S, Liu S, Wang K, Chen W, Zheng D, Zhuang Y, Zhang S. tRNA-derived RNA fragment, tRF-18-8R6546D2, promotes pancreatic adenocarcinoma progression by directly targeting ASCL2. Gene 2024; 927:148739. [PMID: 38955307 DOI: 10.1016/j.gene.2024.148739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.
Collapse
Affiliation(s)
- Sihua Lan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sixue Liu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ke Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Wenying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Dandan Zheng
- Doctor of excellence program, First Affiliated Hospital of Jilin University, Changchun 130000, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
6
|
Lu J, Zhu P, Zhang X, Zeng L, Xu B, Zhou P. tRNA-derived fragments: Unveiling new roles and molecular mechanisms in cancer progression. Int J Cancer 2024; 155:1347-1360. [PMID: 38867475 DOI: 10.1002/ijc.35041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
tRNA-derived fragments (tRFs) are novel small noncoding RNAs (sncRNAs) that range from approximately 14 to 50 nt. They are generated by the cleavage of mature tRNAs or precursor tRNAs (pre-tRNAs) at specific sites. Based on their origin and length, tRFs can be classified into three categories: (1) tRF-1 s; (2) tRF-3 s, tRF-5 s, and internal tRFs (i-tRFs); and (3) tRNA halves. They play important roles in stress response, signal transduction, and gene expression processes. Recent studies have identified differential expression of tRFs in various tumors. Aberrantly expressed tRFs have critical clinical value and show promise as new biomarkers for tumor diagnosis and prognosis and as therapeutic targets. tRFs regulate the malignant progression of tumors via various mechanisms, primarily including modulation of noncoding RNA biogenesis, global chromatin organization, gene expression regulation, modulation of protein translation, regulation of epigenetic modification, and alternative splicing regulation. In conclusion, tRF-mediated regulatory pathways could present new avenues for tumor treatment, and tRFs could serve as promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Ping Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiufen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Linzi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bujie Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Madhry D, Kumari K, Meena V, Roy R, Verma B. Unravelling tRNA fragments in DENV pathogenesis: Insights from RNA sequencing. Sci Rep 2024; 14:18357. [PMID: 39112524 PMCID: PMC11306563 DOI: 10.1038/s41598-024-69391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) derived from tRNAs are known as tRNA-derived small RNAs (tsRNAs). These tsRNAs are further categorized into tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), which play significant roles in the various molecular mechanisms underlying certain human diseases. However, the generation of tsRNAs and their potential roles during Dengue virus (DENV) infection is not yet known. Here, we performed small RNA sequencing to identify the generation and alterations in tsRNAs expression profiles of DENV-infected Huh7 cells. Upon DENV infection, tRNA fragmentation was found to be increased. We identified a significant number of differentially expressed tsRNAs during DENV infection. Interestingly, the 3'tRF population showed upregulation, while the i-tRF population exhibited downregulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to analyze the impact of differentially expressed tsRNAs on DENV pathogenesis. Our results suggest that differentially expressed tsRNAs are involved in transcriptional regulation via RNA polymerase II promoter and metabolic pathways. Overall, our study contributes significantly to our understanding of the roles played by tsRNAs in the complex dynamics of DENV infection.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kiran Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Varsha Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Riya Roy
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
8
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Xiong Q, Zhang Y, Xu Y, Yang Y, Zhang Z, Zhou Y, Zhang S, Zhou L, Wan X, Yang X, Zeng Z, Liu J, Zheng Y, Han J, Zhu Q. tiRNA-Val-CAC-2 interacts with FUBP1 to promote pancreatic cancer metastasis by activating c‑MYC transcription. Oncogene 2024; 43:1274-1287. [PMID: 38443680 PMCID: PMC11035144 DOI: 10.1038/s41388-024-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Xu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiwei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Zeng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
11
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
12
|
Culurciello R, Di Nardo I, Bosso A, Tortora F, Troisi R, Sica F, Arciello A, Notomista E, Pizzo E. Tailoring the stress response of human skin cells by substantially limiting the nuclear localization of angiogenin. Heliyon 2024; 10:e24556. [PMID: 38317956 PMCID: PMC10839879 DOI: 10.1016/j.heliyon.2024.e24556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves. Since it exists a clear connection between hANG roles and its intracellular routing, starting from our recent findings on heterologous ANG (ANG) properties in human keratinocytes (HaCaT cells), here we designed a variant unable to translocate into the nucleus with the aim of thoroughly verifying its potentialities under stress. This variant, widely characterized for its structural features and biological attitudes, shows more pronounced aid properties than unmodified protein. The collected evidence thus fully prove that ANG stress-induced skills in assisting cellular homeostasis are strictly due to its cytosolic localization. This study opens an interesting scenario for future studies regarding both the strengthening of skin defences and in understanding the mechanism of action of these special enzymes potentially suitable for any cell type.
Collapse
Affiliation(s)
- Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Francesca Tortora
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Institute of Biostructures and Bioimaging, CNR, 80131, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126, Naples, Italy
| |
Collapse
|
13
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Suleiman AA, Al-Chalabi R, Shaban SA. Integrative role of small non-coding RNAs in viral immune response: a systematic review. Mol Biol Rep 2024; 51:107. [PMID: 38227137 DOI: 10.1007/s11033-023-09141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Various viruses cause viral infection, and these viruses have different microscopic sizes, genetic material, and morphological forms. Due to a viral infection, the host body induces defense mechanisms that activate the innate and adaptive immune system. sncRNAs are involved in various biological processes and play an essential role in antiviral response in viruses including ZIKV, HCV, DENV, SARS-CoV, and West Nile virus, and regulate the complex interactions between the viruses and host cells. This review discusses the role of miRNAs, siRNAs, piRNAs, and tiRNAs in antiviral response. Cellular miRNAs bind with virus mRNA and perform their antiviral response in multiple viruses. However, the chemical modifications of miRNA necessary to avoid nuclease attack, which is then involved with intracellular processing, have proven challenging for therapeutic replacement of miRNAs. siRNAs have significant antiviral responses by targeting any gene of interest along the correct nucleotide of targeting mRNA. Due to this ability, siRNAs have valuable characteristics in antiviral response for therapeutic purposes. Additionally, the researchers noted the involvement of piRNAs and tiRNAs in the antiviral response, yet their findings were deemed insignificant.
