1
|
Yu C, Li J, Kuang W, Ni S, Cao Y, Duan Y. PRDM1 promotes nucleus pulposus cell pyroptosis leading to intervertebral disc degeneration via activating CASP1 transcription. Cell Biol Toxicol 2024; 40:89. [PMID: 39432156 PMCID: PMC11493826 DOI: 10.1007/s10565-024-09932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a primary contributor to low back pain and poses a considerable burden to society. However, the molecular mechanisms underlying IVDD remain to be elucidated. PR/SET domain 1 (PRDM1) regulates cell proliferation, apoptosis, and inflammatory responses in various diseases. Despite these regulatory functions, the mechanism of action of PRDM1 in IVDD remains unexplored. In this study, we investigated the role and underlying mechanisms of action of PRDM1 in IVDD progression. The expression of PRDM1 in nucleus pulposus (NP) tissues and NP cells (NPCs) was assessed using western blotting, immunohistochemistry, and immunofluorescence. The effects of PRDM1 on IVDD progression were investigated in vitro and in vivo. Mechanistically, mRNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to confirm that PRDM1 triggered CASP1 transcription. Our study demonstrated for the first time that PRDM1 expression was substantially upregulated in degenerated NP tissues and NPCs. PRDM1 overexpression promoted NPCs pyroptosis by inhibiting mitophagy and exacerbating IVDD progression, whereas PRDM1 silencing exerted the opposite effect. Furthermore, PRDM1 activated CASP1 transcription, thereby promoting NPCs pyroptosis in vitro. Notably, CASP1 silencing reversed the effects of PRDM1 on the NPCs. To the best of our knowledge, this study is the first to demonstrate that PRDM1 silencing inhibits NPCs pyroptosis by repressing CASP1 transcription, which may be a promising new therapeutic target for IVDD.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Jianjun Li
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Songjia Ni
- Department of Trauma Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Yanlin Cao
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Yang Duan
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China.
| |
Collapse
|
2
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yue C, Wu Y, Xia Y, Xin T, Gong Y, Tao L, Shen C, Zhu Y, Shen M, Wang D, Shen J. Tbxt alleviates senescence and apoptosis of nucleus pulposus cells through Atg7-mediated autophagy activation during intervertebral disk degeneration. Am J Physiol Cell Physiol 2024; 327:C237-C253. [PMID: 38853649 DOI: 10.1152/ajpcell.00126.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Intervertebral disk degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remain unclear. This study aimed to investigate the role of T-box transcription factor T (Tbxt) in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. First, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways, and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.NEW & NOTEWORTHY This study investigates the role of Tbxt in IDD. The results demonstrate that knockdown of Tbxt exacerbates H2O2-induced senescence and apoptosis in NPCs and IDD, whereas upregulation of Tbxt significantly protects against IDD both in vivo and in vitro. Mechanistically, in the nucleus, Tbxt enhances the transcription of ATG7, leading to increased expression of ATG7 protein levels. This, in turn, promotes elevated autophagy levels, ultimately alleviating IDD.
Collapse
Affiliation(s)
- Caichun Yue
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yinghui Wu
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yanzhang Xia
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Tianwen Xin
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yuhao Gong
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Linfeng Tao
- Department of Critical Care Medicine, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Minghong Shen
- Department of Pathology, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Donglai Wang
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Jun Shen
- Department of Orthopedics Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- Suzhou Key Laboratory of Orthopedic Medical Engineering, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Tian Z, Gao H, Xia W, Lou Z. S1PR3 suppresses the inflammatory response and extracellular matrix degradation in human nucleus pulposus cells. Exp Ther Med 2024; 27:265. [PMID: 38756905 PMCID: PMC11097297 DOI: 10.3892/etm.2024.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 05/18/2024] Open
Abstract
Sphingosine 1-phosphate receptor 3 (S1PR3) participates in the inflammatory response in multiple types of diseases. However, the biological role of S1PR3 in intervertebral disc degeneration and the underlying mechanism are unclear. The aim of the present study was to investigate the functional role and the mechanism of S1PR3 in lipopolysaccharide (LPS)-induced human nucleus pulposus cells. The expression of S1PR3 and Toll-like receptor (TLR) 2 in LPS-induced nucleus pulposus (NP) cells was investigated using western blotting. The Cell Counting Kit-8 assay was used to detect cell proliferation, and the levels of inflammatory factors were detected using ELISA. Flow cytometry and western blotting were used for the assessment of apoptosis. The deposition of extracellular matrix (ECM) proteins was investigated using reverse transcription-quantitative PCR and western blotting. In addition, western blotting was used to investigate the protein expression levels of phosphorylated (p)-STAT3, STAT3, p-JNK, JNK, p-ERK, ERK, p-p38 and p38associated with STAT3 and MAPK signaling. S1PR3 expression was reduced, while TLR2 expression was elevated in LPS-induced human nucleus pulposus cells (HNPC). S1PR3 overexpression increased HNPC viability, inhibited the inflammatory response and suppressed apoptosis. Meanwhile, S1PR3 overexpression regulated the expression of ECM-related proteins. Additionally, overexpression of S1PR3 inhibited the expression of the TLR2-regulated STAT3 and MAPK pathways in LPS-induced HNPCs. Furthermore, TLR2 overexpression partially offset the impacts of S1PR3 overexpression on HNPC viability, apoptosis level, inflammation and as ECM degradation. In conclusion, STAT3 overexpression suppressed viability injury, the inflammatory response and the level of apoptosis and alleviated ECM protein deposition in HNPCs through the TLR2/STAT3 and TLR2/MAPK pathways, which may offer a promising candidate for the amelioration of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Haoran Gao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjun Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaohui Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
5
|
Liu S, Li K, He Y, Chen S, Yang W, Chen X, Feng S, Xiong L, Peng Y, Shao Z. PGC1α-Inducing Senomorphic Nanotherapeutics Functionalized with NKG2D-Overexpressing Cell Membranes for Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400749. [PMID: 38554394 PMCID: PMC11165536 DOI: 10.1002/advs.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-ɣ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kanglu Li
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuxin He
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Sheng Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuanzuo Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqing Feng
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033China
- Department of OrthopedicsQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250012China
- Department of OrthopedicsTianjin Medical University General HospitalTianjin Medical UniversityTianjin300052China
| | - Liming Xiong
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yizhong Peng
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
6
|
Shen L, Zeng X, Zhang H. The protective effects of orexin-A in alleviating cell senescence against interleukin-1β (IL-1β) in chondrocytes. Aging (Albany NY) 2024; 16:9558-9568. [PMID: 38829778 PMCID: PMC11210258 DOI: 10.18632/aging.205884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/03/2024] [Indexed: 06/05/2024]
Abstract
Osteoarthritis (OA) is one of the most important causes of global disability, and dysfunction of chondrocytes is an important risk factor. The treatment of OA is still a challenge. Orexin-A is a hypothalamic peptide, and its effects in OA are unknown. In this study, we found that exposure to interleukin-1β (IL-1β) reduced the expression of orexin-2R, the receptor of orexin-A in TC-28a2 chondrocytes. Importantly, the senescence-associated β-galactosidase (SA-β-gal) staining assay demonstrated that orexin-A treatment ameliorates IL-1β-induced cellular senescence. Importantly, the presence of IL-1β significantly reduced the telomerase activity of TC-28a2 chondrocytes, which was rescued by orexin-A. We also found that orexin-A prevented IL-1β-induced increase in the levels of Acetyl-p53 and the expression of p21. It is shown that orexin-A mitigates IL-1β-induced reduction of sirtuin 3 (SIRT3). Silencing of SIRT3 abolished the protective effects of orexin-A against IL-1β-induced cellular senescence. These results imply that orexin-A might serve as a promising therapeutic agent for OA.
