1
|
Li C, Ma Z, Wei X, Wang Y, Wu J, Li X, Sun X, Ding Z, Yang C, Zou Y. Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10577-9. [PMID: 39733202 DOI: 10.1007/s12265-024-10577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhen Ma
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
| | - Cheng Yang
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, 138 Yixueyuan Road, Shanghai, 200438, China.
| |
Collapse
|
2
|
Wang WD, Fan XY, Wei XQ, Chai WJ, Li FH, Gao K, Liu B, Guo SZ. Synergistic combinations of Angelica sinensis for myocardial infarction treatment: network pharmacology and quadratic optimization approach. Front Pharmacol 2024; 15:1466208. [PMID: 39717556 PMCID: PMC11663646 DOI: 10.3389/fphar.2024.1466208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Background and aim Angelica sinensis (Oliv.) Diels (Danggui, DG), exhibits potential in myocardial infarction (MI) treatment. However, research on its synergistic combinations for cardioprotective effects has been limited owing to inadequate approaches. Experimental procedure We identified certain phenolic acids and phthalein compounds in DG. Network pharmacology analysis and experimental validation revealed the components that protected H9c2 cells and reduced lactate dehydrogenase levels. Subsequently, a combination of computational experimental strategies and a secondary phenotypic optimization platform was employed to identify effective component combinations with synergistic interactions. The Chou-Talalay and Zero Interaction Potency (ZIP) models were utilized to quantify the synergistic relationships. The optimal combination identified, Z-Ligustide and Chlorogenic acid (Z-LIG/CGA), was evaluated for its protective effects on cardiac function and cardiomyocytes apoptosis induced by inflammatory in a mouse model of induced by left anterior descending coronary artery ligation. Flow cytometry was further utilized to detect the polarization ratio of M1/M2 macrophages and the expression of inflammatory cytokines in serum was measured, assessing the inhibition of inflammatory responses and pro-inflammatory signaling factors by Z-LIG/CGA. Key results Quadratic surface analysis revealed that the Z-LIG/CGA combination displayed synergistic cardioprotective effects (combination index value <1; ZIP value >10). In vivo, Z-LIG/CGA significantly improved cardiac function and reduced the fibrotic area in mice post-MI, surpassing the results in groups treated with Z-LIG or CGA alone. Compared to the MI group, the Z-LIG/CGA group exhibited decreased ratios of the myocardial cell apoptosis-related proteins BAX/Bcl-2 and Cleaved Caspase-3/Caspase-3 in mice. Further research revealed that Z-LIG/CGA treatment significantly increased IL-1R2 levels, significantly decreased IL-17RA levels, and inhibited the activation of p-STAT1, thereby alleviating cell apoptosis after MI. Additionally, the Z-LIG/CGA combination significantly inhibited the ratio of M1/M2 macrophages and suppressed the expression levels of pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in the serum. Conclusion and implications We successfully identified a synergistic drug combination, Z-LIG/CGA, which improves MI outcomes by inhibiting cardiomyocyte apoptosis and inflammatory damage through modulating macrophage polarization and regulating the IL-1R2/IL-17RA/STAT1 signaling pathway. This study provides a charming paradigm to explore effective drug combinations in traditional Chinese medicine and a promising treatment for MI.
Collapse
Affiliation(s)
- Wen-Di Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yi Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Qi Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wang-Jing Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fang-He Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kuo Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- The Key Research Laboratory of “Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine”, The State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shu-Zhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Zhu H, Li M, Wu J, Yan L, Xiong W, Hu X, Lu Z, Li C, Cai H. Identification and validation of apoptosis-related genes in acute myocardial infarction based on integrated bioinformatics methods. PeerJ 2024; 12:e18591. [PMID: 39650552 PMCID: PMC11624842 DOI: 10.7717/peerj.18591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases. Apoptosis is a type of programmed cell death that causes DNA degradation and chromatin condensation. The role of apoptosis in AMI progression remains unclear. Methods Three AMI-related microarray datasets (GSE48060, GSE66360 and GSE97320) were obtained from the Gene Expression Omnibus database and combined for further analysis. Differential expression analysis and enrichment analysis were performed on the combined dataset to identify differentially expressed genes (DEGs). Apoptosis-related genes (ARGs) were screened through the intersection of genes associated with apoptosis in previous studies and DEGs. The expression pattern of ARGs was studied on the basis of their raw expression data. Three machine learning algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and Random Forest (RF) were utilized to screen crucial genes in these ARGs. Immune infiltration was estimated by single sample gene set enrichment analysis (ssGSEA). Corresponding online databases were used to predict miRNAs, transcription factors (TFs) and therapeutic agents of crucial genes. A nomogram clinical prediction model of the crucial genes was constructed and evaluated. The Mendelian randomization analysis was employed to investigate whether there is a causal relationship between apoptosis and AMI. Finally, an AMI mouse model was established, and apoptosis in the hearts of AMI mice was assessed via TUNEL staining. qRT-PCR was employed to validate these crucial genes in the hearts of AMI mice. The external dataset GSE59867 was used for further validating the crucial genes. Results Fifteen ARGs (GADD45A, DDIT3, FEZ1, PMAIP1, IER3, IFNGR1, CDKN1A, GNA15, IL1B, EREG, BCL10, JUN, EGR3, GADD45B, and CD14) were identified. Six crucial genes (CDKN1A, BCL10, PMAIP1, IL1B, GNA15, and CD14) were screened from ARGs by machine learning. A total of 102 miRNAs, 13 TFs and 23 therapeutic drugs were predicted targeting these crucial genes. The clinical prediction model of the crucial genes has shown good predictive capability. The Mendelian randomization analysis demonstrated that apoptosis is a risk factor for AMI. Lastly, the expression of CDKN1A, CD14 and IL1B was verified in the AMI mouse model and external dataset. Conclusions In this study, ARGs were screened by machine learning algorithms, and verified by qRT-PCR in the AMI mouse model. Finally, we demonstrated that CDKN1A, CD14 and IL1B were the crucial genes involved in apoptosis in AMI. These genes may provide new target for the recognition and intervention of apoptosis in AMI.
