1
|
Chumak T, Jullienne A, Ek CJ, Ardalan M, Svedin P, Quan R, Salehi A, Salari S, Obenaus A, Vexler ZS, Mallard C. Maternal n-3 enriched diet reprograms the offspring neurovascular transcriptome and blunts inflammation induced by endotoxin in the neonate. J Neuroinflammation 2024; 21:199. [PMID: 39128994 PMCID: PMC11316986 DOI: 10.1186/s12974-024-03191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Infection during the perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) transforms brain lipid composition in the offspring and protects the neonatal brain from stroke, in part by blunting injurious immune responses. Critical to the interface between the brain and systemic circulation is the vasculature, endothelial cells in particular, that support brain homeostasis and provide a barrier to systemic infection. Here, we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in postnatal day 9 mice after modeling aspects of infection using LPS. Transcriptome analysis was performed on microvessels isolated from brains of pups from dams maintained on 3 different maternal diets from gestation day 1: standard, n-3 enriched or n-6 enriched diets. Depending on the diet, in endothelial cells LPS produced distinct regulation of pathways related to immune response, cell cycle, extracellular matrix, and angiogenesis. N-3 PUFA diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. Cytokine analysis revealed a blunted LPS response in blood and brain of offspring from dams on n-3 enriched diet. Analysis of cerebral vasculature in offspring in vivo revealed no differences in vessel density. However, vessel complexity was decreased in response to LPS at 72 h in standard and n-6 diets. Thus, LPS modulates specific transcriptomic changes in brain vessels of offspring rather than major structural vessel characteristics during early life. N-3 PUFA-enriched maternal diet in part prevents an imbalance in homeostatic processes, alters inflammation and ultimately mitigates changes to the complexity of surface vessel networks that result from infection. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.
Collapse
Affiliation(s)
- Tetyana Chumak
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden.
| | - Amandine Jullienne
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| | - Ryan Quan
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Arjang Salehi
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sirus Salari
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | | | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden
| |
Collapse
|
2
|
Jing J, Ouyang L, Zhang H, Liang K, Ma R, Ge X, Tang T, Zhao S, Xue T, Shen J, Ma J, Li Z, Wu J, Yang Y, Zhao W, Zheng L, Qian Z, Sun S, Ge Y, Chen L, Li C, Yao B. Omega-3 polyunsaturated fatty acids and its metabolite 12-HEPE rescue busulfan disrupted spermatogenesis via target to GPR120. Cell Prolif 2024; 57:e13551. [PMID: 37743695 PMCID: PMC10849791 DOI: 10.1111/cpr.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Busulfan is an antineoplastic, which is always accompanied with the abnormal of spermatogonia self-renewal and differentiation. It has been demonstrated that the omega-3 polyunsaturated fatty acids (PUFAs) benefits mature spermatozoa. However, whether omega-3 can protect endogenous spermatogonia and the detailed mechanisms are still unclear. Evaluate of spermatogenesis function (in vivo) were examined by histopathological analysis, immunofluorescence staining, and western blotting. The levels of lipid metabolites in testicular tissue were determined via liquid chromatography. We investigated the effect of lipid metabolites on Sertoli cells provided paracrine factors to regulate spermatogonia proliferation and differentiation using co-culture system. In our study, we showed that omega-3 PUFAs significantly improved the process of sperm production and elevated the quantity of both undifferentiated Lin28+ spermatogonia and differentiated c-kit+ spermatogonia in a mouse model where spermatogenic function was disrupted by busulfan. Mass spectrometry revealed an increase in the levels of several omega-3 metabolites in the testes of mice fed with omega-3 PUFAs. The eicosapentaenoic acid metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) up-regulated bone morphogenic protein 4 (BMP4) expression through GPR120-ERK1/2 pathway activation in Sertoli cells and restored spermatogonia proliferation and differentiation. Our study provides evidence that omega-3 PUFAs metabolite 12-HEPE effectively protects spermatogonia and reveals that GPR120 might be a tractable pharmacological target for fertility in men received chemotherapy or severe spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Jun Jing
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lei Ouyang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Hong Zhang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Kuan Liang
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Ting Tang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanmeizi Zhao
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Tongmin Xue
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital)Yangzhou UniversityYangzhouChina
| | - Jiaming Shen
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jinzhao Ma
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhou Li
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Jing Wu
- Core Laboratory, Sir Run Run HospitalNanjing Medical UniversityNanjingChina
| | - Yang Yang
- Basic Medical Laboratory, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Wei Zhao
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Lu Zheng
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Zhang Qian
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Shanshan Sun
- School of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yifeng Ge
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Li Chen
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Bing Yao
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Clinical School of Medical CollegeNanjing UniversityNanjingChina
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical MedicineSouthern Medical UniversityNanjingChina
- School of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Chumak T, Jullienne A, Joakim Ek C, Ardalan M, Svedin P, Quan R, Salehi A, Salari S, Obenaus A, Vexler ZS, Mallard C. Maternal n-3 enriched diet reprograms neurovascular transcriptome and blunts inflammation in neonate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576634. [PMID: 38328227 PMCID: PMC10849562 DOI: 10.1101/2024.01.22.576634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infection during perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (PUFA) transforms brain lipid composition and protects from neonatal stroke. Vasculature is a critical interface between blood and brain providing a barrier to systemic infection. Here we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in 9-day old mice after endotoxin (LPS)-induced infection. Transcriptome analysis was performed on brain microvessels from pups born to dams maintained on 3 diets: standard, n-3 or n-6 enriched. N-3 diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. LPS response in blood and brain was blunted in n-3 offspring. Cerebral angioarchitecture analysis revealed modified vessel complexity after LPS. Thus, n-3-enriched maternal diet partially prevents imbalance in homeostatic processes and alters inflammation rather than affects brain vascularization during early life. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.