Collapse
Affiliation(s)
- Lin Shen
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Xiantie Zeng
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Haiying Zhang
- Department of Orthopedics, Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100078, China
| |
Collapse
|
7
|
Fan C, Wang W, Yu Z, Wang J, Xu W, Ji Z, He W, Hua D, Wang W, Yao L, Deng Y, Geng D, Wu X, Mao H. M1 macrophage-derived exosomes promote intervertebral disc degeneration by enhancing nucleus pulposus cell senescence through LCN2/NF-κB signaling axis. J Nanobiotechnology 2024; 22:301. [PMID: 38816771 PMCID: PMC11140985 DOI: 10.1186/s12951-024-02556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-β-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-β-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei He
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Di Hua
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Linye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yongkang Deng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Dai X, Liao W, Xu F, Lu W, Xi X, Fang X, Wu Q. External validation of predictive models for new vertebral fractures following percutaneous vertebroplasty. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08274-x. [PMID: 38713446 DOI: 10.1007/s00586-024-08274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE To investigate the external validation and scalability of four predictive models regarding new vertebral fractures following percutaneous vertebroplasty. METHODS Utilizing retrospective data acquired from two centers, compute the area under the curve (AUC), calibration curve, and Kaplan-Meier plot to assess the model's discrimination and calibration. RESULTS In the external validation of Zhong et al.'s 2015 predictive model for the probability of new fractures post-vertebroplasty, the AUC for re-fracture at 1, 2, and 3 years postoperatively was 0.570, 0.617, and 0.664, respectively. The AUC for Zhong et al.'s 2016 predictive model for the probability of new fractures in neighboring vertebrae was 0.738. Kaplan-Meier plot results for both models indicated a significantly lower incidence of re-fracture in low-risk patients compared to high-risk patients. Li et al.'s 2021 model had an AUC of 0.518, and its calibration curve suggested an overestimation of the probability of new fractures. Li et al.'s 2022 model had an AUC of 0.556, and its calibration curve suggested an underestimation of the probability of new fractures. CONCLUSION The external validation of four models demonstrated that the predictive model proposed by Zhong et al. in 2016 exhibited superior external generalization capabilities.
Collapse
Affiliation(s)
- Xiangheng Dai
- Department of Spinal Surgery, Shaoguan First People's Hospital, Guangdong Medical University, Shaoguan, China
| | - Weibin Liao
- The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Fuzhou Xu
- The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Weiqi Lu
- The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Xinhua Xi
- Department of Spinal Surgery, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Xiang Fang
- Department of Spinal Surgery, Shaoguan First People's Hospital, Guangdong Medical University, Shaoguan, China.
| | - Qiang Wu
- Department of Spinal Surgery, Shaoguan First People's Hospital, Guangdong Medical University, Shaoguan, China.
| |
Collapse
|
9
|
Xia Q, Zhao Y, Dong H, Mao Q, Zhu L, Xia J, Weng Z, Liao W, Hu Z, Yi J, Feng S, Jiang Y, Xin Z. Progress in the study of molecular mechanisms of intervertebral disc degeneration. Biomed Pharmacother 2024; 174:116593. [PMID: 38626521 DOI: 10.1016/j.biopha.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.