Collapse
Affiliation(s)
- Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Mengyao Li
- Department of Cardiology & Dongguan Cardiovascular Research Institute, Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Liqiu Yan
- Department of Cardiology & Dongguan Cardiovascular Research Institute, Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Liu X, Cheng LT, Ye QR, Gao HC, Zhu JW, Zhao K, Liu HM, Wang YJ, Alinejad T, Zhang XH, Chen GZ. Cyy-272, an indazole derivative, effectively mitigates obese cardiomyopathy as a JNK inhibitor. Biomed Pharmacother 2024; 178:117172. [PMID: 39128188 DOI: 10.1016/j.biopha.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Obesity has shown a global epidemic trend. The high-lipid state caused by obesity can maintain the heart in a prolonged low-grade inflammatory state and cause ventricular remodeling, leading to a series of pathologies, such as hypertrophy, fibrosis, and apoptosis, which eventually develop into obese cardiomyopathy. Therefore, prolonged low-grade inflammation plays a crucial role in the progression of obese cardiomyopathy, making inflammation regulation an essential strategy for treating this disease. Cyy-272, an indazole derivative, is an anti-inflammatory compound independently synthesized by our laboratory. Our previous studies revealed that Cyy-272 can exert anti-inflammatory effects by inhibiting the phosphorylation and activation of C-Jun N-terminal kinase (JNK), thereby alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI). The current study aimed to evaluate the potential of Cyy-272 to mitigate the occurrence and progression of obese cardiomyopathy through the inhibition of the JNK signaling pathway. Our results indicate that the compound Cyy-272 has encouraging therapeutic effects on obesity-induced cardiac injury. It significantly inhibits inflammation in cardiomyocytes and heart tissues induced by high lipid concentrations, further alleviating the resulting hypertrophy, fibrosis, and apoptosis. Mechanistically, the protective effect of Cyy-272 on obese cardiomyopathy can be attributed to its direct inhibition of JNK protein phosphorylation. In conclusion, we identified a novel compound, Cyy-272, capable of alleviating obese cardiomyopathy and confirmed that its effect is achieved through direct inhibition of JNK.
Collapse
Affiliation(s)
- Xin Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lin-Ting Cheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qian-Ru Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao-Cheng Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jin-Wei Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hua-Min Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun-Jie Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tahereh Alinejad
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiu-Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Gao-Zhi Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Hosoya T, Harada K, Kanetake J. β stimulator induces upregulation of miR-27a in the rat heart one hour after the injection. Leg Med (Tokyo) 2024; 70:102475. [PMID: 38924970 DOI: 10.1016/j.legalmed.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
MicroRNAs (miRs) are non-coding small RNA containing 18 to 22 nucleotides, that post-transcriptionally regulates mRNA expression. Chronic injection of β stimulator is known to induce cardiac injury and change of miRs expression level in the heart with some pathological changes such as fibrosis, heart failure, myocardial infarction. We investigated the changes in the expression level of miRs in the rat heart one hour after isoproterenol (a β stimulator) injection. Male Sprague-Dawley rats were assigned into three groups and received subcutaneous injection of normal sarin (NS) or 0.1 mg/kg isoproterenol (ISO-0.1) or 10 mg/kg isoproterenol (ISO-10). After one hour, we collected their heart and plasma. Total RNA was extracted from the left ventricle and used for deep miRNA sequencing. Based on the results of miRNA sequencing, we performed real-time polymerase chain reaction (RT-PCR) using 8 miR primers. Cardiac injury was evaluated by hematoxylin and eosin, and phosphotungstic acid-hematoxylin staining and measuring troponin-I levels in plasma. Troponin-I was significantly increased in ISO-0.1 and ISO-10 groups, but histological observation did not show any cardiac necrosis. miRNA sequencing identified 14 upregulated miRs and 12 downregulated miRs. Of the 26 miRs, RT-PCR confirmed miR-144-3p/5p and miR-451-5p were decreased, and that 5 miRs (miR-27a-5p, miR-30b-3p, miR-92a-1-5p, miR-132-5p, miR-582-3p) were upregulated. This study showed that β stimulus causes downregulation of miR-144/451 cluster and increases expression of five 5 miRs in the heart, especially 6.5-fold upregulation of miR-27a-5p as early as one hour after isoproterenol injection. Therefore, these miRs might be good biomarkers for cardiac injury.
Collapse
Affiliation(s)
- Tadashi Hosoya
- Department of Forensic Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Kazuki Harada
- Department of Forensic Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan; Department of Legal Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jun Kanetake
- Department of Forensic Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
6
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Wu Y, Peng W, Chen S, Zeng X, Zhu J, Zhu P. CAV1 Protein Encapsulated in Mouse BMSC-Derived Extracellular Vesicles Alleviates Myocardial Fibrosis Following Myocardial Infarction by Blocking the TGF-β1/SMAD2/c-JUN Axis. J Cardiovasc Transl Res 2024; 17:523-539. [PMID: 38092988 DOI: 10.1007/s12265-023-10472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 07/03/2024]
Abstract
Extracellular vesicles (EVs) derived from mouse bone marrow mesenchymal stem cells (mBMSCs) convey the CAV1 protein, influencing the TGF-β1/SMAD2/c-JUN pathway and thus the molecular mechanisms underlying myocardial fibrosis (MF) post-myocardial infarction (MI). Through various experimental methods, including transmission electron microscopy, Nanosight analysis, Western blot, ELISA, and qRT-PCR, we isolated, purified, and identified EVs originating from mBMSCs. Bioinformatics and experimental findings show a reduced expression of CAV1 in myocardial fibrosis tissue. Furthermore, our findings suggest that mBMSC-EVs can deliver CAV1 to cardiac fibroblasts (CFs) and that silencing CAV1 in mBMSC-EVs promotes CF fibrosis. In vivo studies further corroborated these findings. In conclusion, mBMSC-EVs mitigate myocardial fibrosis in MI mice by delivering the CAV1 protein, inhibiting the TGF-β1/SMAD2/c-JUN pathway.