Collapse
|
4
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
5
|
Tu WB, Christofk HR, Plath K. Nutrient regulation of development and cell fate decisions. Development 2023; 150:dev199961. [PMID: 37260407 PMCID: PMC10281554 DOI: 10.1242/dev.199961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.
Collapse
Affiliation(s)
- William B. Tu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Yang M, Lai Y, Gan D, Liu Q, Wang Y, He X, An Y, Gao T. Possible molecular exploration of herbal pair Haizao-Kunbu in the treatment of Graves' disease by network pharmacology, molecular docking, and molecular dynamic analysis. Front Endocrinol (Lausanne) 2023; 14:1236549. [PMID: 37859983 PMCID: PMC10583570 DOI: 10.3389/fendo.2023.1236549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Objective To promote the development and therapeutic application of new medications, it is crucial to conduct a thorough investigation into the mechanism by which the traditional Chinese herb pair of Haizao-Kunbu (HK) treats Graves' disease (GD). Materials and methods Chemical ingredients of HK, putative target genes, and GD-associated genes were retrieved from online public databases. Using Cytoscape 3.9.1, a compound-gene target network was established to explore the association between prosperous ingredients and targets. STRING, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analyses visualized core targets and disease pathways. Additionally, we conducted a refined analysis of the binding interactions between active ingredients and their respective targets. To visualize these findings, we employed precise molecular docking techniques. Furthermore, we carried out molecular dynamics simulations to gain insights into the formation of more tightly bound complexes. Results We found that there were nine key active ingredients in HK, which mainly acted on 21 targets. These targets primarily regulated several biological processes such as cell population proliferation, protein phosphorylation, and regulation of kinase activity, and acted on PI3K-AKT and MAPK pathways to treat GD. Analysis of the molecular interaction simulation under computer technology revealed that the key targets exhibited strong binding activity to active ingredients, and Fucosterol-AKT1 and Isofucosterol-AKT1 complexes were highly stable in humans. Conclusion This study demonstrates that HK exerts therapeutic effects on GD in a multi-component, multi-target, and multi-pathway manner by regulating cell proliferation, differentiation, inflammation, and immunomodulatory-related targets. This study provides a theoretical foundation for further investigation into GD.
Collapse
Affiliation(s)
- Mengfei Yang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yiwen Lai
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Di Gan
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Qingyang Liu
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yingna Wang
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Xinyong He
- Insititute of Laboratory Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yi An
- Department of Obstetrics, The People’s Hospital of Liaoning, Shenyang, Liaoning, China
| | - Tianshu Gao
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022; 13:1023999. [PMID: 36248838 PMCID: PMC9558127 DOI: 10.3389/fimmu.2022.1023999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout history, pollution has become a part of our daily life with the improvement of life quality and the advancement of industry and heavy industry. In recent years, the adverse effects of heavy metals, such as cadmium (Cd), on human health have been widely discussed, particularly on the immune system. Here, this review summarizes the available evidence on how Cd exposure may affect health. By analyzing the general manifestations of inflammation caused by Cd exposure, we find that the role of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm. Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this review highlights the role of n-3 PUFAs in the pathological changes induced by Cd exposure. Although n-3 PUFAs remain to be verified whether they can be used as therapeutic agents, as rehabilitation therapy, supplementation with n-3 PUFAs is reliable and effective.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Zhangping Yang,
| |
Collapse
|
8
|
Ge X, He Z, Cao C, Xue T, Jing J, Ma R, Zhao W, Liu L, Jueraitetibaike K, Ma J, Feng Y, Qian Z, Zou Z, Chen L, Fu C, Song N, Yao B. Protein palmitoylation-mediated palmitic acid sensing causes blood-testis barrier damage via inducing ER stress. Redox Biol 2022; 54:102380. [PMID: 35803125 PMCID: PMC9287734 DOI: 10.1016/j.redox.2022.102380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Blood-testis barrier (BTB) damage promotes spermatogenesis dysfunction, which is a critical cause of male infertility. Dyslipidemia has been correlated with male infertility, but the major hazardous lipid and the underlying mechanism remains unclear. In this study, we firstly discovered an elevation of palmitic acid (PA) and a decrease of inhibin B in patients with severe dyszoospermia, which leaded us to explore the effects of PA on Sertoli cells. We observed a damage of BTB by PA. PA penetration to endoplasmic reticulum (ER) and its damage to ER structures were exhibited by microimaging and dynamic observation, and consequent ER stress was proved to mediate PA-induced Sertoli cell barrier disruption. Remarkably, we demonstrated a critical role of aberrant protein palmitoylation in PA-induced Sertoli cell barrier dysfunction. An ER protein, Calnexin, was screened out and was demonstrated to participate in this process, and suppression of its palmitoylation showed an ameliorating effect. We also found that ω-3 poly-unsaturated fatty acids down-regulated Calnexin palmitoylation, and alleviated BTB dysfunction. Our results indicate that dysregulated palmitoylation induced by PA plays a pivotal role in BTB disruption and subsequent spermatogenesis dysfunction, suggesting that protein palmitoylation might be therapeutically targetable in male infertility. An elevation of circulating PA was identified in patients with severe dyszoospermia. PA-induced over-palmitoylation in Sertoli cells leads to ER stress and BTB damage. The palmitoylation of the ER protein Calnexin regulates Sertoli cell barrier function. ω-3 PUFAs ameliorate PA-induced damage and over-palmitoylation in Sertoli cells.
Collapse
|
9
|
Petry SF, Römer A, Rawat D, Brunner L, Lerch N, Zhou M, Grewal R, Sharifpanah F, Sauer H, Eckert GP, Linn T. Loss and Recovery of Glutaredoxin 5 Is Inducible by Diet in a Murine Model of Diabesity and Mediated by Free Fatty Acids In Vitro. Antioxidants (Basel) 2022; 11:antiox11040788. [PMID: 35453472 PMCID: PMC9025089 DOI: 10.3390/antiox11040788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Free fatty acids (FFA), hyperglycemia, and inflammatory cytokines are major mediators of β-cell toxicity in type 2 diabetes mellitus, impairing mitochondrial metabolism. Glutaredoxin 5 (Glrx5) is a mitochondrial protein involved in the assembly of iron–sulfur clusters required for complexes of the respiratory chain. We have provided evidence that islet cells are deprived of Glrx5, correlating with impaired insulin secretion during diabetes in genetically obese mice. In this study, we induced diabesity in C57BL/6J mice in vivo by feeding the mice a high-fat diet (HFD) and modelled the diabetic metabolism in MIN6 cells through exposure to FFA, glucose, or inflammatory cytokines in vitro. qRT-PCR, ELISA, immunohisto-/cytochemistry, bioluminescence, and respirometry were employed to study Glrx5, insulin secretion, and mitochondrial biomarkers. The HFD induced a depletion of islet Glrx5 concomitant with an obese phenotype, elevated FFA in serum and reactive oxygen species in islets, and impaired glucose tolerance. Exposure of MIN6 cells to FFA led to a loss of Glrx5 in vitro. The FFA-induced depletion of Glrx5 coincided with significantly altered mitochondrial biomarkers. In summary, we provide evidence that Glrx5 is regulated by FFA in type 2 diabetes mellitus and is linked to mitochondrial dysfunction and blunted insulin secretion.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
- Correspondence: ; Tel.: +49-641-985-57010
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Divya Rawat
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Lara Brunner
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Nina Lerch
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Rekha Grewal
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Fatemeh Sharifpanah
- Faculty of Medicine, Philipps University, 35037 Marburg, Germany;
- Cyntegrity Germany GmbH, 60438 Frankfurt, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Gunter Peter Eckert
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| |
Collapse
|
10
|
Harris MB, Kuo CH. Scientific Challenges on Theory of Fat Burning by Exercise. Front Physiol 2021; 12:685166. [PMID: 34295263 PMCID: PMC8290478 DOI: 10.3389/fphys.2021.685166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Exercise training decreases abdominal fat in an intensity-dependent manner. The fat loss effect of exercise has been intuitively thought to result from increased fat burning during and after exercise, defined by conversion of fatty acid into carbon dioxide in consumption of oxygen. Nevertheless, increasing exercise intensity decreases oxidation of fatty acids derived from adipose tissue despite elevated lipolysis. The unchanged 24-h fatty acid oxidation during and after exercise does not provide support to the causality between fat burning and fat loss. In this review, alternative perspectives to explain the fat loss outcome are discussed. In brief, carbon and nitrogen redistribution to challenged tissues (muscle and lungs) for fuel replenishment and cell regeneration against abdominal adipose tissue seems to be the fundamental mechanism underlying the intensity-dependent fat loss effect of exercise. The magnitude of lipolysis (fatty acid release from adipocytes) and the amount of post-meal carbon and nitrogen returning to abdominal adipose tissue determines the final fat tissue mass. Therefore, meal arrangement at the time when muscle has the greatest reconstruction demand for carbon and nitrogen could decrease abdominal fat accumulation while increasing muscle mass and tissue repair.
Collapse
Affiliation(s)
- M Brennan Harris
- Department of Health Sciences, College of William and Mary, Williamsburg, VA, United States
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, College of Kinesiology, University of Taipei, Taipei, Taiwan
| |
Collapse
|