Collapse
Affiliation(s)
- Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, Hubei Province 443003, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
10
|
Xu X, Shen L, Qu Y, Li D, Zhao X, Wei H, Yue S. Experimental validation and comprehensive analysis of m6A methylation regulators in intervertebral disc degeneration subpopulation classification. Sci Rep 2024; 14:8417. [PMID: 38600232 PMCID: PMC11006851 DOI: 10.1038/s41598-024-58888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is one of the most prevalent causes of chronic low back pain. The role of m6A methylation modification in disc degeneration (IVDD) remains unclear. We investigated immune-related m6A methylation regulators as IVDD biomarkers through comprehensive analysis and experimental validation of m6A methylation regulators in disc degeneration. The training dataset was downloaded from the GEO database and analysed for differentially expressed m6A methylation regulators and immunological features, the differentially regulators were subsequently validated by a rat IVDD model and RT-qPCR. Further screening of key m6A methylation regulators based on machine learning and LASSO regression analysis. Thereafter, a predictive model based on key m6A methylation regulators was constructed for training sets, which was validated by validation set. IVDD patients were then clustered based on the expression of key m6A regulators, and the expression of key m6A regulators and immune infiltrates between clusters was investigated to determine immune markers in IVDD. Finally, we investigated the potential role of the immune marker in IVDD through enrichment analysis, protein-to-protein network analysis, and molecular prediction. By analysising of the training set, we revealed significant differences in gene expression of five methylation regulators including RBM15, YTHDC1, YTHDF3, HNRNPA2B1 and ALKBH5, while finding characteristic immune infiltration of differentially expressed genes, the result was validated by PCR. We then screen the differential m6A regulators in the training set and identified RBM15 and YTHDC1 as key m6A regulators. We then used RBM15 and YTHDC1 to construct a predictive model for IVDD and successfully validated it in the training set. Next, we clustered IVDD patients based on the expression of RBM15 and YTHDC1 and explored the immune infiltration characteristics between clusters as well as the expression of RBM15 and YTHDC1 in the clusters. YTHDC1 was finally identified as an immune biomarker for IVDD. We finally found that YTHDC1 may influence the immune microenvironment of IVDD through ABL1 and TXK. In summary, our results suggest that YTHDC1 is a potential biomarker for the development of IVDD and may provide new insights for the precise prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Lianwei Shen
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yujuan Qu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaojing Zhao
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
11
|
Shen J, Lan Y, Ji Z, Liu H. Sirtuins in intervertebral disc degeneration: current understanding. Mol Med 2024; 30:44. [PMID: 38553713 PMCID: PMC10981339 DOI: 10.1186/s10020-024-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is one of the etiologic factors of degenerative spinal diseases, which can lead to a variety of pathological spinal conditions such as disc herniation, spinal stenosis, and scoliosis. IVDD is a leading cause of lower back pain, the prevalence of which increases with age. Recently, Sirtuins/SIRTs and their related activators have received attention for their activity in the treatment of IVDD. In this paper, a comprehensive systematic review of the literature on the role of SIRTs and their activators on IVDD in recent years is presented. The molecular pathways involved in the regulation of IVDD by SIRTs are summarized, and the effects of SIRTs on senescence, inflammatory responses, oxidative stress, and mitochondrial dysfunction in myeloid cells are discussed with a view to suggesting possible solutions for the current treatment of IVDD. PURPOSE This paper focuses on the molecular mechanisms by which SIRTs and their activators act on IVDD. METHODS A literature search was conducted in Pubmed and Web of Science databases over a 13-year period from 2011 to 2024 for the terms "SIRT", "Sirtuin", "IVDD", "IDD", "IVD", "NP", "Intervertebral disc degeneration", "Intervertebral disc" and "Nucleus pulposus". RESULTS According to the results, SIRTs and a large number of activators showed positive effects against IVDD.SIRTs modulate autophagy, myeloid apoptosis, oxidative stress and extracellular matrix degradation. In addition, they attenuate inflammatory factor-induced disc damage and maintain homeostasis during disc degeneration. Several clinical studies have reported the protective effects of some SIRTs activators (e.g., resveratrol, melatonin, honokiol, and 1,4-dihydropyridine) against IVDD. CONCLUSION The fact that SIRTs and their activators play a hundred different roles in IVDD helps to better understand their potential to develop further treatments for IVDD. NOVELTY This review summarizes current information on the mechanisms of action of SIRTs in IVDD and the challenges and limitations of translating their basic research into therapy.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ziyu Ji
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Xu WN, Zheng HL, Yang RZ, Sun YF, Peng BR, Liu C, Song J, Jiang SD, Zhu LX. The mitochondrial UPR induced by ATF5 attenuates intervertebral disc degeneration via cooperating with mitophagy. Cell Biol Toxicol 2024; 40:16. [PMID: 38472656 PMCID: PMC10933207 DOI: 10.1007/s10565-024-09854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1β and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1β. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.
Collapse
Affiliation(s)
- Wen-Ning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Run-Ze Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Fang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bi-Rong Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jian Song
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China.
- Department of Orthopedics, Huashan Hospital Fudan University, Shanghai, 200040, China.
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China.
| | - Li-Xin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
13
|
Montgomery-Song A, Ashraf S, Santerre P, Kandel R. Senescent response in inner annulus fibrosus cells in response to TNFα, H2O2, and TNFα-induced nucleus pulposus senescent secretome. PLoS One 2024; 19:e0280101. [PMID: 38181003 PMCID: PMC10769024 DOI: 10.1371/journal.pone.0280101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/01/2023] [Indexed: 01/07/2024] Open
Abstract
Senescence, particularly in the nucleus pulposus (NP) cells, has been implicated in the pathogenesis of disc degeneration, however, the mechanism(s) of annulus fibrosus (AF) cell senescence is still not well understood. Both TNFα and H2O2, have been implicated as contributors to the senescence pathways, and their levels are increased in degenerated discs when compared to healthy discs. Thus, the objective of this study is to identify factor(s) that induces inner AF (iAF) cell senescence. Under TNFα exposure, at a concentration previously shown to induce senescence in NP cells, bovine iAF cells did not undergo senescence, indicated by their ability to continue to proliferate as demonstrated by Ki67 staining and growth curves and lack of expression of the senescent markers, p16 and p21. The lack of senescent response occurred even though iAF express higher levels of TNFR1 than NP cells. Interestingly, iAF cells showed no increase in intracellular ROS or secreted H2O2 in response to TNFα which contrasted to NP cells that did. Following TNFα treatment, only iAF cells had increased expression of the superoxide scavengers SOD1 and SOD2 whereas NP cells had increased NOX4 gene expression, an enzyme that can generate H2O2. Treating iAF cells with low dose H2O2 (50 μM) induced senescence, however unlike TNFα, H2O2 did not induce degenerative-like changes as there was no difference in COL2, ACAN, MMP13, or IL6 gene expression or number of COL2 and ACAN immunopositive cells compared to untreated controls. The latter result suggests that iAF cells may have distinct degenerative and senescent phenotypes. To evaluate paracrine signalling by senescent NP cells, iAF and TNFα-treated NP cells were co-cultured. In contact co-culture the NP cells induced iAF senescence. Thus, senescent NP cells may secrete soluble factors that induce degenerative and senescent changes within the iAF. This may contribute to a positive feedback loop of disc degeneration. It is possible these factors may include H2O2 and cytokines (such as TNFα). Further studies will investigate if human disc cells respond similarly.
Collapse
Affiliation(s)
| | - Sajjad Ashraf
- Pathology and Laboratory Medicine, Mt. Sinai Hospital and Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Paul Santerre
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Rita Kandel
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital and Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Chen F, Sheng X, Sun H, Guo Q, Wang H, Wu L, Ni B, Yang J. Advanced glycation end products induce nucleus pulposus cell apoptosis by upregulating TXNIP via inhibiting glycolysis pathway in intervertebral disc degeneration. J Biochem Mol Toxicol 2024; 38:e23515. [PMID: 37632267 DOI: 10.1002/jbt.23515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/24/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Accumulation of advanced glycation end products (AGEs) causes apoptosis in human nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IVDD). The purpose of this study was to determine the roles of thioredoxin-interacting protein (TXNIP) in the mechanisms underlying AGE-induced apoptosis of NPCs. TXNIP was silenced or overexpressed in HNPCs exposed to AGEs. Glycolysis was assessed using extracellular acidification rate (ECAR), ATP level, GLUT1, and GLUT4 measurements. AGEs, TXNIP, GLUT1, and GLUT4 levels in IVDD patients were measured as well. In NPCs, AGEs reduced cell viability, induced apoptosis, inhibited glycolysis, and increased TXNIP expression. Silencing TXNIP compromised the effects of AGEs on cell viability, apoptosis, and glycolysis in NPCs. Furthermore, TXNIP overexpression resulted in decreased cell viability, increased apoptotic cells, and glycolysis suppression. Furthermore, co-treatment with a glycolysis inhibitor improved TXNIP silencing's suppressive effects on AGE-induced cell injury in NPCs. In IVDD patients with Pfirrmann Grades II-V, increasing trends in AGEs and TXNIP were observed, while decreasing trends in GLUT1 and GLUT4. AGE levels had positive correlations with TXNIP levels. Both AGE and TXNIP levels correlated negatively with GLUT1 and GLUT4. Our study indicates that TXNIP plays a role in mediating AGE-induced cell injury through suppressing glycolysis. The accumulation of AGEs, the upregulation of TXNIP, and the downregulation of GLUT1 and GLUT4 are all linked to the progression of IVDD.
Collapse
Affiliation(s)
- Fei Chen
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaoping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haobo Sun
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qunfeng Guo
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haibin Wang
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lecheng Wu
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bin Ni
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jun Yang
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Cheng P, Wei H, Chen H, Wang Z, Mao P, Zhang H. DNMT3a-mediated methylation of PPARγ promote intervertebral disc degeneration by regulating the NF-κB pathway. J Cell Mol Med 2024; 28:e18048. [PMID: 37986543 PMCID: PMC10826446 DOI: 10.1111/jcmm.18048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1β-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| | - Hang‐Zhi Wei
- Department of Department of General SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Hai‐Wei Chen
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Zhi‐Qiang Wang
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Peng Mao
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPR China
| | - Hai‐Hong Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| |
Collapse
|
16
|
Xu K, Li J, Wen R, Chang B, Cheng Y, Yi X. Role of SIRT3 in bone homeostasis and its application in preventing and treating bone diseases. Front Pharmacol 2023; 14:1248507. [PMID: 38192409 PMCID: PMC10773770 DOI: 10.3389/fphar.2023.1248507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Bone homeostasis refers to the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption and the maintenance of stable bone mass. SIRT3 is a class of mitochondrial protein deacetylase that influences various mitochondrial functions and is involved in the mechanisms underlying resistance to aging; regulation of bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts; and development of osteoporosis, osteoarthritis, and other bone diseases. Moreover, exercise affects bones through SIRT3. Thus, studies on SIRT3 may provide insights for the treatment of bone diseases. Although SIRT3 can exert multiple effects on bone, the specific mechanism by which it regulates bone homeostasis remains unclear. By evaluating the relevant literature, this review discusses the structure and function of SIRT3, reveals the role and associated mechanisms of SIRT3 in regulating bone homeostasis and mediating bone health during exercise, and highlights the potential pharmacological value of SIRT3 in treating bone diseases.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
17
|
Zhang P, He J, Gan Y, Shang Q, Chen H, Zhao W, Shen G, Jiang X, Ren H. Plastrum testudinis Ameliorates Oxidative Stress in Nucleus Pulposus Cells via Downregulating the TNF-α Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1482. [PMID: 37895953 PMCID: PMC10610230 DOI: 10.3390/ph16101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BackgroundPlastrum testudinis (PT), a widely used traditional Chinese medicine, exerts protective effects against bone diseases such as intervertebral disc degeneration (IDD). Despite its effectiveness, the molecular mechanisms underlying the effects of PT on IDD remain unclear. Methods In this study, we used a comprehensive strategy combining bioinformatic analysis with experimental verification to investigate the possible molecular mechanisms of PT against IDD. We retrieved targets for PT and IDD, and then used their overlapped targets for protein-protein interaction (PPI) analysis. In addition, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the anti-IDD mechanisms of PT. Moreover, in vivo and in vitro experiment validations including hematoxylin-eosin (HE) and safranine O-green staining, senescence-associated β-galactosidase (SA-β-gal) assay, cell immunofluorescence staining, intracellular ROS measurement and Western blot analysis were performed to verify bioinformatics findings. Results We identified 342 and 872 PT- and IDD-related targets (32 overlapping targets). GO enrichment analysis yielded 450 terms related to oxidative stress and inflammatory response regulation. KEGG analysis identified 48 signaling pathways, 10 of which were significant; the TNF-α signaling pathway had the highest p-value, and prostaglandin G/H synthase 2 (PTGS2), endothelin-1 (EDN1), TNF-α, JUN and FOS were enriched in this pathway. Histopathological results and safranin O/green staining demonstrated that PT attenuated IDD, and SA-β-gal assay showed that PT ameliorated nucleus pulposus cell (NPC) senescence. An ROS probe was adopted to confirm the protective effect of PT against oxidative stress. Western blot analyses confirmed that PT downregulated the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway as well as cellular senescence marker p16, proinflammatory cytokine interleukin-6 (IL6), while PT upregulated the expression of NPC-specific markers including COL2A1 and ACAN in a concentration-dependent manner. Conclusions To the best of our knowledge, this study is the first to report that PT alleviates IDD by downregulating the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway and upregulating that of COL2A1 and ACAN, thus suppressing inflammatory responses and oxidative stress in NPCs.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China;
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Wenhua Zhao
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Gengyang Shen
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Xiaobing Jiang
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Hui Ren
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| |
Collapse
|
18
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
19
|
Shi Y, Li H, Chu D, Lin W, Wang X, Wu Y, Li K, Wang H, Li D, Xu Z, Gao L, Li B, Chen H. Rescuing Nucleus Pulposus Cells From Senescence via Dual-Functional Greigite Nanozyme to Alleviate Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300988. [PMID: 37400370 PMCID: PMC10477883 DOI: 10.1002/advs.202300988] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Indexed: 07/05/2023]
Abstract
High levels of reactive oxygen species (ROS) lead to progressive deterioration of mitochondrial function, resulting in tissue degeneration. In this study, ROS accumulation induced nucleus pulposus cells (NPCs) senescence is observed in degenerative human and rat intervertebral disc, suggesting senescence as a new therapeutic target to reverse intervertebral disc degeneration (IVDD). By targeting this, dual-functional greigite nanozyme is successfully constructed, which shows the ability to release abundant polysulfides and presents strong superoxide dismutase and catalase activities, both of which function to scavenge ROS and maintain the tissue at physical redox level. By significantly lowering the ROS level, greigite nanozyme rescues damaged mitochondrial function in IVDD models both in vitro and in vivo, rescues NPCs from senescence and alleviated the inflammatory response. Furthermore, RNA-sequencing reveals ROS-p53-p21 axis is responsible for cellular senescence-induced IVDD. Activation of the axis abolishes greigite nanozyme rescued NPCs senescence phenotype, as well as the alleviated inflammatory response to greigite nanozyme, which confirms the role of ROS-p53-p21 axis in greigite nanozyme's function to reverse IVDD. In conclusion, this study demonstrates that ROS-induced NPCs senescence leads to IVDD and the dual-functional greigite nanozyme holds strong potential to reverse this process, providing a novel strategy for IVDD management.
Collapse
Affiliation(s)
- Yu Shi
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Hanwen Li
- Orthopedic InstituteDepartment of Orthopedic SurgeryFirst Affiliated HospitalSuzhou Medical CollegeSoochow UniversityNo. 899 Pinghai RoadSuzhou215000P. R. China
| | - Dongchuan Chu
- Department of RadiologyAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
| | - Wenzheng Lin
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Xinglong Wang
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Yin Wu
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Ke Li
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Huihui Wang
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Dandan Li
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Zhuobin Xu
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
- Institute of Translational MedicineMedical CollegeYangzhou UniversityNo.136 Jiangyang RoadYangzhou215000P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for NanozymeInstitute of BiophysicsChinese Academy of SciencesNo. 15 Datun RoadBeijing100101P. R. China
| | - Bin Li
- Orthopedic InstituteDepartment of Orthopedic SurgeryFirst Affiliated HospitalSuzhou Medical CollegeSoochow UniversityNo. 899 Pinghai RoadSuzhou215000P. R. China
| | - Hao Chen
- Department of OrthopedicsAffiliated Hospital of Yangzhou UniversityNo. 368 Hanjiang RoadYangzhou225000P. R. China
| |
Collapse
|
20
|
Li J, Li Y, Wang X, Xie Y, Lou J, Yang Y, Jiang S, Ye M, Chen H, Diao W, Xu S. Pinocembrin alleviates pyroptosis and apoptosis through ROS elimination in random skin flaps via activation of SIRT3. Phytother Res 2023; 37:4059-4075. [PMID: 37150741 DOI: 10.1002/ptr.7864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Random skin flap grafting is the most common skin grafting technique in reconstructive surgery. Despite progress in techniques, the incidence of distal flap necrosis still exceeds 3%, which limits its use in clinical practice. Current methods for treating distal flap necrosis are still lacking. Pinocembrin (Pino) can inhibit reactive oxygen species (ROS) and cell death in a variety of diseases, such as cardiovascular diseases, but the role of Pino in random flaps has not been explored. Therefore, we explore how Pino can enhance flap survival and its specific upstream mechanisms via macroscopic examination, Doppler, immunohistochemistry, and western blot. The results suggested that Pino can enhance the viability of random flaps by inhibiting ROS, pyroptosis and apoptosis. The above effects were reversed by co-administration of Pino with adeno-associated virus-silencing information regulator 2 homolog 3 (SIRT3) shRNA, proving the beneficial effect of Pino on the flaps relied on SIRT3. In addition, we also found that Pino up-regulates SIRT3 expression by activating the AMP-activated protein kinase (AMPK) pathway. This study proved that Pino can improve random flap viability by eliminating ROS, and ROS-induced cell death through the activation of SIRT3, which are triggered by the AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yamin Xie
- Department of Service Quality Management, Sanmen People's Hospital, Taizhou, China
| | - Junsheng Lou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihan Ye
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaizhi Chen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyi Diao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
22
|
Zhu J, Sun R, Sun K, Yan C, Jiang J, Kong F, Shi J. The deubiquitinase USP11 ameliorates intervertebral disc degeneration by regulating oxidative stress-induced ferroptosis via deubiquitinating and stabilizing Sirt3. Redox Biol 2023; 62:102707. [PMID: 37099926 PMCID: PMC10149406 DOI: 10.1016/j.redox.2023.102707] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Increasing studies have reported that intervertebral disc degeneration (IVDD) is the main contributor and independent risk factor for low back pain (LBP), it would be, therefore, enlightening that investigating the exact pathogenesis of IVDD and developing target-specific molecular drugs in the future. Ferroptosis is a new form of programmed cell death characterized by glutathione (GSH) depletion, and inactivation of the regulatory core of the antioxidant system (glutathione system) GPX4. The close relationship of oxidative stress and ferroptosis has been studied in various of diseases, but the crosstalk between of oxidative stress and ferroptosis has not been explored in IVDD. At the beginning of the current study, we proved that Sirt3 decreases and ferroptosis occurs after IVDD. Next, we found that knockout of Sirt3 (Sirt3-/-) promoted IVDD and poor pain-related behavioral scores via increasing oxidative stress-induced ferroptosis. The (immunoprecipitation coupled with mass spectrometry) IP/MS and co-IP demonstrated that USP11 was identified to stabilize Sirt3 via directly binding to Sirt3 and deubiquitinating Sirt3. Overexpression of USP11 significantly ameliorate oxidative stress-induced ferroptosis, thus relieving IVDD by increasing Sirt3. Moreover, knockout of USP11 in vivo (USP11-/-) resulted in exacerbated IVDD and poor pain-related behavioral scores, which could be reversed by overexpression of Sirt3 in intervertebral disc. In conclusion, the current study emphasized the importance of the interaction of USP11 and Sirt3 in the pathological process of IVDD via regulating oxidative stress-induced ferroptosis, and USP11-mediated oxidative stress-induced ferroptosis is identified as a promising target for treating IVDD.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Ruping Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Kaiqiang Sun
- Department of Orthopaedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Chen Yan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jialin Jiang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Fanqi Kong
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
23
|
Song C, Zhou Y, Cheng K, Liu F, Cai W, Zhou D, Chen R, Shi H, Fu Z, Chen J, Liu Z. Cellular senescence - Molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother 2023; 162:114711. [PMID: 37084562 DOI: 10.1016/j.biopha.2023.114711] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a frequent and intractable chronic condition in orthopedics that causes enormous discomfort in patients' lives and thoughts, as well as a significant economic burden on society and the nation. As a result, understanding the pathophysiology of IVDD is critical. The pathophysiology of IVDD has been linked to numerous variables, including oxidative stress, apoptosis, matrix metalloproteinases, and inflammatory factors. Cellular senescence has recently attracted a lot of attention in the study of age-related diseases. It has been discovered that IVDD is intimately linked to human senescence, in which nucleus pulposus cell senescence may play a significant role. Previously, our group did a comprehensive and systematic clarification of the pathogenesis of IVDD from an immune perspective and discovered that the fundamental pathogenesis of IVDD is inflammatory upregulation and nucleus pulposus cell death caused by an imbalance in the immune microenvironment. In this review, we will treat nucleus pulposus cell senescence as a novelty point to clarify the pathophysiology of IVDD and further explore the probable relationship between senescence and immunity along with the dysregulation of the immunological microenvironment to propose new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Zhou
- Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jingwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China; Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
24
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Ma Z, Yu P, Li X, Dai F, Jiang H, Liu J. Anemonin reduces hydrogen peroxide-induced oxidative stress, inflammation and extracellular matrix degradation in nucleus pulposus cells by regulating NOX4/NF-κB signaling pathway. J Orthop Surg Res 2023; 18:189. [PMID: 36899420 PMCID: PMC10007850 DOI: 10.1186/s13018-023-03679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Excessive oxidative stress plays a critical role in the progression of various diseases, including intervertebral disk degeneration (IVDD). Recent studies have found that anemonin (ANE) possesses antioxidant and anti-inflammatory effects. However, the role of ANE in IVDD is still unclear. Therefore, this study investigated the effect and mechanism of ANE on H2O2 induced degeneration of nucleus pulposus cells (NPCs). METHODS NPCs were pretreated with ANE, and then treated with H2O2. NOX4 was upregulated by transfection of pcDNA-NOX4 into NPCs. Cytotoxicity was detected by MTT, oxidative stress-related indicators and inflammatory factors were measured by ELISA, mRNA expression was assessed by RT-PCR, and protein expression was tested by western blot. RESULTS ANE attenuated H2O2-induced inhibition of NPCs activity. H2O2 enhanced oxidative stress, namely, increased ROS and MDA levels and decreased SOD level. However, these were suppressed and pretreated by ANE. ANE treatment repressed the expression of inflammatory factors (IL-6, IL-1β and TNF-α) in H2O2-induced NPCs. ANE treatment also prevented the degradation of extracellular matrix induced by H2O2, showing the downregulation of MMP-3, 13 and ADAMTS-4, 5 and the upregulation of collagen II. NOX4 is a key factor regulating oxidative stress. Our study confirmed that ANE could restrain NOX4 and p-NF-κB. In addition, overexpression of NOX4 counteracted the antioxidant and anti-inflammatory activities of ANE in H2O2-induced NPCs, and the inhibition of the degradation of extracellular matrix induced by ANE was also reversed by overexpression of NOX4. CONCLUSION ANE repressed oxidative stress, inflammation and extracellular matrix degradation in H2O2-induced NPCs by inhibiting NOX4/NF-κB pathway. Our study indicated that ANE might be a candidate drug for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhijia Ma
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Xiaochun Li
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Hong Jiang
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| | - Jintao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
26
|
miR-4478 Accelerates Nucleus Pulposus Cells Apoptosis Induced by Oxidative Stress by Targeting MTH1. Spine (Phila Pa 1976) 2023; 48:E54-E69. [PMID: 36130054 PMCID: PMC9897280 DOI: 10.1097/brs.0000000000004486] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Low back pain is the leading cause of disability in the elderly population and is strongly associated with intervertebral disk degeneration (IVDD). However, the precise molecular mechanisms regulating IVDD remain elusive. This study aimed to investigate the role of differentially expressed miRNAs in the pathogenesis of IVDD. MATERIALS AND METHODS We analyzed miRNA microarray datasets to identify differentially expressed miRNAs in IVDD progression and conducted quantitative real-time polymerase chain reaction and fluorescence in situ hybridization analysis to further confirm the differential expression of miR-4478 in nucleus pulposus (NP) tissues of patients diagnosed with IVDD. Using public databases of miRNA-mRNA interactions, we predicted the target genes of miR-4478, and subsequent flow cytometry and western blot analyses demonstrated the effect of MTH1 in H 2 O 2 -induced nucleus pulposus cells (NPCs) apoptosis. Finally, miR-4478 inhibitor was injected into NP tissues of the IVDD mouse model to explore the effect of miR-4478 in vivo. RESULTS miR-4478 was upregulated in NP tissues from IVDD patients. Silencing of miR-4478 inhibits H 2 O 2 -induced NPCs apoptosis. MTH1 was identified as a target gene for miR-4478, and miR-4478 regulates H 2 O 2 -induced NPCs apoptosis by modulating MTH1. In addition, downregulation of miR-4478 alleviated IVDD in a mouse model. CONCLUSIONS In summary, our study provides evidence that miR-4478 may aggravate IVDD through its target gene MTH1 by accelerating oxidative stress in NPCs and demonstrates that miR-4478 has therapeutic potential in IVDD treatment.
Collapse
|
27
|
Yurube T, Takeoka Y, Kanda Y, Ryosuke K, Kakutani K. Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2023; 14:100210. [PMID: 37090223 PMCID: PMC10113901 DOI: 10.1016/j.xnsj.2023.100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Background Degenerative disc disease, a major cause of low back pain and associated neurological symptoms, is a global health problem with the high morbidity, workforce loss, and socioeconomic burden. The present surgical strategy of disc resection and/or spinal fusion results in the functional loss of load, shock absorption, and movement; therefore, the development of new biological therapies is demanded. This achievement requires the understanding of intervertebral disc cell fate during aging and degeneration. Methods Literature review was performed to clarify the current concepts and future perspectives of disc cell fate, focused on apoptosis, senescence, and autophagy. Results The intervertebral disc has a complex structure with the nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates. While the AF arises from the mesenchyme, the NP originates from the notochord. Human disc NP notochordal phenotype disappears in adolescence, accompanied with cell death induction and chondrocyte proliferation. Discs morphologically and biochemically degenerate from early childhood as well, thereby suggesting a possible involvement of cell fate including age-related phenotypic changes in the disease process. As the disc is the largest avascular organ in the body, nutrient deprivation is a suspected contributor to degeneration. During aging and degeneration, disc cells undergo senescence, irreversible growth arrest, producing proinflammatory cytokines and matrix-degradative enzymes. Excessive stress ultimately leads to programmed cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis. Autophagy, the intracellular degradation and recycling system, plays a role in maintaining cell homeostasis. While the incidence of apoptosis and senescence increases with age and degeneration severity, autophagy can be activated earlier, in response to limited nutrition and inflammation, but impaired in aged, degenerated discs. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a signal integrator to determine disc cell fate. Conclusions Cell fate and microenvironmental regulation by modulating PI3K/Akt/mTOR signaling is a potential biological treatment for degenerative disc disease.
Collapse
|
28
|
Chen R, Zhang X, Zhu X, Wang C, Xu W. Myricetin alleviated hydrogen peroxide-induced cellular senescence of nucleus pulposus cell through regulating SERPINE1. J Orthop Surg Res 2023; 18:143. [PMID: 36849986 PMCID: PMC9969624 DOI: 10.1186/s13018-022-03463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Myricetin (MYR) is a common plant flavonoid with antioxidant and anticancer properties. However, the anti-aging effect of MYR on nucleus pulposus cells (NPCs) is still unknown. The study aimed to explore the effect of MYR on the senescence of NPCs. METHODS Methyl-thiazolyl tetrazolium assay was used to detect NPCs viability. Senescence level was evaluated by senescence-associated β-galactosidase (SA-β-Gal) staining and the expression levels of P21, P16, IL-6 and IL-8. RNA-Sequencing (RNA-seq) technology was used to identify differentially expressed genes (DEGs) between hydrogen peroxide + MYR (HO + MYR) group and HO group, and Gene Ontology (GO) functional was performed to analyze DEGs. A Venn diagram was generated to screen overlapping DEGs related to aging and inflammation, and the role of the promising validated DEG was selected for further investigation by gene functional assays. RESULTS HO inhibited NPCs viability and stimulated the senescent phenotype of NPCs, whereas MYR treatment significantly reversed SA-β-gal activity in NPCs. MYR also reduced the expression of p21 and p16 and the secretion of IL-6 and IL-8 induced by HO. RNA-seq screened 421 DEGs. The GO enrichment results showed DEGs were mainly enriched in terms such as "sterol biosynthetic process". We also found SERPINE1 has the highest log2FC abs. Silence of SERPINE1 inhibited HO-induced NPCs senescence, and overexpression of SERPINE1 could limit the anti-aging effect of MYR. CONCLUSIONS MYR alleviated HO-induced senescence of NPCs by regulating SERPINE1 in vitro.
Collapse
Affiliation(s)
- Rongsheng Chen
- grid.412683.a0000 0004 1758 0400Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 35005 Fujian China ,grid.256112.30000 0004 1797 9307Department of Spinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212 Fuzhou, China
| | - Xiaobo Zhang
- grid.412683.a0000 0004 1758 0400Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 35005 Fujian China
| | - Xitian Zhu
- grid.412683.a0000 0004 1758 0400Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 35005 Fujian China
| | - Changsheng Wang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 35005, Fujian, China.
| | - Weihong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 35005, Fujian, China.
| |
Collapse
|
29
|
Chen Y, Zheng Y, Chen R, Shen J, Zhang S, Gu Y, Shi J, Meng G. Dihydromyricetin Attenuates Diabetic Cardiomyopathy by Inhibiting Oxidative Stress, Inflammation and Necroptosis via Sirtuin 3 Activation. Antioxidants (Basel) 2023; 12:antiox12010200. [PMID: 36671063 PMCID: PMC9854700 DOI: 10.3390/antiox12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Dihydromyricetin (DHY), the main flavonoid component in Ampelopsis grossedentata, has important benefits for health. The present study aimed to investigate the exact effects and possible mechanisms of DHY on diabetic cardiomyopathy (DCM). Male C57BL/6 mice and sirtuin 3 (SIRT3) knockout (SIRT3-KO) mice were injected with streptozotocin (STZ) to induce a diabetic model. Two weeks later, DHY (250 mg/kg) or carboxymethylcellulose (CMC) were administrated once daily by gavage for twelve weeks. We found that DHY alleviated fasting blood glucose (FBG) and triglyceride (TG) as well as glycosylated hemoglobin (HbA1c) levels; increased fasting insulin (FINS); improved cardiac dysfunction; ameliorated myocardial hypertrophy, fibrosis and injury; suppressed oxidative stress, inflammasome and necroptosis; but improved SIRT3 expression in STZ-induced mice. Neonatal rat cardiomyocytes were pre-treated with DHY (80 μM) with or without high glucose (HG) stimulation. The results showed that DHY attenuated cell damage but improved SIRT3 expression and inhibited oxidative stress, inflammasome and necroptosis in cardiomyocytes with high glucose stimulation. Moreover, the above protective effects of DHY on DCM were unavailable in SIRT3-KO mice, implying a promising medical potential of DHY for DCM treatment. In sum, DHY improved cardiac dysfunction; ameliorated myocardial hypertrophy, fibrosis and injury; and suppressed oxidative stress, inflammation and necroptosis via SIRT3 activation in STZ-induced diabetic mice, suggesting DHY may serve as a candidate for an agent to attenuate diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ruixiang Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jieru Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yunhui Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
- Correspondence: (J.S.); (G.M.); Tel.: +86-513-8116-0901 (J.S.); +86-513-8505-1726 (G.M.); Fax: +86-513-8116-0901 (J.S.); +86-513-8505-1728 (G.M.)
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (J.S.); (G.M.); Tel.: +86-513-8116-0901 (J.S.); +86-513-8505-1726 (G.M.); Fax: +86-513-8116-0901 (J.S.); +86-513-8505-1728 (G.M.)
| |
Collapse
|
30
|
Mitophagy—A New Target of Bone Disease. Biomolecules 2022; 12:biom12101420. [PMID: 36291629 PMCID: PMC9599755 DOI: 10.3390/biom12101420] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/17/2023] Open
Abstract
Bone diseases are usually caused by abnormal metabolism and death of cells in bones, including osteoblasts, osteoclasts, osteocytes, chondrocytes, and bone marrow mesenchymal stem cells. Mitochondrial dysfunction, as an important cause of abnormal cell metabolism, is widely involved in the occurrence and progression of multiple bone diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma. As selective mitochondrial autophagy for damaged or dysfunctional mitochondria, mitophagy is closely related to mitochondrial quality control and homeostasis. Accumulating evidence suggests that mitophagy plays an important regulatory role in bone disease, indicating that regulating the level of mitophagy may be a new strategy for bone-related diseases. Therefore, by reviewing the relevant literature in recent years, this paper reviews the potential mechanism of mitophagy in bone-related diseases, including osteoarthritis, intervertebral disc degeneration, osteoporosis, and osteosarcoma, to provide a theoretical basis for the related research of mitophagy in bone diseases.
Collapse
|
31
|
Hu Z, Wang Y, Gao X, Zhang Y, Liu C, Zhai Y, Chang X, Li H, Li Y, Lou J, Li C. Optineurin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration. Front Pharmacol 2022; 13:893307. [PMID: 36105191 PMCID: PMC9465714 DOI: 10.3389/fphar.2022.893307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Low back pain is thought to be mainly caused by intervertebral disc degeneration (IVDD), and there is a lack of effective treatments. Cellular senescence and matrix degradation are important factors that cause disc degeneration. Mitochondrial dysfunction induced by oxidative stress is an important mechanism of cellular senescence and matrix degradation in the nucleus pulposus (NP), and mitophagy can effectively remove damaged mitochondria, restore mitochondrial homeostasis, and mitigate the damage caused by oxidative stress. Optineurin (OPTN) is a selective mitophagy receptor, and its role in intervertebral disc degeneration remains unclear. Here, we aimed to explore the effect of OPTN on H2O2-induced nucleus pulposus cell (NPCs) senescence and matrix degradation in a rat model of disc degeneration. Western blot analysis showed that OPTN expression was reduced in degenerative human and rat nucleus pulposus tissues and increased in H2O2-induced senescent NPCs. OPTN overexpression significantly inhibited H2O2-induced senescence and increased matrix-associated protein expression in NPCs, but OPTN knockdown showed the opposite effect. As previous reports have suggested that mitophagy significantly reduces mitochondrial damage and reactive oxygen species (ROS) caused by oxidative stress, and we used the mitophagy agonist CCCP, the mitophagy inhibitor cyclosporin A (CsA), and the mitochondrial ROS (mtROS) scavenger mitoTEMPO and confirmed that OPTN attenuated NPCs senescence and matrix degeneration caused by oxidative stress by promoting mitophagy to scavenge damaged mitochondria and excess reactive oxygen species, thereby slowing the progression of IVDD. In conclusion, our research suggests that OPTN is involved in IVDD and exerts beneficial effects against IVDD.
Collapse
Affiliation(s)
- Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yu Wang
- Department of Ophthalmology, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Xiaoxin Gao
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Chenhao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Changqing Li,
| |
Collapse
|
32
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
33
|
Systematic Elaboration of the Pharmacological Targets and Potential Mechanisms of ZhiKe GanCao Decoction for Preventing and Delaying Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8786052. [PMID: 35497916 PMCID: PMC9054440 DOI: 10.1155/2022/8786052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Background ZhiKe GanCao Decoction (ZKGCD) is a commonly used traditional Chinese medicine in the clinical treatment of intervertebral disc degeneration (IDD). However, its active ingredients and mechanism of action remain unclear. This study aims to propose the systematic mechanism of ZKGCD action on IDD based on network pharmacology, molecular docking, and enrichment analysis. Methods Firstly, the common target genes between ZKGCD and IDD were identified through relevant databases. Secondly, the protein-protein interaction (PPI) network of common genes was constructed and further analyzed to determine the core active ingredients and key genes. Thirdly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of common genes were performed. Finally, the stability of the binding between core active ingredients and key genes was verified by molecular docking analysis. Results “Intersecting genes-active components” network consists of 154 active ingredients and 133 common genes. The ten key genes are AKT1, TNF, IL6, TP53, IL1B, JUN, CASP3, STAT3, MMP9, and MAPK3. Meanwhile, quercetin (Mol000098), luteolin (Mol000006), and kaempferol (Mol000422) are the most important core active ingredients. The main signal pathways selected by KEGG enrichment analysis includes AGE-RAGE signaling pathway in diabetic complications (hsa04933), TNF signaling pathway (hsa04668), IL-17 signaling pathway (hsa04657), cellular senescence (hsa04218), apoptosis (hsa04210), and PI3K-Akt signaling pathway (hsa04151), which are mainly involved in inflammation, apoptosis, senescence, and autophagy. Conclusion This study provides a basis for further elucidating the mechanism of action of ZKGCD in the treatment of IDD and offers a new perspective on the conversion of the active ingredient in ZKGCD into new drugs for treating IDD.
Collapse
|
34
|
Xie C, Shi Y, Chen Z, Zhou X, Luo P, Hong C, Tian N, Wu Y, Zhou Y, Lin Y, Dou H, Wu A, Huang Q, Zhang X, Wang X. Apigenin Alleviates Intervertebral Disc Degeneration via Restoring Autophagy Flux in Nucleus Pulposus Cells. