1
|
Li P, Jia L, Bian X, Tan S. Application of Engineered Dendritic Cell Vaccines in Cancer Immunotherapy: Challenges and Opportunities. Curr Treat Options Oncol 2023; 24:1703-1719. [PMID: 37962824 DOI: 10.1007/s11864-023-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OPINION STATEMENT The primary objective of this study is to evaluate the effectiveness of cancer vaccines containing genetically modified dendritic cells (DCs) in inducing transformational immune responses. This paper sheds considerable light on DCs' function in advancing treatment techniques. This objective is achieved by thoroughly analyzing the many facets of DCs and their strategic integration into cancer treatment. Due to their role as immune response regulators, DCs can potentially enhance cancer treatment strategies. DCs have the potential to revolutionize immunotherapy, as shown by a comprehensive analysis of their numerous characteristics. The review deftly transitions from examining the fundamentals of preclinical research to delving into the complexities of clinical implementation while acknowledging the inherent challenges in translating DC vaccine concepts into tangible progress. The analysis also emphasizes the potential synergistic outcomes that can be achieved by combining DC vaccines with established pharmaceuticals, thereby emphasizing the importance of employing a holistic approach to enhance treatment efficacy. Despite the existence of transformative opportunities, advancement is hindered by several obstacles. The exhaustive analysis of technical complexities, regulatory dynamics, and upcoming challenges provides valuable insights for overcoming obstacles requiring strategic navigation to incorporate DC vaccines successfully. This document provides a comprehensive analysis of the developments in DC-based immunotherapy, concentrating on its potential to transform cancer therapy radically.
Collapse
Affiliation(s)
- Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
2
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
3
|
Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, Shademan B, Isazadeh A, Baradaran B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med 2023; 12:7844-7858. [PMID: 36583504 PMCID: PMC10134288 DOI: 10.1002/cam4.5551] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last decade, the emergence of several novel therapeutic approaches has changed the therapeutic perspective of human malignancies. Adoptive immunotherapy through chimeric antigen receptor T cell (CAR-T), which includes the engineering of T cells to recognize tumor-specific membrane antigens and, as a result, death of cancer cells, has created various clinical benefits for the treatment of several human malignancies. In particular, CAR-T-cell-based immunotherapy is known as a critical approach for the treatment of patients with hematological malignancies such as acute lymphoblastic leukemia (ALL), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), and non-Hodgkin's lymphoma (NHL). However, CAR-T-cell therapy of hematological malignancies is associated with various side effects. There are still extensive challenges in association with further progress of this therapeutic approach, from manufacturing and engineering issues to limitations of applications and serious toxicities. Therefore, further studies are required to enhance efficacy and minimize adverse events. In the current review, we summarize the development of CAR-T-cell-based immunotherapy and current clinical antitumor applications to treat hematological malignancies. Furthermore, we will mention the current advantages, disadvantages, challenges, and therapeutic limitations of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Samane Abbasi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Milad Asghari Totmaj
- Department of Clinical Immunology, Faculty of MedicineThe University of ManchesterManchesterUK
| | - Masoumeh Abbasi
- Department of Microbiology, Malekan BranchIslamic Azad UniversityMalekanIran
| | - Saba Hajazimian
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Pouya Goleij
- Department of Genetics, Faculty of BiologySana Institute of Higher EducationSariIran
| | - Javad Behroozi
- Department of Genetics and Biotechnology, School of MedicineAJA University of Medical SciencesTehranIran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Alireza Isazadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
4
|
Dai X, Zhu K. Cold atmospheric plasma: Novel opportunities for tumor microenvironment targeting. Cancer Med 2023; 12:7189-7206. [PMID: 36762766 PMCID: PMC10067048 DOI: 10.1002/cam4.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 02/11/2023] Open
Abstract
With mounting preclinical and clinical evidences on the prominent roles of the tumor microenvironment (TME) played during carcinogenesis, the TME has been recognized and used as an important onco-therapeutic target during the past decade. Delineating our current knowledge on TME components and their functionalities can help us recognize novel onco-therapeutic opportunities and establish treatment modalities towards desirable anti-cancer outcome. By identifying and focusing on primary cellular components in the TME, that is, tumor-infiltrating lymphocytes, tumor-associated macrophages, cancer-associated fibroblasts and mesenchymal stem cells, we decomposed their primary functionalities during carcinogenesis, categorized current therapeutic approaches utilizing traits of these components, and forecasted possible benefits that cold atmospheric plasma, a redox modulating tool with selectivity against cancer cells, may convey by targeting the TME. Our insights may open a novel therapeutic avenue for cancer control taking advantages of redox homeostasis and immunostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaiyuan Zhu
- Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
6
|
Han Y, Sun J, Wei H, Hao J, Liu W, Wang X. Ultrasound-Targeted Microbubble Destruction: Modulation in the Tumor Microenvironment and Application in Tumor Immunotherapy. Front Immunol 2022; 13:937344. [PMID: 35844515 PMCID: PMC9283646 DOI: 10.3389/fimmu.2022.937344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor immunotherapy has shown strong therapeutic potential for stimulating or reconstructing the immune system to control and kill tumor cells. It is a promising and effective anti-cancer treatment besides surgery, radiotherapy and chemotherapy. Presently, some immunotherapy methods have been approved for clinical application, and numerous others have demonstrated promising in vitro results and have entered clinical trial stages. Although immunotherapy has exhibited encouraging results in various cancer types, however, a large proportion of patients are limited from these benefits due to specific characteristics of the tumor microenvironment such as hypoxia, tumor vascular malformation and immune escape, and current limitations of immunotherapy such as off-target toxicity, insufficient drug penetration and accumulation and immune cell dysfunction. Ultrasound-target microbubble destruction (UTMD) treatment can help reduce immunotherapy-related adverse events. Using the ultrasonic cavitation effect of microstreaming, microjets and free radicals, UTMD can cause a series of changes in vascular endothelial cells, such as enhancing endothelial cells' permeability, increasing intracellular calcium levels, regulating gene expression, and stimulating nitric oxide synthase activities. These effects have been shown to promote drug penetration, enhance blood perfusion, increase drug delivery and induce tumor cell death. UTMD, in combination with immunotherapy, has been used to treat melanoma, non-small cell lung cancer, bladder cancer, and ovarian cancer. In this review, we summarized the effects of UTMD on tumor angiogenesis and immune microenvironment, and discussed the application and progress of UTMD in tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolei Wang
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, Tahavvori M, Danishna S, Akbari M, Ercan G. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun Signal 2022; 20:79. [PMID: 35655192 PMCID: PMC9162381 DOI: 10.1186/s12964-022-00856-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract.
Collapse
Affiliation(s)
- Rebar N. Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan University of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sarchinar District, Sulaimaniyah, Iraq
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Aslaminabad
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Tahavvori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gülinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Hu J, He J, Wang Y, Zhao Y, Fang K, Dong Y, Chen Y, Zhang Y, Zhang C, Wang H, Tan J, Wang J, Zi R, Liu C, Liang H, Guo Y, Ou J. Ultrasound combined with nanobubbles promotes systemic anticancer immunity and augments anti-PD1 efficacy. J Immunother Cancer 2022; 10:jitc-2021-003408. [PMID: 35236741 PMCID: PMC8896049 DOI: 10.1136/jitc-2021-003408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The poor immunogenicity of solid tumors limits the efficacy ofanti-programmed cell death protein 1 (anti-PD1)-based immune checkpoint blockade (ICB); thus, less than 30% of patients with cancer exhibit a response. Currently, there is still a lack of effective strategies for improving tumor immunogenicity. METHODS The antitumor effect of ultrasound-stimulated nanobubbles (USNBs) alone and in combination with an anti-PD1 antibody was evaluated in RM1 (prostate cancer), MC38 (colon cancer) and B16 (melanoma) xenograft mouse models. The phenotypes of antigen-presenting cells and CD8+ T cells were evaluated by flow cytometry. Damage-associated molecular pattern (DAMP) release, antigen release and tumor cell necrosis were assessed via western blot, flow cytometry, transmission electron microscopy and confocal microscopy. RESULTS USNB promoted the infiltration and antitumor activity of CD8+ T cells. The combination of USNB and anti-PD1 blockade improved systemic antitumor immunity and resulted in an abscopal effect and long-term immune memory protection after complete tumor remission. Mechanistically, tumor-targeting USNB induced tumor cell necrosis through an ultrasound-mediated cavitation effect, which significantly increased DAMP release and tumor antigen presentation, consequently sensitizing tumors to ICB treatment. CONCLUSION The administration of USNB increased tumor immunogenicity by remodeling the tumor-immune microenvironment, providing a promising strategy for sensitizing poorly immunogenic solid tumors to immunotherapy in the clinic.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Oncology, Army Medical University, Chongqing, China