Collapse
Affiliation(s)
- Yijin Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China
| | - Wenying Peng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Siyao Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Xiaodong Zeng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Jiade Zhu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China
| | - Ping Zhu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China.
| |
Collapse
|
8
|
Lee S. Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs. Antioxidants (Basel) 2024; 13:656. [PMID: 38929095 PMCID: PMC11200533 DOI: 10.3390/antiox13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) have been highlighted as key players in numerous diseases, and accumulating evidence indicates that pathological expressions of miRNAs contribute to both the development and progression of cardiovascular diseases (CVD), as well. Another important factor affecting the development and progression of CVD is reactive oxygen species (ROS), as well as the oxidative stress they may impose on the cells. Considering miRNAs are involved in virtually every biological process, it is not unreasonable to assume that miRNAs also play critical roles in the regulation of oxidative stress. This narrative review aims to provide mechanistic insights on possible oxidative stress-regulating roles of miRNAs in cardiovascular diseases based on differentially expressed miRNAs reported in various cardiovascular diseases and their empirically validated targets that have been implicated in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
9
|
Guan H, Chen Y, Liu X, Huang L. Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids Surf B Biointerfaces 2024; 239:113942. [PMID: 38729022 DOI: 10.1016/j.colsurfb.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) stands out as a highly lethal disease that poses a significant threat to global health. Worldwide, heart failure resulting from MI remains a leading cause of human mortality. Mesenchymal stem cell (MSC) therapy has emerged as a promising therapeutic approach, leveraging its intrinsic healing properties. Nevertheless, pervasive issues, including a low cell retention rate, suboptimal survival rate, and incomplete differentiation of MSCs, present formidable challenges for further research. The introduction and advancement of biomaterials have offered a novel avenue for the exploration of MSC therapy in MI, marking considerable progress thus far. Notably, hydrogels, among the representative biomaterials, have garnered extensive attention within the biomedical field. This review delves into recent advancements, specifically focusing on the application of hydrogels to augment MSC therapy for cardiac tissue regeneration in MI.
Collapse
Affiliation(s)
- Haien Guan
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Yuehua Chen
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Xuanyu Liu
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China.
| |
Collapse
|
10
|
Shan T, Li X, Xie W, Wang S, Gao Y, Zheng Y, Su G, Li Y, Zhao Z. Rap1GAP exacerbates myocardial infarction by regulating the AMPK/SIRT1/NF-κB signaling pathway. Cell Signal 2024; 117:111080. [PMID: 38320624 DOI: 10.1016/j.cellsig.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Rap1 GTPase-activating protein (Rap1GAP) is an important tumor suppressor. The purpose of this study was to investigate the role of Rap1GAP in myocardial infarction (MI) and its potential mechanism. Left anterior descending coronary artery ligation was performed on cardiac-specific Rap1GAP conditional knockout (Rap1GAP-CKO) mice and control mice with MI. Seven days after MI, Rap1GAP expression in the hearts of control mice peaked, the expression of proapoptotic markers (Bax and cleaved caspase-3) increased, the expression of antiapoptotic factors (Bcl-2) decreased, and the expression of the inflammatory factors IL-6 and TNF-α increased; thus, apoptosis occurred, inflammation, infarct size, and left ventricular dysfunction increased, while the heart changes caused by MI were alleviated in Rap1GAP-CKO mice. Mouse heart tissue was obtained for transcriptome sequencing, and gene set enrichment analysis (GSEA) was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We found that Rap1GAP was associated with the AMPK and NF-κB signaling pathways and that Rap1GAP inhibited AMPK/SIRT1 and activated the NF-κB signaling pathway in model animals. Similar results were observed in primary rat myocardial cells subjected to oxygen-glucose deprivation (OGD) to induce ischemia and hypoxia. Activating AMPK with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) reversed the damage caused by Rap1GAP overexpression in cardiomyocytes. In addition, the coimmunoprecipitation results showed that exogenous Rap1GAP interacted with AMPK. Rap1GAP was verified to regulate the AMPK SIRT1/NF-κB signaling pathway and exacerbate the damage to myocardial cells caused by ischemia and hypoxia. In conclusion, our results suggest that Rap1GAP promotes MI by modulating the AMPK/SIRT1/NF-κB signaling pathway and that Rap1GAP may be a therapeutic target for MI treatment in the future.
Collapse
Affiliation(s)
- Tiantian Shan
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Xiaoying Li
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China; Department of Emergency, Jinan Central Hospital, Jinan 250013, China; Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Wenzhi Xie
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Shaoqin Wang
- Department of Emergency, Jinan Central Hospital, Jinan 250013, China; Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Yan Gao
- Department of Cardiology, Qingdao Medical College, Qingdao University, Qingdao 266073, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Guohai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China.