Collapse
Affiliation(s)
| | | | - Semaa A Shaban
- Biology Department, College of Sciences, Tikrit University, Tikrit, Iraq
| |
Collapse
|
15
|
Moncan M, Rakhsh-Khorshid H, Eriksson LA, Samali A, Gorman AM. Insights into the structure and function of the RNA ligase RtcB. Cell Mol Life Sci 2023; 80:352. [PMID: 37935993 PMCID: PMC10630183 DOI: 10.1007/s00018-023-05001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
To be functional, some RNAs require a processing step involving splicing events. Each splicing event necessitates an RNA ligation step. RNA ligation is a process that can be achieved with various intermediaries such as self-catalysing RNAs, 5'-3' and 3'-5' RNA ligases. While several types of RNA ligation mechanisms occur in human, RtcB is the only 3'-5' RNA ligase identified in human cells to date. RtcB RNA ligation activity is well known to be essential for the splicing of XBP1, an essential transcription factor of the unfolded protein response; as well as for the maturation of specific intron-containing tRNAs. As such, RtcB is a core factor in protein synthesis and homeostasis. Taking advantage of the high homology between RtcB orthologues in archaea, bacteria and eukaryotes, this review will provide an introduction to the structure of RtcB and the mechanism of 3'-5' RNA ligation. This analysis is followed by a description of the mechanisms regulating RtcB activity and localisation, its known partners and its various functions from bacteria to human with a specific focus on human cancer.
Collapse
Affiliation(s)
- Matthieu Moncan
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hassan Rakhsh-Khorshid
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
- Biomedical Sciences, Upper Newcastle, University of Galway, Galway, H91 W2TY, Ireland.
| |
Collapse
|
16
|
Pinzaru AM, Tavazoie SF. Transfer RNAs as dynamic and critical regulators of cancer progression. Nat Rev Cancer 2023; 23:746-761. [PMID: 37814109 DOI: 10.1038/s41568-023-00611-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases - the enzymes responsible for charging tRNAs with amino acids - can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.
Collapse
Affiliation(s)
- Alexandra M Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Guzman BB, Son A, Litberg TJ, Huang Z, Dominguez D, Horowitz S. Emerging roles for G-quadruplexes in proteostasis. FEBS J 2023; 290:4614-4625. [PMID: 36017725 PMCID: PMC10071977 DOI: 10.1111/febs.16608] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
How nucleic acids interact with proteins, and how they affect protein folding, aggregation, and misfolding is a still-evolving area of research. Considerable effort is now focusing on a particular structure of RNA and DNA, G-quadruplexes, and their role in protein homeostasis and disease. In this state-of-the-art review, we track recent reports on how G-quadruplexes influence protein aggregation, proteolysis, phase separation, and protein misfolding diseases, and pose currently unanswered questions in the advance of this scientific field.
Collapse
Affiliation(s)
- Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
18
|
Mao M, Chen W, Huang X, Ye D. Role of tRNA-derived small RNAs(tsRNAs) in the diagnosis and treatment of malignant tumours. Cell Commun Signal 2023; 21:178. [PMID: 37480078 PMCID: PMC10362710 DOI: 10.1186/s12964-023-01199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
Malignant tumours area leading cause of death globally, accounting for approximately 13% of all deaths. A detailed understanding of the mechanism(s) of the occurrence and development of malignant tumours and identification of relevant therapeutic targets are therefore key to tumour treatment. tsRNAs(tRNA-derived small RNAs)-also known as TRFs (tRNA-derived fragments), tiRNAs (tRNA-derived stress-induced RNAs), tRNA halves, etc.-are a recently identified class of small noncoding RNAs that are generated from mature tRNA or tRNA precursors through cleavage by enzymes such as angiogenin, Dicer, RNase Z, and RNase P. Several studies have confirmed that dysregulation of tsRNAs is closely related to the tumorigenesis of breast cancer, nasopharyngeal cancer, lung cancer, and so on. Furthermore, research indicates that tsRNAs can be used as clinical diagnostic markers and therapeutic targets for cancer. In our review, we summarized the recent research progress on the role and clinical application of tsRNAs in tumorigenesis and progression. Video Abstract.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo No.6 Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Weina Chen
- Department of Clinical Pharmacology, Yinzhou Integrated TCM & Western Medicine Hospital, Ningbo, 315040, Zhejiang, China
| | - Xingbiao Huang
- Department of General Surgery, Ningbo No.6, Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
19
|
Gan L, Song H, Ding X. Transfer RNA-derived small RNAs (tsRNAs) in gastric cancer. Front Oncol 2023; 13:1184615. [PMID: 37503324 PMCID: PMC10369188 DOI: 10.3389/fonc.2023.1184615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are newly discovered noncoding RNAs (ncRNAs). According to the specific cleavage of nucleases at different sites of tRNAs, the produced tsRNAs are divided into tRNA-derived stress-inducible RNAs (tiRNAs) and tRNA-derived fragments (tRFs). tRFs and tiRNAs have essential biological functions, such as mRNA stability regulation, translation regulation and epigenetic regulation, and play significant roles in the occurrence and development of various tumors. Although the roles of tsRNAs in some tumors have been intensively studied, their roles in gastric cancer are still rarely reported. In this review, we focus on recent advances in the generation and classification of tsRNAs, their biological functions, and their roles in gastric cancer. Sixteen articles investigating dysregulated tsRNAs in gastric cancer are summarized. The roles of 17 tsRNAs are summarized, of which 9 were upregulated and 8 were downregulated compared with controls. Aberrant regulation of tsRNAs was closely related to the main clinicopathological factors of gastric cancer, such as lymph node metastasis, Tumor-Node-Metastasis (TNM) stage, tumor size, and vascular invasion. tsRNAs participate in the progression of gastric cancer by regulating the PTEN/PI3K/AKT, MAPK, Wnt, and p53 signaling pathways. The available literature suggests the potential of using tsRNAs as clinical biomarkers for gastric cancer diagnosis and prognosis and as therapeutic targets for gastric cancer treatment.
Collapse
Affiliation(s)
- Lu Gan
- Health Science Center, Ningbo University, Ningbo, China
| | - Haojun Song
- The Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- The Biobank of The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoyun Ding
- The Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Wang XY, Zhou YJ, Chen HY, Chen JN, Chen SS, Chen HM, Li XB. 5’tiRNA-Pro-TGG, a novel tRNA halve, promotes oncogenesis in sessile serrated lesions and serrated pathway of colorectal cancer. World J Gastrointest Oncol 2023; 15:1005-1018. [PMID: 37389118 PMCID: PMC10302996 DOI: 10.4251/wjgo.v15.i6.1005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are small fragments that form when tRNAs severe. tRNA halves (tiRNAs), a subcategory of tsRNA, are involved in the oncogenic processes of many tumors. However, their specific role in sessile serrated lesions (SSLs), a precancerous lesion often observed in the colon, has not yet been elucidated.
AIM To identify SSL-related tiRNAs and their potential role in the development of SSLs and serrated pathway of colorectal cancer (CRC).
METHODS Small-RNA sequencing was conducted in paired SSLs and their adjacent normal control (NC) tissues. The expression levels of five SSL-related tiRNAs were validated by q-polymerase chain reaction. Cell counting kit-8 and wound healing assays were performed to detect cell proliferation and migration. The target genes and sites of tiRNA-1:33-Pro-TGG-1 (5′tiRNA-Pro-TGG) were predicted by TargetScan and miRanda algorithms. Metabolism-associated and immune-related pathways were analyzed by single-sample gene set enrichment analysis. Functional analyses were performed to establish the roles of 5′tiRNA-Pro-TGG based on the target genes.
RESULTS In total, we found 52 upregulated tsRNAs and 28 downregulated tsRNAs in SSLs compared to NC. The expression levels of tiRNA-1:33-Gly-CCC-2, tiRNA-1:33-Pro-TGG-1, and tiRNA-1:34-Thr-TGT-4-M2 5′tiRNAs were higher in SSLs than those in NC, while that of 5′tiRNA-Pro-TGG was associated with the size of SSLs. It was demonstrated that 5′tiRNA-Pro-TGG promoted cell proliferation and migration of RKO cell in vitro. Then, heparanase 2 (HPSE2) was identified as a potential target gene of 5′tiRNA-Pro-TGG. Its lower expression was associated with a worse prognosis in CRC. Further, lower expression of HPSE2 was observed in SSLs compared to normal controls or conventional adenomas and in BRAF-mutant CRC compared to BRAF-wild CRC. Bioinformatics analyses revealed that its low expression was associated with a low interferon γ response and also with many metabolic pathways such as riboflavin, retinol, and cytochrome p450 drug metabolism pathways.
CONCLUSION tiRNAs may profoundly impact the development of SSLs. 5′tiRNA-Pro-TGG potentially promotes the progression of serrated pathway CRC through metabolic and immune pathways by interacting with HPSE2 and regulating its expression in SSLs and BRAF-mutant CRC. In the future, it may be possible to use tiRNAs as novel biomarkers for early diagnosis of SSLs and as potential therapeutic targets in serrated pathway of CRC.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Yu-Jie Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Hai-Ying Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jin-Nan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Shan-Shan Chen
- Department of Spleen and Stomach and Rheumatology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hui-Min Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Xiao-Bo Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
21
|
Kobayashi A, Takeiwa T, Ikeda K, Inoue S. Roles of Noncoding RNAs in Regulation of Mitochondrial Electron Transport Chain and Oxidative Phosphorylation. Int J Mol Sci 2023; 24:9414. [PMID: 37298366 PMCID: PMC10253563 DOI: 10.3390/ijms24119414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) plays an essential role in energy production by inducing oxidative phosphorylation (OXPHOS) to drive numerous biochemical processes in eukaryotic cells. Disorders of ETC and OXPHOS systems are associated with mitochondria- and metabolism-related diseases, including cancers; thus, a comprehensive understanding of the regulatory mechanisms of ETC and OXPHOS systems is required. Recent studies have indicated that noncoding RNAs (ncRNAs) play key roles in mitochondrial functions; in particular, some ncRNAs have been shown to modulate ETC and OXPHOS systems. In this review, we introduce the emerging roles of ncRNAs, including microRNAs (miRNAs), transfer-RNA-derived fragments (tRFs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the mitochondrial ETC and OXPHOS regulation.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA;
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| |
Collapse
|
22
|
Yang M, Mo Y, Ren D, Liu S, Zeng Z, Xiong W. Transfer RNA-derived small RNAs in tumor microenvironment. Mol Cancer 2023; 22:32. [PMID: 36797764 PMCID: PMC9933334 DOI: 10.1186/s12943-023-01742-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Transfer RNAs (tRNAs) are a class of non-coding RNAs responsible for amino acid translocation during protein synthesis and are ubiquitously found in organisms. With certain modifications and under specific conditions, tRNAs can be sheared and fragmented into small non-coding RNAs, also known as tRNA-derived small RNAs (tDRs). With the development of high-throughput sequencing technologies and bioinformatic strategies, more and more tDRs have been identified and their functions in organisms have been characterized. tRNA and it derived tDRs, have been shown to be essential not only for transcription and translation, but also for regulating cell proliferation, apoptosis, metastasis, and immunity. Aberrant expression of tDRs is associated with a wide range of human diseases, especially with tumorigenesis and tumor progression. The tumor microenvironment (TME) is a complex ecosystem consisting of various cellular and cell-free components that are mutually compatible with the tumor. It has been shown that tDRs regulate the TME by regulating cancer stem cells, immunity, energy metabolism, epithelial mesenchymal transition, and extracellular matrix remodeling, playing a pro-tumor or tumor suppressor role. In this review, the biogenesis, classification, and function of tDRs, as well as their effects on the TME and the clinical application prospects will be summarized and discussed based on up to date available knowledge.
