1
|
Tadros R, Zheng SL, Grace C, Jordà P, Francis C, West DM, Jurgens SJ, Thomson KL, Harper AR, Ormondroyd E, Xu X, Theotokis PI, Buchan RJ, McGurk KA, Mazzarotto F, Boschi B, Pelo E, Lee M, Noseda M, Varnava A, Vermeer AMC, Walsh R, Amin AS, van Slegtenhorst MA, Roslin NM, Strug LJ, Salvi E, Lanzani C, de Marvao A, Roberts JD, Tremblay-Gravel M, Giraldeau G, Cadrin-Tourigny J, L'Allier PL, Garceau P, Talajic M, Gagliano Taliun SA, Pinto YM, Rakowski H, Pantazis A, Bai W, Baksi J, Halliday BP, Prasad SK, Barton PJR, O'Regan DP, Cook SA, de Boer RA, Christiaans I, Michels M, Kramer CM, Ho CY, Neubauer S, Matthews PM, Wilde AAM, Tardif JC, Olivotto I, Adler A, Goel A, Ware JS, Bezzina CR, Watkins H. Large-scale genome-wide association analyses identify novel genetic loci and mechanisms in hypertrophic cardiomyopathy. Nat Genet 2025; 57:530-538. [PMID: 39966646 PMCID: PMC11906354 DOI: 10.1038/s41588-025-02087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. Here, we report results from a large genome-wide association study and multitrait analysis including 5,900 HCM cases, 68,359 controls and 36,083 UK Biobank participants with cardiac magnetic resonance imaging. We identified 70 loci (50 novel) associated with HCM and 62 loci (20 novel) associated with relevant left ventricular traits. Among the prioritized genes in the HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants confer a roughly tenfold increased risk of HCM. Mendelian randomization analyses support a causal role of increased left ventricular contractility in both obstructive and nonobstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, these findings increase our understanding of the genetic basis of HCM, with potential implications for disease management.
Collapse
Affiliation(s)
- Rafik Tadros
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Christopher Grace
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paloma Jordà
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Francis
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Dominique M West
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sean J Jurgens
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Andrew R Harper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xiao Xu
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Francesco Mazzarotto
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amanda Varnava
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Alexa M C Vermeer
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Amsterdam, the Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Amsterdam, the Netherlands
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole M Roslin
- Program in Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Statistical Sciences and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit and Nephrology Operative Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio de Marvao
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- King's College London, London, UK
| | - Jason D Roberts
- Department of Medicine, Section of Cardiac Electrophysiology, Division of Cardiology, Western University, London, Ontario, Canada
| | - Maxime Tremblay-Gravel
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Genevieve Giraldeau
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe L L'Allier
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Patrick Garceau
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Mario Talajic
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah A Gagliano Taliun
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Amsterdam, the Netherlands
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Harry Rakowski
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Antonis Pantazis
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Wenjia Bai
- Department of Computing, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| | - John Baksi
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Brian P Halliday
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sanjay K Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Stuart A Cook
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- National Heart Centre, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Imke Christiaans
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Michels
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Amsterdam, the Netherlands
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health, Charlottesville, VA, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefan Neubauer
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Arthur A M Wilde
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Amsterdam, the Netherlands
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- ECGen, Cardiogenetics Focus Group of EHRA, Biot, France
| | - Jean-Claude Tardif
- Cardiovascular Genetics Centre and Research Centre, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Amsterdam, the Netherlands.
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
2
|
Zhang L, Zhou J. Zebrafish: A smart tool for heart disease research. JOURNAL OF FISH BIOLOGY 2024; 105:1487-1500. [PMID: 37824489 DOI: 10.1111/jfb.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The increasing prevalence of heart disease poses a significant threat to human survival and safety. However, the current treatments available for heart disease are quite limited. Therefore, it is important to utilize suitable animal models that can accurately simulate the physiological characteristics of heart disease. This would help improve our understanding of this disease and aid in the development of new treatment methods and drugs. Zebrafish heart not only exhibits similarities to mammalian hearts, but they also share ~70% of homologous genes with humans. Utilizing zebrafish as an alternative to expensive and time-consuming mammalian models offers numerous advantages. Zebrafish models can be easily established and maintained, and compound screening and genetic methods allow for the development of various economical and easily controlled zebrafish and zebrafish embryonic heart disease models in a short period of time. Consequently, zebrafish have become a powerful tool for exploring the pathological mechanisms of heart disease and identifying new effective genes. In this review, we summarize recent studies on different zebrafish models of heart disease. We also describe the techniques and protocols used to develop zebrafish models of myocardial infarction, heart failure, and congenital heart disease, including surgical procedures, forward and reverse genetics, and drug and combination screening. This review aims to promote the utilization of zebrafish models in investigating diverse pathological mechanisms of heart disease, enhancing our knowledge and comprehension of heart disease, and offering novel insights and objectives for exploring the prevention and treatment of heart disease.