| |
Collapse
|
11
|
Salvatori F, D’Aversa E, Serino ML, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. miRNAs Epigenetic Tuning of Wall Remodeling in the Early Phase after Myocardial Infarction: A Novel Epidrug Approach. Int J Mol Sci 2023; 24:13268. [PMID: 37686073 PMCID: PMC10487654 DOI: 10.3390/ijms241713268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in Western countries. An early diagnosis decreases subsequent severe complications such as wall remodeling or heart failure and improves treatments and interventions. Novel therapeutic targets have been recognized and, together with the development of direct and indirect epidrugs, the role of non-coding RNAs (ncRNAs) yields great expectancy. ncRNAs are a group of RNAs not translated into a product and, among them, microRNAs (miRNAs) are the most investigated subgroup since they are involved in several pathological processes related to MI and post-MI phases such as inflammation, apoptosis, angiogenesis, and fibrosis. These processes and pathways are finely tuned by miRNAs via complex mechanisms. We are at the beginning of the investigation and the main paths are still underexplored. In this review, we provide a comprehensive discussion of the recent findings on epigenetic changes involved in the first phases after MI as well as on the role of the several miRNAs. We focused on miRNAs function and on their relationship with key molecules and cells involved in healing processes after an ischemic accident, while also giving insight into the discrepancy between males and females in the prognosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Maria Luisa Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Giorgio Zauli
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Wang P, Qian H, Xiao M, Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun Inflamm Dis 2023; 11:e762. [PMID: 36705417 PMCID: PMC9837938 DOI: 10.1002/iid3.762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interleukin-1β (IL-1β) is a pro-inflammatory cytokine mainly produced by monocytes and macrophages with a wide range of biological effects. Evidence has shown that IL-1β plays a vital role in the process of apoptosis; however, the specific mechanisms, by which IL-1β induces apoptosis, vary due to different cellular and experimental conditions. Therefore, this present reviewstudy aimed to systematically review the association between the molecular mechanisms of IL-1β-induced apoptosis in pathological processes and the role of signaling pathways. This article also sought to briefly investigate the potential of signaling pathway-targeted therapy in the prevention and treatment of disease. METHODS This is a literature review article. The present discourse aim is first to scrutinize and assess the available literature on IL-1β and apoptosis. The relevant studies using the keywords of "IL-1β-induced apoptosis" and "signaling pathways" were searched in the databases of PubMed, Scopus, Google Scholar, and Web of Science. Gathered relevant material, and extracted information was then assessed. RESULTS IL-1β can induce apoptosis in various types of cells under different external stimuli via the mitochondrial pathway, death receptor pathway and endoplasmic reticulum pathway, and that the different pathways are often interconnected. The NF-kB signaling pathway, p38MAPK, and JNK signaling pathways mainly play a proapoptotic part, and the ERK1/2 pathway has a bidirectional role in regulating apoptosis, while activation of the PI3K-Akt signaling pathway can inhibit apoptosis. CONCLUSION This review indicates that IL-1β-induced apoptosis plays an important role in pathogenesis and development of pathology of many inflammatory diseases. Elucidating the role of the signaling pathways will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Peixuan Wang
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hong Qian
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Manxue Xiao
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingwen Lv
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Zhou F, Li K, Yang K. Adipose-Derived Stem Cell Exosomes and Related microRNAs in Atherosclerotic Cardiovascular Disease. J Cardiovasc Transl Res 2022; 16:453-462. [PMID: 36223051 DOI: 10.1007/s12265-022-10329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death from noncommunicable diseases worldwide. The pathological development of ASCVD begins with atherosclerosis, followed by the narrowing and occlusion of the vascular lumen and, subsequently, ischemic necrosis in coronary arteries. Preventing atherosclerosis development and delaying ischemia progression may be effective ways of pre-diagnosing and treating ASCVD. Studies have demonstrated that exosomes from adipose-derived stem cells play an increasingly important role in basic research on cardiovascular diseases in terms of the impact of macrophage polarization and the endothelial, anti-apoptosis, and angiogenesis effects. The related microRNAs play a significant role in ASCVD. This study was novel in reviewing the role of exosomes from adipose-derived stem cells and related microRNAs in ASCVD. Therapeutic potentials of adipose-derived stem cell exosomes in terms of their impact on macrophage polarization, endothelial effect, anti-apoptosis intervention, and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Ke Li
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Keping Yang
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
14
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
15
|
Yan J, Honglei Y, Yun W, Sheng D, Yun H, Anhua Z, Na F, Min L, Dandan S, Jing W, Junming T, Wenjun Z, Xiju H. Puerarin ameliorates myocardial remodeling of spontaneously hypertensive rats through inhibiting TRPC6-CaN-NFATc3 pathway. Eur J Pharmacol 2022; 933:175254. [PMID: 36087696 DOI: 10.1016/j.ejphar.2022.175254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Puerarin (Pue) has been widely used in the treatment of hypertension and cardiovascular diseases, but the basic mechanism of Pue on myocardial remodeling (MR) of hypertension is not clear. The purpose of this study was to investigate the effect and mechanism of Pue on MR and provide the basis for the clinical application. Thirty male spontaneously hypertensive rats (SHR) and six male Wistar Kyoto rats (WKY) aged 3 months were used in this study, SHR rats were randomly divided into 5 groups, Pue (40 or 80 mg/kg/d, ip) and telmisartan (TELMI) (30 mg/kg/d, ig) were administrated for 12 weeks. We used Echocardiography to detect the cardiac function. Morphology and structure of myocardium were observed. H9C2 cells were subjected to 1 μM Ang Ⅱ in vitro, 100 μM Pue, 0.5 μM Calmodulin-dependent calcineurin (CaN) inhibitor Cyclosporin A (CsA) and 1 μM specific transient receptor potential channel 6 (TRPC6) inhibitor SAR7334 were used in H9C2 cells. Long-term administration of Pue could significantly improve cardiac function, improve morphology and structure of myocardium in vivo. Pue could reduce MR related proteins expression (ACTC1, TGF-β1, CTGF, β-MHC and BNP), attenuate ROS, restore MMP and decrease Ca2+-overload in vitro. Further study indicated that Pue could decrease TRPC6 expression and inhibit nuclear factor of activated T cells 3 (NFATc3) nuclear translocation in vitro. These results suggested that puerarin could ameliorate myocardial remodeling through inhibiting TRPC6-CaN-NFATc3 in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Jiang Yan
- Department of Ultrasound, Taihe Hospital, Jinzhou Medicical University Union Training Base, Shiyan, 442000, China