Collapse
Affiliation(s)
- Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shun Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| |
Collapse
|
23
|
Zhang S, Yu X, Xie Y, Ye G, Guo J. tRNA derived fragments:A novel player in gene regulation and applications in cancer. Front Oncol 2023; 13:1063930. [PMID: 36761955 PMCID: PMC9904238 DOI: 10.3389/fonc.2023.1063930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The heterogeneous species of tRNA-derived fragments (tRFs) with specific biological functions was recently identified. Distinct roles of tRFs in tumor development and viral infection, mediated through transcriptional and post-transcriptional regulation, has been demonstrated. In this review, we briefly summarize the current literatures on the classification of tRFs and the effects of tRNA modification on tRF biogenesis. Moreover, we highlight the tRF repertoire of biological roles such as gene silencing, and regulation of translation, cell apoptosis, and epigenetics. We also summarize the biological roles of various tRFs in cancer development and viral infection, their potential value as diagnostic and prognostic biomarkers for different types of cancers, and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
24
|
Yuan L, Tang Y, Yin L, Lin X, Luo Z, Wang S, Li J, Liang P, Jiang B. Microarray Analysis Reveals Changes in tRNA-Derived Small RNAs (tsRNAs) Expression in Mice with Septic Cardiomyopathy. Genes (Basel) 2022; 13:genes13122258. [PMID: 36553526 PMCID: PMC9778384 DOI: 10.3390/genes13122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background: tRNA-derived small RNAs (tsRNAs) as a novel non-coding RNA have been studied in many cardiovascular diseases, but the relationship between tsRNAs and septic cardiomyopathy has not been investigated. We sought to analyze changes of the expression profile of tsRNAs in septic cardiomyopathy and reveal an important role for tsRNAs. Methods: We constructed a sepsis model by cecal ligation and puncture (CLP) in mice, and microarray analysis was used to find differentially expressed tsRNAs. Quantitative real-time PCR was used to verify the expression of tsRNAs and the interference effect of angiogenin (ANG), a key nuclease producing tsRNAs. Bioinformatics analysis was used to predict target genes and functions. CCK-8 and LDH release assays were used to detect cell viability and cell death. Results: A total of 158 tsRNAs were screened, of which 101 were up-regulated and 57 were down-regulated. A total of 8 tsRNAs were verified by qPCR, which was consistent with microarray results. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses suggest that these tsRNAs may be associated with the Wnt signaling pathway and participate in cellular process. The expression of tsRNAs decreased after the interference of the key nuclease ANG, while CCK-8 suggested a corresponding decrease in cell viability and an increase in the release of LDH (cell death), indicating that tsRNAs can protect cardiomyocytes during the development of septic cardiomyopathy, reduced cardiomyocyte death. Conclusions: A total of 158 tsRNAs changed significantly in septic cardiomyopathy, and these tsRNAs may play a protective role in the development of septic cardiomyopathy.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
- Correspondence: ; Tel./Fax: +86-0731-82355019
| |
Collapse
|
25
|
Akiyama Y, Takenaka Y, Kasahara T, Abe T, Tomioka Y, Ivanov P. RTCB Complex Regulates Stress-Induced tRNA Cleavage. Int J Mol Sci 2022; 23:ijms232113100. [PMID: 36361884 PMCID: PMC9655011 DOI: 10.3390/ijms232113100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Correspondence: (Y.A.); (P.I.)
| | - Yoshika Takenaka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Tomoko Kasahara
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (Y.A.); (P.I.)
| |
Collapse
|
26
|
Gao Z, Jijiwa M, Nasu M, Borgard H, Gong T, Xu J, Chen S, Fu Y, Chen Y, Hu X, Huang G, Deng Y. Comprehensive landscape of tRNA-derived fragments in lung cancer. Mol Ther Oncolytics 2022; 26:207-225. [PMID: 35892120 PMCID: PMC9307607 DOI: 10.1016/j.omto.2022.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022] Open
Abstract
Transfer RNA (tRNA)-derived fragment (tRDF) is a novel small non-coding RNA that presents in different types of cancer. The comprehensive understanding of tRDFs in non-small cell lung cancer remains largely unknown. In this study, 1,550 patient samples of non-small cell lung cancer (NSCLC) were included, and 52 tRDFs with four subtypes were identified. Six tRDFs were picked as diagnostic signatures based on the tRDFs expression patterns, and area under the curve (AUC) in independent validations is up to 0.90. Two signatures were validated successfully in plasma samples, and six signatures confirmed the consistency of distinguished expression in NSCLC cell lines. Ten tRDFs along with independent risk scores can be used to predict survival outcomes by stages; 5a_tRF-Ile-AAT/GAT can be a prognosis biomarker for early stage. Association analysis of tRDFs-signatures-correlated mRNAs and microRNA (miRNA) were targeted to the cell cycle and oocyte meiosis signaling pathways. Five tRDFs were assessed to associate with PD-L1 immune checkpoint and correlated with the genes that target in PD-L1 checkpoint signaling pathway. Our study is the first to provide a comprehensive analysis of tRDFs in lung cancer, including four subtypes of tRDFs, investigating the diagnostic and prognostic values, and demonstrated their biological function and transcriptional role as well as potential immune therapeutic value.
Collapse
Affiliation(s)
- Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Masaki Nasu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jinwen Xu
- School of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Molecular Biosciences and Bioengineering Program, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
27
|
Li YK, Yan LR, Wang A, Jiang LY, Xu Q, Wang BG. RNA-sequencing reveals the expression profiles of tsRNAs and their potential carcinogenic role in cholangiocarcinoma. J Clin Lab Anal 2022; 36:e24694. [PMID: 36098712 PMCID: PMC9550958 DOI: 10.1002/jcla.24694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Recently, the incidence of cholangiocarcinoma (CCA) has gradually increased. As CCA has a poor prognosis, the ideal survival rate is scarce for patients. The abnormal expressed tsRNAs may regulate the progression of a variety of tumors, and tsRNAs is expected to become a new diagnostic biomarker of cancer. However, the expression of tsRNAs is obscure and should be elucidated in CCA. Methods High‐throughput RNA sequencing technology (RNA‐seq) was utilized to determine the overall expression profiles of tsRNAs in three pairs CCA and adjacent normal tissues and to screen the tsRNAs that were differentially expressed. The target genes of dysregulated tsRNAs were predicted and the biological effects and potential signaling pathways of these target genes were explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to validate 11 differentially expressed tRFs with 12 pairs CCA and adjacent normal tissues. Results High‐throughput RNA‐seq totally demonstrated 535 dysregulated tsRNAs, of which 241 tsRNAs were upregulated, such as tRF‐21‐YLKZKWE5D,tRF‐16‐9NF5W8B,tRF‐27‐78YLKZKWE52,tRF‐19‐RLXN48KP,tRF‐33‐IK9NJ4S2I7L7DV,tRF‐19‐F8DHXYIV, and 294 tsRNAs were downregulated (tRF‐20‐739P8WQ0, tRF‐34‐JJ6RRNLIK898HR, tRF‐17‐VL8RPY5, tRF‐23‐YP9LON4VDP, tRF‐39‐EH623K76IR3DR2I2, tRF‐17‐18YKISM, tRF‐19‐Q1Q89PJZ, etc.) in CCA compared with adjacent normal tissues (|log2 [fold change] | ≥ 1 and p value <0.05). GO and KEGG enrichment analyses indicated that the target genes of dysregulated tRFs (tRF‐34‐JJ6RRNLIK898HR, tRF‐38‐0668K87SERM492V, and tRF‐39‐0668K87SERM492E2) were mainly enriched in the Notch signaling pathway, Hippo signaling pathway, cAMP signaling pathway and in growth hormone synthesis, secretion and action, etc. qRT‐PCR result showed that tRF‐34‐JJ6RRNLIK898HR/tRF‐38‐0668K87SERM492V/tRF‐39‐0668K87SERM492E2 was downregulated (p = 0.021), and tRF‐20‐LE2WMK81 was upregulated in CCA (p = 0.033). Conclusion Differentially expressed tRFs in CCA are enriched in many pathways associated with neoplasms, which may impact the tumor progression and have potential to be diagnostic biomarkers and therapeutic targets of CCA.
Collapse
Affiliation(s)
- Yan-Ke Li
- Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery, Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Li-Rong Yan
- Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Wang
- Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Li-Yue Jiang
- Tangdu Hospital of the Fourth Military Medical University, Xian, China
| | - Qian Xu
- Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ben-Gang Wang
- Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China.,Department of Hepatobiliary Surgery, Institute of General Surgery, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Zhou Y, Tao D, Shao Z, Wang X, Xu J, Li Y, Li K. Expression profiles of exosomal tRNA-derived fragments and their biological functions in lipomas. Front Cell Dev Biol 2022; 10:942133. [PMID: 36035989 PMCID: PMC9399354 DOI: 10.3389/fcell.2022.942133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence that exosomes derived from the lipoma tissue (Exo-LT) have a stronger capacity to promote the proliferation and migration of adipose-derived stem cells (ADSCs) than those from the adipose tissue (Exo-AT). But the Exo-LT do not have a significant effect on the adipogenic differentiation of the ADSCs. Recently, certain exosomal tRNA-derived fragments (tRFs) have been shown to play a crucial role in the pathogenesis of certain tumors. Therefore, it is necessary to identify the differently expressed tRFs in Exo-LT to further elucidate their molecular functions in lipomas. High-throughput sequencing was performed to examine the tRFs and mRNAs from the all samples belonging to the Exo-LT and Exo-AT groups. Target prediction and bioinformatics analysis were performed to explore their downstream mRNAs and biological functions. In total, 456 differently expressed tRFs and tiRNAs were identified in the Exo-LT group, 12 of which were up-regulated and 12 were down-regulated, respectively. Notably, tRF-1001 was most obviously down-regulated and tRF-3004a was most obviously up-regulated in the Exo-LT group. Moreover, among the target genes of tRF-1001 and tRF-3004a, both JAG2 and VSIG4 were significantly down-regulated in the Exo-LT group, while WNT5A, COL1A1, and PPARGC1A were highly expressed in both the Exo-LT and Exo-AT groups. The significant down-regulation of JAG2 and VSIG4 in the Exo-LT group could be due to the fact that Exo-LT had a stronger capacity to promote the proliferation and migration of ADSCs compared to the Exo-AT. The high expression of WNT5A, COL1A1, and PPARGC1A in both the Exo-LT and Exo-AT groups could be due to the similar ability of Exo-LT and Exo-AT to promote the adipogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Daixi Tao
- Department of Changsha Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Zifei Shao
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jinhao Xu
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yiyang Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Kun Li
- Department of Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
- *Correspondence: Kun Li,
| |
Collapse
|
29
|
Culurciello R, Bosso A, Troisi R, Barrella V, Di Nardo I, Borriello M, Gaglione R, Pistorio V, Aceto S, Cafaro V, Notomista E, Sica F, Arciello A, Pizzo E. Protective Effects of Recombinant Human Angiogenin in Keratinocytes: New Insights on Oxidative Stress Response Mediated by RNases. Int J Mol Sci 2022; 23:ijms23158781. [PMID: 35955913 PMCID: PMC9369303 DOI: 10.3390/ijms23158781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.
Collapse
Affiliation(s)
- Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Pistorio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
- Correspondence: ; Tel.: +39-081679151
| |
Collapse
|
30
|
Fan H, Liu H, Lv Y, Song Y. AS-tDR-007872: A Novel tRNA-Derived Small RNA Acts an Important Role in Non-Small-Cell Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3475955. [PMID: 35756407 PMCID: PMC9226974 DOI: 10.1155/2022/3475955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
tRNA-derived small RNAs (also known as tsRNAs) are novel kinds of non-coding RNAs. Although tsRNAs are aberrantly expressed in different tumor types, there is scanty of research investigating their expression profiling and functions in pulmonary adenocarcinoma (PADC). We identified the expression of AS-tDR-007872 in 30 non-small-cell lung carcinoma (NSCLC) patients' carcinoma tissues and conducted biological function evaluation. We also test the expression levels of AS-tDR-007872 in plasma samples obtained from 35 healthy people and 79 NSCLC cases. The results identified downregulated AS-tDR-007872 in both cancer tissues and plasma samples versus adjacent normal counterparts (p < 0.05) and healthy controls (p < 0.001). The area under the curve of AS-tDR-007872 was identified by receiver operating characteristic curve analysis to be 0.756 (95% CI, 0.663-0.849; p < 0.001). Furthermore, overexpression of AS-tDR-007872 in vitro inhibited tumor cell proliferation, invasion, and migration and promoted apoptosis. The knockdown of AS-tDR-007872 showed the opposite results. Meanwhile, we found significantly downregulated BCL2L11 after overexpressing AS-tDR-007872. From the above, our research suggests that AS-tDR-007872 can be a tumor suppressor and a promising biomarker for diagnosing lung cancer.
Collapse
Affiliation(s)
- Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yanling Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, 210093, Jiangsu, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, 210093, Jiangsu, China
| |
Collapse
|
31
|
Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23126556. [PMID: 35742999 PMCID: PMC9223570 DOI: 10.3390/ijms23126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.
Collapse
|
32
|
tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research. Noncoding RNA 2022; 8:ncrna8030037. [PMID: 35736634 PMCID: PMC9231384 DOI: 10.3390/ncrna8030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) belong to a group of transfer ribonucleic acid (tRNA)-derived fragments that have recently gained interest as molecules with specific biological functions. Their involvement in the regulation of physiological processes and pathological phenotypes suggests molecular roles similar to those of miRNAs. tsRNA biogenesis under specific physiological conditions will offer new perspectives in understanding diseases, and may provide new sources for biological marker design to determine and monitor the health status of farm animals. In this review, we focus on the latest discoveries about tsRNAs and give special attention to molecules initially thought to be mainly associated with tRNA-derived stress-induced RNAs (tiRNAs). We present an outline of their biological functions, offer a collection of useful databases, and discuss future research perspectives and applications in livestock basic and applied research.
Collapse
|
33
|
Fu BF, Xu CY. Transfer RNA-Derived Small RNAs: Novel Regulators and Biomarkers of Cancers. Front Oncol 2022; 12:843598. [PMID: 35574338 PMCID: PMC9096126 DOI: 10.3389/fonc.2022.843598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Bi-Fei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao-Yang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
34
|
Paim TDP, Alves dos Santos C, Faria DAD, Paiva SR, McManus C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Tian H, Hu Z, Wang C. The Therapeutic Potential of tRNA-derived Small RNAs in Neurodegenerative Disorders. Aging Dis 2022; 13:389-401. [PMID: 35371602 PMCID: PMC8947841 DOI: 10.14336/ad.2021.0903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 11/01/2022] Open
Abstract
Gene expressions and functions at various levels, namely post-transcriptional, transcriptional, and epigenetic, can be regulated by transfer RNA (tRNA)-derived small RNAs (tsRNAs), which are as well-established as tRNA fragments or tRFs. This regulation occurs when tsRNAs are created through the special endonuclease-mediated cleavage of mature or precursor tRNAs. However, tsRNAs are newly discovered entities, and molecular functions associated with tsRNAs are still not clearly understood. There is increasingly robust evidence suggesting that specific tsRNAs perform fundamental tasks in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders. Indeed, the patterns of tsRNA expression are uncertain and could be altered in patients suffering from Parkinson's disease, pontocerebellar hypoplasia, amyotrophic lateral sclerosis, Alzheimer's disease, and other neurodegenerative disorders. In the present article, a review is conducted of recent domestic and international progress in research on the potential cellular and molecular mechanisms of tsRNA biogenesis. We also describe endogenous tsRNAs during neuronal development and neurodegenerative disorders, thereby providing theoretical support and guidance for further revealing the therapeutic potential of tsRNAs in neurodegenerative disorders.
Collapse
Affiliation(s)
- Haihua Tian
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,4Department of Laboratory Medicine, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- 5Department of Child Psychiatry, Ningbo Kanning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
36
|
Weng Q, Wang Y, Xie Y, Yu X, Zhang S, Ge J, Li Z, Ye G, Guo J. Extracellular vesicles-associated tRNA-derived fragments (tRFs): biogenesis, biological functions, and their role as potential biomarkers in human diseases. J Mol Med (Berl) 2022; 100:679-695. [PMID: 35322869 PMCID: PMC9110440 DOI: 10.1007/s00109-022-02189-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Traditionally, transfer RNAs (tRNAs) specifically decoded messenger RNA (mRNA) and participated in protein translation. tRNA-derived fragments (tRFs), also known as tRNA-derived small RNAs (tsRNAs), are generated by the specific cleavage of pre- and mature tRNAs and are a class of newly defined functional small non-coding RNAs (sncRNAs). Following the different cleavage positions of precursor or mature tRNA, tRFs are classified into seven types, 5′-tRNA half, 3′-tRNA half, tRF-1, 5′U-tRF, 3′-tRF, 5′-tRF, and i-tRF. It has been demonstrated that tRFs have a diverse range of biological functions in cellular processes, which include inhibiting protein translation, modulating stress response, regulating gene expression, and involvement in cell cycles and epigenetic inheritance. Emerging evidences have indicated that tRFs in extracellular vesicles (EVs) seem to act as regulatory molecules in various cellular processes and play essential roles in cell-to-cell communication. Furthermore, the dysregulation of EV-associated tRFs has been associated with the occurrence and progression of a variety of cancers and they can serve as novel potential biomarkers for cancer diagnosis. In this review, the biogenesis and classification of tRFs are summarized, and the biological functions of EV-associated tRFs and their roles as potential biomarkers in human diseases are discussed.
Collapse
Affiliation(s)
- Qiuyan Weng
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Yao Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Shuangshuang Zhang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Jiaxin Ge
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China. .,Institute of Digestive Diseases of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
37
|
Peng R, Santos HJ, Nozaki T. Transfer RNA-Derived Small RNAs in the Pathogenesis of Parasitic Protozoa. Genes (Basel) 2022; 13:286. [PMID: 35205331 PMCID: PMC8872473 DOI: 10.3390/genes13020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are newly identified non-coding small RNAs that have recently attracted attention due to their functional significance in both prokaryotes and eukaryotes. tsRNAs originated from the cleavage of precursor or mature tRNAs by specific nucleases. According to the start and end sites, tsRNAs can be broadly divided into tRNA halves (31-40 nucleotides) and tRNA-derived fragments (tRFs, 14-30 nucleotides). tsRNAs have been reported in multiple organisms to be involved in gene expression regulation, protein synthesis, and signal transduction. As a novel regulator, tsRNAs have also been identified in various protozoan parasites. The conserved biogenesis of tsRNAs in early-branching eukaryotes strongly suggests the universality of this machinery, which requires future research on their shared and potentially disparate biological functions. Here, we reviewed the recent studies of tsRNAs in several representative protozoan parasites including their biogenesis and the roles in parasite biology and intercellular communication. Furthermore, we discussed the remaining questions and potential future works for tsRNAs in this group of organisms.
Collapse
Affiliation(s)
| | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.P.); (H.J.S.)
| |
Collapse
|
38
|
Liu B, Cao J, Wang X, Guo C, Liu Y, Wang T. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 2021; 13:24. [PMID: 34934044 PMCID: PMC8692627 DOI: 10.1038/s41419-021-04472-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs), a novel category of small noncoding RNAs, are enzymatically cleaved from tRNAs. Previous reports have shed some light on the roles of tsRNAs in the development of human diseases. However, our knowledge about tsRNAs is still relatively lacking. In this paper, we review the biogenesis, classification, subcellular localization as well as action mechanism of tsRNAs, and discuss the association between chemical modifications of tRNAs and the production and functions of tsRNAs. Furthermore, using immunity, metabolism, and malignancy as examples, we summarize the molecular mechanisms of tsRNAs in diseases and evaluate the potential of tsRNAs as new biomarkers and therapeutic targets. At the same time, we compile and introduce several resource databases that are currently publicly available for analyzing tsRNAs. Finally, we discuss the challenges associated with research in this field and future directions.
Collapse
Affiliation(s)
- Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China.
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Chunlei Guo
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, PR China
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, 300071, Tianjin, PR China
| |
Collapse
|
39
|
Non-coding RNA dysregulation in skin cancers. Essays Biochem 2021; 65:641-655. [PMID: 34414406 DOI: 10.1042/ebc20200048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Skin cancers are the most common cancers worldwide. They can be classified in melanoma and non-melanoma skin cancer (NMSC), the latter includes squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and merkel cell carcinoma (MCC). In recent years, the crucial role of non-coding RNAs (ncRNAs) in skin cancer pathogenesis has become increasingly evident. NcRNAs are functional RNA molecules that lack any protein-coding activity. These ncRNAs are classified based on their length: small, medium-size, and long ncRNAs. Among the most studied ncRNAs there are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs). ncRNAs have the ability to regulate gene expression at transcriptional and post-transcriptional levels and are involved in skin cancer cell proliferation, angiogenesis, invasion, and metastasis. Many ncRNAs exhibit tissue- or cell-specific expression while others have been correlated to tumor staging, drug resistance, and prognosis. For these reasons, ncRNAs have both a diagnostic and prognostic significance in skin cancers. Our review summarizes the functional role of ncRNAs in skin cancers and their potential clinical application as biomarkers.
Collapse
|
40
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
41
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M, Yang D. tRNA-derived fragments as New Hallmarks of Aging and Age-related Diseases. Aging Dis 2021; 12:1304-1322. [PMID: 34341710 PMCID: PMC8279533 DOI: 10.14336/ad.2021.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
tRNA-derived fragments (tRFs), which are non-coding RNAs produced via tRNA cleavage with lengths of 14 to 50 nucleotides, originate from precursor tRNAs or mature tRNAs and exist in a wide range of organisms. tRFs are produced not by random fracture of tRNAs but by specific mechanisms. Considerable evidence shows that tRFs are detectable in model organisms of different ages and are associated with age-related diseases in humans, such as cancer and neurodegenerative diseases. In this literature review, the origin and classification of tRFs and the regulatory mechanisms of tRFs in aging and age-related diseases are summarized. We also describe the available tRF databases and research techniques and lay a foundation for the exploration of tRFs as biomarkers for the diagnosis and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Ya Yuan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhi He
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaolan Fan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Mao
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
42
|
Identification of transfer RNA-derived fragments and their potential roles in aortic dissection. Genomics 2021; 113:3039-3049. [PMID: 34214628 DOI: 10.1016/j.ygeno.2021.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/19/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that majority of the transfer RNA (tRNA)-derived small RNA, including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), play a significant role in the molecular mechanisms underlying some human diseases. However, expression of tRFs/tiRNAs and their potential roles in aortic dissection (AD) remain unclear. This study examined the expression characteristics and explored the functional roles of tRFs/tiRNAs in AD using RNA-sequencing, bioinformatics, real-time quantitative reverse transcription polymerase chain reaction, and loss- and gain-of-function analysis. Results revealed that a total of 41 tRFs/tiRNAs were dysregulated in the AD group compared to the control group. Among them, 12 were upregulated and 29 were downregulated (fold change≥1.5 and p < 0.05). RT-qPCR results revealed that expressions of tRF-1:30-chrM.Met-CAT was significantly upregulated, while that of tRF-54:71-chrM.Trp-TCA and tRF-1:32-chrM.Cys-GCA were notably downregulated; expression patterns were consistent with the RNA sequencing data. Bioinformatic analysis showed that a variety of related pathways might be involved in the pathogenesis of AD. Functionally, tRF-1:30-chrM.Met-CAT could facilitate proliferation, migration, and phenotype switching in vascular smooth muscle cells (VSMCs), which might serve as a significant regulator in the progression of AD. In summary, the study illustrated that tRFs/tiRNAs expressed in AD tissues have potential biological functions and may act as promising biomarkers or therapeutic targets for AD.
Collapse
|
43
|
Wang J, Han B, Yi Y, Wang Y, Zhang L, Jia H, Lv J, Yang X, Jiang D, Zhang J. Expression profiles and functional analysis of plasma tRNA-derived small RNAs in children with fulminant myocarditis. Epigenomics 2021; 13:1057-1075. [PMID: 34114472 DOI: 10.2217/epi-2021-0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Fulminant myocarditis (FM) has neither validated biomarkers nor well-established therapy. Roles of tRNA-derived small RNAs (tsRNAs) in FM remain unknown. Materials & methods: Small RNA sequencing was conducted in plasma from children with FM during acute and convalescent phase and matched healthy volunteers. Data were validated by quantitative real-time PCR in larger sample-sized groups and in vitro. Functional analysis was performed to explore the roles. Results: tiRNA-Gln-TTG-001 was overexpressed in children with FM during acute phase, and the generation and extracellular release of tiRNA-Gln-TTG-001 were higher after myocarditis-mimicked activity in vitro. Several pathways might participate in the pathogenesis of FM. Conclusion: tsRNAs may play an important role in FM, and tiRNA-Gln-TTG-001 might represent a novel and promising biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, PR China.,Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, PR China.,Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yingchun Yi
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yan Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, PR China.,Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Li Zhang
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, PR China.,Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Hailin Jia
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Xiaofei Yang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Diandong Jiang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Jianjun Zhang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| |
Collapse
|
44
|
Jacovetti C, Bayazit MB, Regazzi R. Emerging Classes of Small Non-Coding RNAs With Potential Implications in Diabetes and Associated Metabolic Disorders. Front Endocrinol (Lausanne) 2021; 12:670719. [PMID: 34040585 PMCID: PMC8142323 DOI: 10.3389/fendo.2021.670719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the sequences in the human genome do not code for proteins but generate thousands of non-coding RNAs (ncRNAs) with regulatory functions. High-throughput sequencing technologies and bioinformatic tools significantly expanded our knowledge about ncRNAs, highlighting their key role in gene regulatory networks, through their capacity to interact with coding and non-coding RNAs, DNAs and proteins. NcRNAs comprise diverse RNA species, including amongst others PIWI-interacting RNAs (piRNAs), involved in transposon silencing, and small nucleolar RNAs (snoRNAs), which participate in the modification of other RNAs such as ribosomal RNAs and transfer RNAs. Recently, a novel class of small ncRNAs generated from the cleavage of tRNAs or pre-tRNAs, called tRNA-derived small RNAs (tRFs) has been identified. tRFs have been suggested to regulate protein translation, RNA silencing and cell survival. While for other ncRNAs an implication in several pathologies is now well established, the potential involvement of piRNAs, snoRNAs and tRFs in human diseases, including diabetes, is only beginning to emerge. In this review, we summarize fundamental aspects of piRNAs, snoRNAs and tRFs biology. We discuss their biogenesis while emphasizing on novel sequencing technologies that allow ncRNA discovery and annotation. Moreover, we give an overview of genomic approaches to decrypt their mechanisms of action and to study their functional relevance. The review will provide a comprehensive landscape of the regulatory roles of these three types of ncRNAs in metabolic disorders by reporting their differential expression in endocrine pancreatic tissue as well as their contribution to diabetes incidence and diabetes-underlying conditions such as inflammation. Based on these discoveries we discuss the potential use of piRNAs, snoRNAs and tRFs as promising therapeutic targets in metabolic disorders.
Collapse
Affiliation(s)
- Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX, Gao QY. A specific tRNA half, 5'tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:67. [PMID: 33588913 PMCID: PMC7885485 DOI: 10.1186/s13046-021-01836-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Background Currently, tRNA-derived small RNAs (tsRNAs) are recognized as a novel and potential type of non-coding RNAs (ncRNAs), which participate in various cellular processes and play an essential role in cancer progression. However, tsRNAs involvement in colorectal cancer (CRC) progression remains unclear. Methods Sequencing analyses were performed to explore the tsRNAs with differential expression in CRC. Gain- and loss-of functions of 5’tiRNA-His-GTG were performed in CRC cells and xenograft tumor to discover its role in the progression of CRC. Hypoxia culture and hypoxia inducible factor 1 subunit alpha (HIF1α) inhibitors were performed to uncover the biogenesis of 5’tiRNA-His-GTG. The regulation of 5’tiRNA-His-GTG for large tumor suppressor kinase 2 (LATS2) were identified by luciferase reporter assay, western blot, and rescue experiments. Results Here, our study uncovered the profile of tsRNAs in human CRC tissues and confirmed a specific tRNA half, 5’tiRNA-His-GTG, is upregulated in CRC tissues. Then, in vitro and in vivo experiments revealed the oncogenic role of 5’tiRNA-His-GTG in CRC and found that targeting 5’tiRNA-His-GTG can induce cell apoptosis. Mechanistically, the generation of 5’tiRNA-His-GTG seems to be a responsive process of tumor hypoxic microenvironment, and it is regulated via the HIF1α/angiogenin (ANG) axis. Remarkably, LATS2 was found to be an important and major target of 5’tiRNA-His-GTG, which renders 5’tiRNA-His-GTG to “turn off” hippo signaling pathway and finally promotes the expression of pro-proliferation and anti-apoptosis related genes. Conclusions In summary, the findings revealed a specific 5’tiRNA-His-GTG-engaged pathway in CRC progression and provided clues to design a novel therapeutic target in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01836-7.
Collapse
Affiliation(s)
- En-Wei Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Hao-Lian Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Wing Yin Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Qian-Qian Liu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Qin-Yan Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
46
|
Yu X, Xie Y, Zhang S, Song X, Xiao B, Yan Z. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Am J Cancer Res 2021; 11:461-469. [PMID: 33391486 PMCID: PMC7681095 DOI: 10.7150/thno.51963] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological functions in cancers and stress-induced diseases. Herein, we first summarize the classification and biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication. More importantly, the dysregulation of tRFs has important clinical implications. They are potential diagnostic and prognostic biomarkers of gastric cancer, liver cancer, breast cancer, prostate cancer, and chronic lymphocytic leukemia. tRFs may become new therapeutic targets for the treatment of diseases such as hepatocellular carcinoma and respiratory syncytial virus infection. Finally, we point out the existing problems and future research directions associated with tRFs. In conclusion, the current progress in the research of tRFs reveals that they have important clinical implications and may constitute novel molecular therapeutic targets for modulating pathological processes.
Collapse
|
47
|
Bogard B, Francastel C, Hubé F. Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel? RNA Biol 2020; 17:1707-1720. [PMID: 32559119 PMCID: PMC7714488 DOI: 10.1080/15476286.2020.1783868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | | | - Florent Hubé
- Université De Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| |
Collapse
|
48
|
Sanchez-Martin V, Lopez-Pujante C, Soriano-Rodriguez M, Garcia-Salcedo JA. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer. Int J Mol Sci 2020; 21:ijms21238900. [PMID: 33255335 PMCID: PMC7734589 DOI: 10.3390/ijms21238900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-canonical, four-stranded nucleic acids secondary structures are present within regulatory regions in the human genome and transcriptome. To date, these quadruplex structures include both DNA and RNA G-quadruplexes, formed in guanine-rich sequences, and i-Motifs, found in cytosine-rich sequences, as their counterparts. Quadruplexes have been extensively associated with cancer, playing an important role in telomere maintenance and control of genetic expression of several oncogenes and tumor suppressors. Therefore, quadruplex structures are considered attractive molecular targets for cancer therapeutics with novel mechanisms of action. In this review, we provide a general overview about recent research on the implications of quadruplex structures in cancer, firstly gathering together DNA G-quadruplexes, RNA G-quadruplexes as well as DNA i-Motifs.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute IBS, Granada, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Carmen Lopez-Pujante
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
| | - Miguel Soriano-Rodriguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Centre for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAMBITAL), University of Almeria, 04001 Almeria, Spain
- Correspondence: (M.S.-R.); (J.A.G.-S.); Tel.: +34-958715500 (M.S.-R.); +34-958715500 (J.A.G.-S.)
| | - Jose A. Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute IBS, Granada, 18014 Granada, Spain
- Correspondence: (M.S.-R.); (J.A.G.-S.); Tel.: +34-958715500 (M.S.-R.); +34-958715500 (J.A.G.-S.)
| |
Collapse
|
49
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
50
|
Wang BG, Yan LR, Xu Q, Zhong XP. The role of Transfer RNA-Derived Small RNAs (tsRNAs) in Digestive System Tumors. J Cancer 2020; 11:7237-7245. [PMID: 33193887 PMCID: PMC7646161 DOI: 10.7150/jca.46055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNA-derived small RNA(tsRNA) is a type of non-coding tRNA undergoing cleavage by specific nucleases such as Dicer. TsRNAs comprise of tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Based on the splicing site within the tRNA, tRFs can be classified into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. TiRNAs can be classified into 5′-tiRNA and 3′-tiRNA. Both tRFs and tiRNAs have important roles in carcinogenesis, especially cancer of digestive system. TRFs and tiRNAs can promote cell proliferation and cell cycle progression by regulating the expression of oncogenes, combining with RNA binding proteins such as Y-box binding protein 1 (YBX1) to prevent transcription. Despite many reviews on the basic biological function of tRFs and tiRNAs, few have described their correlation with tumors especially gastrointestinal tumor. This review focused on the relationship of tRFs and tiRNAs with the biological behavior, clinicopathological characteristics, diagnosis, treatment and prognosis of digestive system tumors, and would provide novel insights for the early detection and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Ben-Gang Wang
- Department 1 of General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| | - Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Xin-Ping Zhong
- Department 1 of General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|