Collapse
Affiliation(s)
- Lantian Zhang
- Education Branch, Chongqing Publishing Group, Chongqing, China
| | - Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Xu J, He K, Ji Y, Liu X, Dai Q. Downregulation of HHATL promotes cardiac hypertrophy via activation of SHH/DRP1. Exp Cell Res 2024; 439:114072. [PMID: 38719175 DOI: 10.1016/j.yexcr.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Clinical Laboratory, ZhongDa Hospital, Southeast University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China.
| | - Keyu He
- Department of Clinical Laboratory, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Yichen Ji
- School of Medicine, Southeast University, Nanjing, China
| | - Xiangdong Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Qiming Dai
- Department of Cardiology, ZhongDa Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Shi X, Yao J, Huang Y, Wang Y, Jiang X, Wang Z, Zhang M, Zhang Y, Liu X. Hhatl ameliorates endoplasmic reticulum stress through autophagy by associating with LC3. J Biol Chem 2024; 300:107335. [PMID: 38705394 PMCID: PMC11143907 DOI: 10.1016/j.jbc.2024.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, a common cellular stress response induced by various factors that interfere with cellular homeostasis, may trigger cell apoptosis. Autophagy is an important and conserved mechanism for eliminating aggregated proteins and maintaining protein stability of cells, which is closely associated with ER stress and ER stress-induced apoptosis. In this paper, we report for the first time that Hhatl, an ER-resident protein, is downregulated in response to ER stress. Hhatl overexpression alleviated ER stress and ER stress induced apoptosis in cells treated with tunicamycin or thapsigargin, whereas Hhatl knockdown exacerbated ER stress and apoptosis. Further study showed that Hhatl attenuates ER stress by promoting autophagic flux. Mechanistically, we found that Hhatl promotes autophagy by associating with autophagic protein LC3 (microtubule-associated protein 1A/1B-light chain 3) via the conserved LC3-interacting region motif. Noticeably, the LC3-interacting region motif was essential for Hhatl-regulated promotion of autophagy and reduction of ER stress. These findings demonstrate that Hhatl ameliorates ER stress via autophagy activation by interacting with LC3, thereby alleviating cellular pressure. The study indicates that pharmacological or genetic regulation of Hhatl-autophagy signaling might be potential for mediating ER stress and related diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yexi Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yushan Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ziwen Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Mingming Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiangdong Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Li D, Wan X, Yun Y, Li Y, Duan W. Genes Selectively Expressed in Rat Organs. Curr Genomics 2024; 25:261-297. [PMID: 39156728 PMCID: PMC11327808 DOI: 10.2174/0113892029273121240401060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 08/20/2024] Open
Abstract
Background Understanding organic functions at a molecular level is important for scientists to unveil the disease mechanism and to develop diagnostic or therapeutic methods. Aims The present study tried to find genes selectively expressed in 11 rat organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach. Materials and Methods Three normal male Sprague-Dawley (SD) rats were anesthetized, their organs mentioned above were harvested, and RNA in the fresh organs was extracted. Purified RNA was reversely transcribed and sequenced using the Solexa high-throughput sequencing technique. The abundance of a gene was measured by the expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM). Genes in organs with the highest expression level were sought out and compared with their median value in organs. If a gene in the highest expressed organ was significantly different (p < 0.05) from that in the medianly expressed organ, accompanied by q value < 0.05, and accounted for more than 70% of the total abundance, the gene was assumed as the selective gene in the organ. Results & Discussion The Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) pathways were enriched by the highest expressed genes. Based on the criterion, 1,406 selective genes were screened out, 1,283 of which were described in the gene bank and 123 of which were waiting to be described. KEGG and GO pathways in the organs were partly confirmed by the known understandings and a good portion of the pathways needed further investigation. Conclusion The novel selective genes and organic functional pathways are useful for scientists to unveil the mechanisms of the organs at the molecular level, and the selective genes' products are candidate disease markers for organs.