| | - Yu Honglei
- Department of Ultrasound, Taihe Hospital, Jinzhou Medicical University Union Training Base, Shiyan, 442000, China
| | - Wu Yun
- Department of Ultrasound, Wuhan Asia General Hospital, Wuhan, 430000, China
| | - Dong Sheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - He Yun
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang Anhua
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Feng Na
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Lu Min
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Shi Dandan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Wang Jing
- School of Public Health and Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Tang Junming
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang Wenjun
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - He Xiju
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China; Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
16
|
Oridonin Relieves Angiotensin II-Induced Cardiac Remodeling via Inhibiting GSDMD-Mediated Inflammation. Cardiovasc Ther 2022; 2022:3167959. [PMID: 35360548 PMCID: PMC8938085 DOI: 10.1155/2022/3167959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial remodeling is one of the main lesions in the late stage of chronic heart failure and seriously affects the prognosis of patients. Continuous activation of the renin-angiotensin-aldosterone system (RAAS) contributes to the development of myocardial remodeling greatly, and angiotensin II (Ang II), its main constituent, can directly lead to cardiac remodeling through an inflammatory response and oxidative stress. Since Ang II-induced myocardial remodeling is closely related to inflammation, we tried to explore whether the anti-inflammatory drug oridonin (Ori) can reverse this process and its possible mechanism. Our study investigated that hypertrophy and fibrosis can be induced after being treated with Ang II in cardiomyocytes (H9c2 cells and primary rat cardiomyocytes) and C57BL/6J mice. The anti-inflammatory drug oridonin could effectively attenuate the degree of cardiac remodeling both in vivo and vitro by inhibiting GSDMD, a key protein of intracellular inflammation which can further activate kinds of inflammation factors such as IL-1β and IL-18. We illustrated that oridonin reversed cardiac remodeling by inhibiting the process of inflammatory signaling through GSDMD. After inhibiting the expression of GSDMD in cardiomyocytes by siRNA, it was found that Ang II-induced hypertrophy was attenuated. These results suggest that oridonin is proved to be a potential protective drug against GSDMD-mediated inflammation and myocardial remodeling.
Collapse
|
17
|
Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022; 8:809580. [PMID: 35111829 PMCID: PMC8801508 DOI: 10.3389/fcvm.2021.809580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.
Collapse
|
18
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
19
|
Xu K, Chen C, Wu Y, Wu M, Lin L. Advances in miR-132-Based Biomarker and Therapeutic Potential in the Cardiovascular System. Front Pharmacol 2021; 12:751487. [PMID: 34795586 PMCID: PMC8594750 DOI: 10.3389/fphar.2021.751487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the plasma under various cardiac conditions and may serve as a potential diagnostic or prognostic biomarker. More importantly, miR-132 in the myocardium has been demonstrated to be a master regulator in many pathological processes of ischemic or nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis, apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative stress, through downregulating target mRNA expression. Preclinical and clinical phase 1b studies have suggested antisense oligonucleotide targeting miR-132 may be a potential therapeutic approach for ischemic or nonischemic heart failure in the future. This review aims to summarize recent advances in the physiological and pathological functions of miR-132 and its possible diagnostic and therapeutic potential in cardiovascular disease.
Collapse
Affiliation(s)
- Kaizu Xu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Chungui Chen
- Department of Radiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Ying Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Liming Lin
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| |
Collapse
|
20
|
The emerging role of miRNA-132/212 cluster in neurologic and cardiovascular diseases: Neuroprotective role in cells with prolonged longevity. Mech Ageing Dev 2021; 199:111566. [PMID: 34517022 DOI: 10.1016/j.mad.2021.111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
miRNA-132/212 are small regulators of gene expression with a function that fulfills a vital function in diverse biological processes including neuroprotection of cells with prolonged longevity in neurons and the cardiovascular system. In neurons, miRNA-132 appears to be essential for controlling differentiation, development, and neural functioning. Indeed, it also universally promotes axon evolution, nervous migration, plasticity as well, it is suggested to be neuroprotective against neurodegenerative diseases. Moreover, miRNA-132/212 disorder leads to neural developmental perturbation, and the development of degenerative disorders covering Alzheimer's, Parkinson's, and epilepsy's along with psychiatric perturbations including schizophrenia. Furthermore, the cellular mechanisms of the miRNA-132/212 have additionally been explored in cardiovascular diseases models. Also, the miRNA-132/212 family modulates cardiac hypertrophy and autophagy in cardiomyocytes. The protective and effective clinical promise of miRNA-132/212 in these systems is discussed in this review. To sum up, the current progress in innovative miRNA-based therapies for human pathologies seems of extreme concern and reveals promising novel therapeutic strategies.
Collapse
|
21
|
Palaniappan S, Sadacharan CM, Rostama B. Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells In Vitro. EXPOSURE AND HEALTH 2021; 14:75-85. [PMID: 34337190 PMCID: PMC8310682 DOI: 10.1007/s12403-021-00419-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/09/2023]
Abstract
Microplastics are ubiquitous environmental pollutants that are a growing concern to many ecosystems, as well as human health. Many of the effects of microplastics on mammalian cells and tissues remain unknown. To address this, we treated L929 murine fibroblasts and Madin-Darby canine kidney (MDCK) epithelial cell lines with 1 μg/mL, 10 μg/mL, or 20 μg/mL of polyethylene (PE) or polystyrene (PS) microspheres in vitro for 6 and 24 h and measured the resulting changes in cell viability, metabolism, and transcriptional expression of inflammatory cytokines and antioxidant enzymes. We observed dose-dependent decreases in cell viability corresponding to increases in doses of both PE and PS. We conducted cell metabolism assays and observed dose-dependent increases in metabolism per cell with increasing doses of both PE and PS. Similarly, we also observed increased expression of the superoxide dismutase-3 gene (SOD3), indicating oxidative stress caused by the microplastics treatments. We also observed increased expression of TNFα, but decreased expression of IFNβ, suggesting different mechanisms by which the microplastics regulate inflammatory responses in mammalian cells. Our results contribute new data to the growing understanding of the effects of microplastics on mammalian cells and indicate complex cellular stress responses to microplastics in the environment.
Collapse
Affiliation(s)
| | | | - Bahman Rostama
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005 USA
- 11 Hills Beach Road, Stella Maris #408, Biddeford, ME 04005-9526 USA
| |
Collapse
|
22
|
Jin Z, Gan C, Luo G, Hu G, Yang X, Qian Z, Yao S. Notoginsenoside R1 protects hypoxia-reoxygenation deprivation-induced injury by upregulation of miR-132 in H9c2 cells. Hum Exp Toxicol 2021; 40:S29-S38. [PMID: 34212764 DOI: 10.1177/09603271211025589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (IRI) is a common perioperative complication of heart and great vessels surgery, aggravating the original myocardial damage and seriously affecting the postoperative recovery of cardiac function. The aim of this study was to reveal the functional effects and potential mechanisms of notoginsenoside R1 (NG-R1) in myocardial cells injured by hypoxia-reoxygenation (H/R). METHODS The rat cardiomyocyte line H9c2 was subjected to H/R with or without NG-R1 treatment. The levels of miR-132 and HBEGF in the cell were altered by microRNA or short-hairpin RNA transfection. Cell viability, apoptosis, lactate dehydrogenase (LDH) and malondialdehyde (MDA) were monitored. Dual luciferin was used to detect the relationship between miR-132 and HBEGF. RESULTS NG-R1 (20 μM) had no impact on H9c2 cells, but cell viability was significantly reduced at 80 μM. NG-R1 (20 μM) protected H9c2 cells against H/R-induced cell damage, accompanied by increased cell viability, reduced cell apoptosis, and downregulation of LDH and MDA. Furthermore, the level of miR-132 was decreased in response to H/R exposure but then increased after NG-R1 treatment. When miR-132 was overexpressed, H/R-induced cell damage could be recovered. Downregulation of miR-132 limited the protective effect of NG-R1 on H/R damage. We also found that HBEGF was a direct target of miR-132. The expression of HBEGF was increased upon H/R damage, and this increase was reversed after NG-R1 treatment. CONCLUSIONS This study demonstrated that NG-R1 markedly protected H9c2 cells against H/R-induced damage via upregulation of miR-132 and downregulation of its target protein HBEGF.
Collapse
Affiliation(s)
- Z Jin
- Department of Pharmacy, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - C Gan
- Department of Pharmacy, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - G Luo
- Department of Pharmacy, Jiangshan Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - G Hu
- Department of Pharmacy, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - X Yang
- Department of Pharmacy, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - Z Qian
- Department of Pharmacy, Quzhou College of Technology, Quzhou, Zhejiang, China
| | - S Yao
- Department of Pharmacy, Quzhou College of Technology, Quzhou, Zhejiang, China
| |
Collapse
|
23
|
MiR-467a-5p aggravates myocardial infarction by modulating ZEB1 expression in mice. J Mol Histol 2021; 52:767-780. [PMID: 33997926 DOI: 10.1007/s10735-021-09978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is a great threat to patients all over the word. MicroRNAs (miRNAs) are a group of non-coding RNAs and can regulate initiation and progression of MI. The current research aimed to investigate the role of miR-467a-5p in MI. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to detective relative expression of miR-467a-5p in cardiac tissues and mouse cardiomyocytes (MCMs). Hematoxylin and eosin staining was used to reveal the histology of the myocardium. Echocardiography was utilized to reveal cardiac function of mice. Flow cytometer analysis was used to reveal cell apoptosis. Luciferase reporter assay was applied for determining the binding capacity between molecules. We discovered that the level of miR-467a-5p was up-regulated in MI mice and in MCMs induced by H2O2 or hypoxia. Functionally, an elevation of left ventricular end-diastolic diameter and left ventricular end-systolic diameter, as well as a decrease of left ventricular ejection fraction and left ventricular fractional shortening were observed in MI mice. In addition, deficiency of miR-467a-5p improved MI in mice by increasing the contents of lactate dehydrogenase, creatine kinase and malondialdehyde and reducing the activity of superoxide dismutase in serum. Moreover, silencing of miR-467a-5p reversed hypoxia-induced apoptosis of MCMs. Mechanistically, zinc finger E-box binding homeobox 1 (ZEB1) was confirmed as the target of miR-467a-5p. Moreover, miR-467a-5p negatively regulated ZEB1 level in MI mice and MCMs. Finally, the promotive effect of miR-467a-5p inhibition on cell apoptosis was reversed by knockdown of ZEB1. All the experimental results demonstrate that miR-467a-5p aggravates MI by modulating ZEB1 expression in mice, which may provide a novel therapeutic strategy for MI.
Collapse
|
24
|
Inhibition of miR-1224 suppresses hypoxia/reoxygenation-induced oxidative stress and apoptosis in cardiomyocytes through targeting GPX4. Exp Mol Pathol 2021; 121:104645. [PMID: 33989616 DOI: 10.1016/j.yexmp.2021.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
We have focused on the underlying role of miR-1224 in cardiomyocyte injury stimulated by hypoxia/reoxygenation (H/R). In the current study, the rat cardiomyocyte cell line H9C2 was used to construct a H/R cell model to validate the cardioprotective effects of miR-1224. Data from the dual-luciferase assay revealed that the glutathione peroxidase 4 (GPX4) was a direct target of miR-1224. Expression of miR-1224, determined using qRT-PCR, was remarkably increased while that of GPX4 protein, evaluated via western blotting, was significantly decreased in cardiomyocytes in response to H/R exposure. ROS generation, superoxide dismutase (SOD) activity, concentrations of malondialdehyde (MDA) and 4-hydroxy aldehydes (4-HNE), and H9C2 cell apoptosis were further evaluated following overexpression of miR-1224 or silencing of GPX4 in H9C2 cells. H9C2 cells under H/R conditions displayed increased synthesis of ROS, along with overexpression of miR-1224 and downregulation of GPX4. SOD activity was significantly decreased while concentrations of MDA and 4-HNE were markedly increased under H/R injury conditions. In addition, miR-1224 mimic or GPX4 siRNA plasmids dramatically enhanced H/R-mediated apoptosis, Bax expression and caspase-3 activity, with a concomitant reduction in Bcl-2 expression. Conversely, inhibition of miR-1224 exerted suppressive effects on oxidative stress and apoptosis in H9C2 cells under H/R conditions. Interestingly, silencing of GPX4 attenuated the negative effects of miR-1224 inhibition. Our results suggested that inhibition of miR-1224 caused resistance to H/R and diminished oxidative stress in vitro through targeting of GPX4.
Collapse
|
25
|
Pan Q, Hui D, Hu C. A Variant of IL1B Is Associated with the Risk and Blood Lipid Levels of Myocardial Infarction in Eastern Chinese Individuals. Immunol Invest 2021; 51:1162-1169. [PMID: 33941028 DOI: 10.1080/08820139.2021.1914081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, we determined to interpret the effects of the interleukin (IL)1B gene rs1143634 C/T polymorphism on myocardial infarction (MI) risk. This study, conducted in a Chinese Han population, recruited 369 MI patients and 465 controls. The variant of IL1B gene (rs1143634 C/T polymorphism) was genotyped by PCR-RFLP method. In this study, a significant link was shown between the IL1B rs1143634 C/T polymorphism and MI risk. We found that the IL1B rs1143634 C/T polymorphism enhanced the risk of MI in this population. Subgroup analysis detected that the IL1B rs1143634 C/T polymorphism associated with MI susceptibility in males, smokers, and individuals with diabetes mellitus. In addition, the IL1B rs1143634 C/T polymorphism was related with the levels of blood lipids including low-density lipoprotein (LDL), and total cholesterol (TC). This study uncovers that the IL1B rs1143634 C/T polymorphism may associate with the risk and blood lipid levels of MI in an Eastern Chinese Han population.Abbreviations: MI: myocardial infarction; IL-1: Interleukin-1; SNP: single nucleotide polymorphism; BMI: Body Mass Index; HDL: high-density lipoprotein; TC: total cholesterol; TG: triglyceride; LDL: low-density lipoprotein; PCR: polymerase chain reaction; 95% CI: 95% confidence interval; OR: odds ratio.
Collapse
Affiliation(s)
- Quanhua Pan
- Department of Cardiology Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ding Hui
- Department of Cardiology Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Chuangxian Hu
- Department of Cardiology Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
26
|
MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats. Biosci Rep 2021; 40:226310. [PMID: 32885809 PMCID: PMC7494995 DOI: 10.1042/bsr20201696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine the effect of microRNA (miR)-132 on cardiac fibrosis in myocardial infarction (MI)-induced heart failure and angiotensin (Ang) II-treated cardiac fibroblasts (CFs). Experiments were carried out in Sprague-Dawley rat treatment with ligation of left coronary artery to induce heart failure, and in CFs administration of Ang II to induce fibrosis. The level of miR-132 was increased in the heart of rats with MI-induced heart failure and the Ang II-treated CFs. In MI rats, left ventricle (LV) ejection fraction, fractional shortening, the maximum of the first differentiation of LV pressure (LV +dp/dtmax) and decline (LV -dp/dtmax) and LV systolic pressure (LVSP) were reduced, and LV end-systolic diameter (LVESD), LV end-diastolic diameter (LVEDD), LV volumes in systole (LVVS) and LV volumes in diastole (LVVD) were increased, which were reversed by miR-132 agomiR but deteriorated by miR-132 antagomiR. The expression levels of collagen I, collagen III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were increased in the heart of rat with MI-induced heart failure and CFs administration of Ang II. These increases were inhibited by miR-132 agomiR but enhanced by miR-132 antagomiR treatment. MiR-132 inhibited PTEN expression, and attenuated PI3K/Akt signal pathway in CFs. These results indicated that the up-regulation of miR-132 improved the cardiac dysfunction, attenuated cardiac fibrosis in heart failure via inhibiting PTEN expression, and attenuating PI3K/Akt signal pathway. Up-regulation of miR-132 may be a strategy for the treatment of heart failure and cardiac fibrosis.
Collapse
|
27
|
Liu D, Qiao C, Luo H. MicroRNA-1278 ameliorates the inflammation of cardiomyocytes during myocardial ischemia by targeting both IL-22 and CXCL14. Life Sci 2021; 269:118817. [PMID: 33275986 DOI: 10.1016/j.lfs.2020.118817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to elucidate the role of microRNAs (miRNAs) during myocardial infarction (MI) development in vivo and in vitro. MAIN METHODS Differentially expressed miRNAs between heart tissue from the MI mouse model and the control mouse were identified via microarray. Quantitative PCR (qPCR) and western blotting (WB) were performed to examine the expression levels of miRNAs and proteins, respectively. EdU-staining and colony formation assay were performed to assess cell viability and growth. Annexin V- and PI-staining-based flow cytometry was used to assess cell apoptosis. An MI mouse model was also established to study the function of miR-1278 in vivo. KEY FINDINGS The levels of miR-1278 were reduced in the infarct regions of heart tissues of the MI mouse model and in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) compared to those in the heart tissues of healthy mice and non-treated NMVCs. H2O2 treatment suppressed the proliferation of NMVCs, while miR-1278 upregulation improved it. Moreover, we found that miR-1278 inhibited the upregulation of IL-22 and CXCL14 expression in H2O2-treated NMVCs by directly binding with the 3'-UTRs of both IL-22 and CXCL14. Furthermore, restoration of IL-22 and CXCL14 in H2O2-treated NMVCs promoted miR-1278-induced inflammation and apoptosis. Administration of agomiR-1278 to the MI mouse model significantly improved cardiac activity. SIGNIFICANCE Collectively, our findings illustrate that the expression of miR-1278 is low in H2O2-treated NMVCs and post-MI cardiac tissues, and the overexpression of miR-1278 in these protects against cell death by modulating IL-22 and CXCL14 expression.
Collapse
Affiliation(s)
- Donghai Liu
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenhui Qiao
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hong Luo
- Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
28
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
29
|
Wu Y, Pan N, An Y, Xu M, Tan L, Zhang L. Diagnostic and Prognostic Biomarkers for Myocardial Infarction. Front Cardiovasc Med 2021; 7:617277. [PMID: 33614740 PMCID: PMC7886815 DOI: 10.3389/fcvm.2020.617277] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023] Open
Abstract
The incidence of myocardial infarction (MI) increases every year worldwide. Better diagnostic and prognostic biomarkers for clinical applications are the consistent pursuit of MI research. In addition to electrocardiogram, echocardiography, coronary angiography, etc., circulating biomarkers are essential for the diagnosis, prognosis, and treatment effect monitoring of MI patients. In this review, we assessed both strength and weakness of MI circulating biomarkers including: (1) originated from damaged myocardial tissues including current golden standard cardiac troponin, (2) released from non-myocardial tissues due to MI-induced systems reactions, and (3) preexisted in blood circulation before the occurrence of MI event. We also summarized newly reported MI biomarkers. We proposed that the biomarkers preexisting in blood circulation before MI incidents should be emphasized in research and development for MI prevention in near future.
Collapse
Affiliation(s)
- Yuling Wu
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nana Pan
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi An
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengyuan Xu
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Tan
- Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Center for Clinical Research, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Chang X, Zhang W, Zhao Z, Ma C, Zhang T, Meng Q, Yan P, Zhang L, Zhao Y. Regulation of Mitochondrial Quality Control by Natural Drugs in the Treatment of Cardiovascular Diseases: Potential and Advantages. Front Cell Dev Biol 2020; 8:616139. [PMID: 33425924 PMCID: PMC7793684 DOI: 10.3389/fcell.2020.616139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double-membraned cellular organelles that provide the required energy and metabolic intermediates to cardiomyocytes. Mitochondrial respiratory chain defects, structure abnormalities, and DNA mutations can affect the normal function of cardiomyocytes, causing an imbalance in intracellular calcium ion homeostasis, production of reactive oxygen species, and apoptosis. Mitochondrial quality control (MQC) is an important process that maintains mitochondrial homeostasis in cardiomyocytes and involves multi-level regulatory mechanisms, such as mitophagy, mitochondrial fission and fusion, mitochondrial energy metabolism, mitochondrial antioxidant system, and mitochondrial respiratory chain. Furthermore, MQC plays a role in the pathological mechanisms of various cardiovascular diseases (CVDs). In recent years, the regulatory effects of natural plants, drugs, and active ingredients on MQC in the context of CVDs have received significant attention. Effective active ingredients in natural drugs can influence the production of energy-supplying substances in the mitochondria, interfere with the expression of genes associated with mitochondrial energy requirements, and regulate various mechanisms of MQC modulation. Thus, these ingredients have therapeutic effects against CVDs. This review provides useful information about novel treatment options for CVDs and development of novel drugs targeting MQC.
Collapse
Affiliation(s)
- Xing Chang
- China Academy of Chinese Medical Sciences, Beijing, China.,Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenjin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhenyu Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Li X, Zhong J, Zeng Z, Wang H, Li J, Liu X, Yang X. MiR-181c protects cardiomyocyte injury by preventing cell apoptosis through PI3K/Akt signaling pathway. Cardiovasc Diagn Ther 2020; 10:849-858. [PMID: 32968640 DOI: 10.21037/cdt-20-490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Cardiomyocyte apoptosis plays an important role in the development of heart failure, which leads to high mortality in patients with cardiovascular diseases. In this study, we are focused to identify the role of miRNA-181c in the regulating of myocardial tissue apoptosis in the doxorubicin (DOX) or hypoxia/reoxygenation (H/R) induced H9C2 cardiomyocyte injury. Methods DOX-induced heart failure animal model was established using mice. Total RNA was extracted from tissue and cell using Trizol. RT-PCR was conducted for real-time RNA quantification. H9c2 cells were collected and labeled using an Annexin V-PI apoptosis kit. Flow cytometry was conducted to identify the cell apoptosis. Rat cardiomyocyte H9c2 cell was treated by 16 hours' hypoxia and 2 hours' reoxygenation to induce cell apoptosis. TUNEL assay was employed for myocardial tissue apoptosis analysis. Results It was revealed that miR-181c was suppressed on the heart tissue of DOX-induced heart failure animal model. We observed miR-181c overexpression reduced apoptosis through TUNEL assay, which suggested the inhibitory effect of miR-181c on myocardial tissue apoptosis. Transfection of miR-181c mimic could decrease cell apoptosis in H/R treated H9C2 cells in vitro. Under the stimulation of H/R or DOX, miR-181c could downregulate protein expression of Fas, IL-6 and TNF-α, and upregulated Bcl2 and the phosphorylation of Akt. Conclusions Our study revealed that miR-181c protected heart failure by impeding cardiomyocyte apoptosis through PI3K/Akt pathway, implying the therapeutic role of miR-181c during the exacerbation of the cardiovascular disease.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Cardiology, Chaoyang Hospital affiliated to Capital Medical University, Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Department of Cardiology, Chaoyang Hospital affiliated to Capital Medical University, Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhen Zeng
- Geriatric Department, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Hongjiang Wang
- Department of Cardiology, Chaoyang Hospital affiliated to Capital Medical University, Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Li
- Department of Cardiology, Chaoyang Hospital affiliated to Capital Medical University, Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Department of Cardiology, Chaoyang Hospital affiliated to Capital Medical University, Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinchun Yang
- Department of Cardiology, Chaoyang Hospital affiliated to Capital Medical University, Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|