| | - Jiangyi He
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yunlong Wang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yang Zhao
- Department of Oncology, Army Medical University, Chongqing, China
| | - Kejing Fang
- Department of Ultrasound, Army Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yanrong Chen
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yue Zhang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Chi Zhang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Hongwei Wang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Jun Tan
- Department of Oncology, Army Medical University, Chongqing, China
| | - Junyi Wang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Ruiyang Zi
- Department of Oncology, Army Medical University, Chongqing, China
| | - Chengxiang Liu
- Department of Oncology, Army Medical University, Chongqing, China
| | - Houjie Liang
- Department of Oncology, Army Medical University, Chongqing, China
| | - Yanli Guo
- Department of Ultrasound, Army Medical University, Chongqing, China
| | - Juanjuan Ou
- Department of Oncology, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, Rahmanpour D, Fattahi S, Shabani H, Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathol Res Pract 2021; 229:153723. [PMID: 34952426 DOI: 10.1016/j.prp.2021.153723] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Although cancer immunotherapy has taken center stage in mainstream oncology inducing complete and long-lasting tumor regression, only a subset of patients receiving treatment respond and others relapse after an initial response. Different tumor types respond differently, and even in cancer types that respond (hot tumors), we still observe tumors that are unresponsive (cold tumors), suggesting the presence of resistance. Hence, the development of intrinsic or acquired resistance is a big challenge for the cancer immunotherapy field. Resistance to immunotherapy, including checkpoint inhibitors, CAR-T cell therapy, oncolytic viruses, and recombinant cytokines arises due to cancer cells employing several mechanisms to evade immunosurveillance.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aram Parhizkar
- Faculty of Natural Science, Tabriz University, Tabriz, Iran
| | - Shima Hayati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Morteza Mousapour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Amin Mahmoudpour
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Liliane Eleid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Fattahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hadi Shabani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Shademan B, Karamad V, Nourazarian A, Avcı CB. CAR T Cells: Cancer Cell Surface Receptors Are the Target for Cancer Therapy. Adv Pharm Bull 2021; 12:476-489. [PMID: 35935042 PMCID: PMC9348524 DOI: 10.34172/apb.2022.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
11
|
Zhang QT, Liu ZD, Wang Z, Wang T, Wang N, Wang N, Zhang B, Zhao YF. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Mar Drugs 2021; 19:md19020115. [PMID: 33669851 PMCID: PMC7923226 DOI: 10.3390/md19020115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death in the world, and antineoplastic drug research continues to be a major field in medicine development. The marine milieu has thousands of biological species that are a valuable source of novel functional proteins and peptides, which have been used in the treatment of many diseases, including cancer. In contrast with proteins and polypeptides, small peptides (with a molecular weight of less than 1000 Da) have overwhelming advantages, such as preferential and fast absorption, which can decrease the burden on human gastrointestinal function. Besides, these peptides are only connected by a few peptide bonds, and their small molecular weight makes it easy to modify and synthesize them. Specifically, small peptides can deliver nutrients and drugs to cells and tissues in the body. These characteristics make them stand out in relation to targeted drug therapy. Nowadays, the anticancer mechanisms of the small marine peptides are still largely not well understood; however, several marine peptides have been applied in preclinical treatment. This paper highlights the anticancer linear and cyclic small peptides in marine resources and presents a review of peptides and the derivatives and their mechanisms.
Collapse
Affiliation(s)
- Qi-Ting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| | - Ze-Dong Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
| | - Ze Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
| | - Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| | - Nan Wang
- Quality Assurance Department, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, China;
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
- Correspondence: (N.W.); (B.Z.)
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Z.-D.L.); (Z.W.)
- Correspondence: (N.W.); (B.Z.)
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Q.-T.Z.); (T.W.); (Y.-F.Z.)
| |
Collapse
|