Collapse
Affiliation(s)
- Dan Li
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulian Wan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yu Yun
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yongkun Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
7
|
Zhang Y, Yao J, Zhang M, Wang Y, Shi X. Mitochondria-associated endoplasmic reticulum membranes (MAMs): Possible therapeutic targets in heart failure. Front Cardiovasc Med 2023; 10:1083935. [PMID: 36776252 PMCID: PMC9909017 DOI: 10.3389/fcvm.2023.1083935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are formed by physical connections of the endoplasmic reticulum and mitochondria. Over the past decades, great breakthroughs have been made in the study of ER-mitochondria communications. It has been identified that MAM compartments are pivotal in regulating neurological function. Accumulating studies indicated that MAMs participate in the development of cardiovascular diseases. However, the specific role of MAMs in heart failure remains to be fully understood. In this article, we first summarize the structural and functional properties of MAM and MAM-associated proteins. We then focus on the roles of MAMs in myocardial infarction, cardiomyopathy and heart failure, and discuss the involvement of MAMs in disease progression and treatment. Elucidating these issues may provide important insights into therapeutic intervention of heart failure.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiayu Yao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Mingming Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yushan Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Tadros R, Zheng SL, Grace C, Jordà P, Francis C, Jurgens SJ, Thomson KL, Harper AR, Ormondroyd E, West DM, Xu X, Theotokis PI, Buchan RJ, McGurk KA, Mazzarotto F, Boschi B, Pelo E, Lee M, Noseda M, Varnava A, Vermeer AM, Walsh R, Amin AS, van Slegtenhorst MA, Roslin N, Strug LJ, Salvi E, Lanzani C, de Marvao A, Roberts JD, Tremblay-Gravel M, Giraldeau G, Cadrin-Tourigny J, L'Allier PL, Garceau P, Talajic M, Pinto YM, Rakowski H, Pantazis A, Baksi J, Halliday BP, Prasad SK, Barton PJ, O'Regan DP, Cook SA, de Boer RA, Christiaans I, Michels M, Kramer CM, Ho CY, Neubauer S, Matthews PM, Wilde AA, Tardif JC, Olivotto I, Adler A, Goel A, Ware JS, Bezzina CR, Watkins H. Large scale genome-wide association analyses identify novel genetic loci and mechanisms in hypertrophic cardiomyopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285147. [PMID: 36778260 PMCID: PMC9915807 DOI: 10.1101/2023.01.28.23285147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.
Collapse
Affiliation(s)
- Rafik Tadros
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sean L Zheng
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Christopher Grace
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paloma Jordà
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Francis
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sean J Jurgens
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kate L Thomson
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Andrew R Harper
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elizabeth Ormondroyd
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dominique M West
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Xiao Xu
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Pantazis I Theotokis
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Rachel J Buchan
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Kathryn A McGurk
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Francesco Mazzarotto
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Michael Lee
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Michela Noseda
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Amanda Varnava
- National Heart & Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Alexa Mc Vermeer
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
| | - Roddy Walsh
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole Roslin
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lisa J Strug
- Departments of Statistical Sciences and Computer Science, Data Sciences Institute, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Ontario Regional Centre, Canadian Statistical Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, Nephrology Operative Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Chair of Nephrology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio de Marvao
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Maxime Tremblay-Gravel
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Genevieve Giraldeau
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Philippe L L'Allier
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Patrick Garceau
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Mario Talajic
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Antonis Pantazis
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - John Baksi
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Brian P Halliday
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sanjay K Prasad
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul Jr Barton
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Stuart A Cook
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- National Heart Centre Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Imke Christiaans
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Michels
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health, Charlottesville, VA, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, NIHR Oxford Health Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences and UK Dementia Research Institute, Imperial College London, London, UK
| | - Arthur A Wilde
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- ECGen, Cardiogenetics Focus Group of EHRA, France
| | - Jean-Claude Tardif
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, Meyer Children Hospital, University of Florence, Florence, Italy
| | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anuj Goel
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - James S Ware
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Program in Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
| | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Jeon HJ, Park J, Lee SE. Developmental toxicity of chlorpyrifos-methyl and its primary metabolite, 3,5,6-trichloro-2-pyridinol to early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114352. [PMID: 36508815 DOI: 10.1016/j.ecoenv.2022.114352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Chlorpyrifos-methyl (CPM) is one of the thiophosphate insecticides, and it is mainly metabolized to 3,5,6-trichloro-2-pyridinol (TCP) in the environment. As CPM is a strongly toxic and TCP is persistent in the environment, CPM and TCP need to be evaluate their toxicities using animal model organisms. With this regard, CPM and TCP were treated on zebrafish (Danio rerio) embryos and LC50 values were determined as over 2000 μg/L and 612.5 μg/L, respectively. For the hatchability, CPM did not exhibit any interference, while TCP showed weak inhibition. In the CPM-treated embryos, pericardial edema and bleeding were observed at 48 hpf, but recovered afterwards. The pericardial edema and yolk sac edema were observed in TCP-treated zebrafish embryos at the concentration of 500 μg/L after 72 hpf. TCP induced abnormal heart development and the heartbeat was dramatically decreased in Tg(cmlc2:EGFP) embryos at the level of 500 μg/L. The expression level of heart development-related genes such as gata, myl7, and cacna1c was significantly decreased in the TCP 500 μg/L-treated embryos at the 96 hpf. Taken together, TCP appears to be more toxic than the parent compound towards the zebrafish embryos. It is highly requested that TCP needs to be monitored with a strong public concern because it affects presumably heart development in early-stage aquatic vertebrates.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Jungeun Park
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
10
|
Davidsen N, Ramhøj L, Kugathas I, Evrard B, Darde TA, Chalmel F, Svingen T, Rosenmai AK. PFOS disrupts key developmental pathways during hiPSC-derived cardiomyocyte differentiation in vitro. Toxicol In Vitro 2022; 85:105475. [PMID: 36116746 DOI: 10.1016/j.tiv.2022.105475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Exposure to perfluorooctanesulfonic acid (PFOS) has been associated with congenital heart disease (CHD) and decreased birth weight. PFOS exposure can disrupt signaling pathways relevant for cardiac development in stem cell-derived cardiomyocyte assays, such as the PluriBeat assay, where spheroids of human induced pluripotent stem cells (hiPSCs) differentiate into contracting cardiomyocytes. Notably, cell line origin can also affect how the assay responds to chemical exposure. Herein, we examined the effect of PFOS on cardiomyocyte differentiation by transcriptomics profiling of two different hiPSC lines to see if they exhibit a common pattern of disruption. Two stages of differentiation were investigated: the cardiac progenitor stage and the cardiomyocyte stage. Many differentially expressed genes (DEGs) were observed between cell lines independent of exposure. However, 135 DEGs were identified as common between the two cell lines. Of these, 10 DEGs were associated with GO-terms related to the heart. PFOS exposure disrupted multiple signaling pathways relevant to cardiac development, including WNT, TGF, HH, and EGF. Of these pathways, genes related to the non-canonical WNTCa2+ signaling was particularly affected. PFOS thus has the capacity to disrupt pathways important for cardiac development and function.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | | | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | |
Collapse
|
11
|
Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 2022; 184:106452. [PMID: 36116706 DOI: 10.1016/j.phrs.2022.106452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Congwei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Zhou R, Guo F, Xiang C, Zhang Y, Yang H, Zhang J. Systematic Study of Crucial Transcription Factors of Coptidis rhizoma Alkaloids against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2021; 12:2308-2319. [PMID: 34114461 DOI: 10.1021/acschemneuro.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coptidis rhizoma alkaloids (CRAs), extracted from Coptidis rhizoma, have been indicated to play important neuroprotective roles, but the mechanism underlying has not been determined, especially from the perspective of transcription factors (TFs). In this study, crucial TFs involved in the protective activity of CRA were revealed based on RNA-Seq technology, proteomics, and network pharmacological analysis of the effects of CRA on middle cerebral artery occlusion-mediated cerebral ischemia-reperfusion (I/R) injury. Importantly, CRA significantly reduced the infarction rate and neurological deficiency score. Moreover, CRA significantly decreased the levels of TNF-α, MCP-1, and IL-1β. In addition, seven TFs, including Ncor1, Smad1, Bhlhe41, Stat3, Sp100, Satb2, and Lrpprc, were found to be crucial TFs, and five of these TFs were associated with inflammation. Furthermore, eight compounds in CRA were associated with the identified TFs through network pharmacological analysis. The alteration of Lrpprc and Sabt2 was further confirmed by measuring their downstream genes, including Pigg, Hhatl, Wdr77, Mpped1, Arpp21, Ppfia3, Rims1, and Cacna2d1 by reverse transcriptase polymerase chain reaction. Thus, these seven TFs may be important targets in CRA-mediated protection against I/R injury. This research provides a new view of the protective effect of CRA against cerebral I/R injury and reveals new therapeutic targets for treating cerebral ischemia.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
13
|
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol 2021; 9:662583. [PMID: 34095129 PMCID: PMC8173159 DOI: 10.3389/fcell.2021.662583] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Heart failure causes significant morbidity and mortality worldwide. The understanding of heart failure pathomechanisms and options for treatment remain incomplete. Zebrafish has proven useful for modeling human heart diseases due to similarity of zebrafish and mammalian hearts, fast easily tractable development, and readily available genetic methods. Embryonic cardiac development is rapid and cardiac function is easy to observe and quantify. Reverse genetics, by using morpholinos and CRISPR-Cas9 to modulate gene function, make zebrafish a primary animal model for in vivo studies of candidate genes. Zebrafish are able to effectively regenerate their hearts following injury. However, less attention has been given to using zebrafish models to increase understanding of heart failure and cardiac remodeling, including cardiac hypertrophy and hyperplasia. Here we discuss using zebrafish to study heart failure and cardiac remodeling, and review zebrafish genetic, drug-induced and other heart failure models, discussing the advantages and weaknesses of using zebrafish to model human heart disease. Using zebrafish models will lead to insights on the pathomechanisms of heart failure, with the aim to ultimately provide novel therapies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Ke Q, Liu F, Tang Y, Chen J, Hu H, Sun X, Tan W. The protective effect of isosteviol sodium on cardiac function and myocardial remodelling in transverse aortic constriction rat. J Cell Mol Med 2021; 25:1166-1177. [PMID: 33336505 PMCID: PMC7812303 DOI: 10.1111/jcmm.16182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Pathological hypertrophy contributes to heart failure and there is not quite effective treatment to invert this process. Isosteviol has been shown to protect the heart against ischaemia-reperfusion injury and isoproterenol-induced cardiac hypertrophy, but its effect on pressure overload-induced cardiac hypertrophy is still unknown. Pressure overload induced by transverse aortic constriction (TAC) causes cardiac hypertrophy in rats to mimic the pathological condition in human. This study examined the effects of isosteviol sodium (STVNa) on cardiac hypertrophy by the TAC model and cellular assays in vitro. Cardiac function test, electrocardiogram analysis and histological analysis were conducted. The effects of STVNa on calcium transient of the adult rat ventricular cells and the proliferation of neonatal rat cardiac fibroblasts were also studied in vitro. Cardiac hypertrophy was observed after 3-week TAC while the extensive cardiac dysfunction and electronic remodelling were observed after 9-week TAC. Both STVNa and sildenafil (positive drug) treatment reversed the two process, but STVNa appeared to be more superior in some aspects and did not change calcium transient considerably. STVNa also reversed TAC-induced cardiac fibrosis in vivo and TGF-β1-induced fibroblast proliferation in vitro. Moreover, STVNa, but not sildenafil, reversed impairment of the autonomic nervous system induced by 9-week TAC.
Collapse
Affiliation(s)
- Qingjin Ke
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Fei Liu
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Yuxin Tang
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Jiedi Chen
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Hui Hu
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| |
Collapse
|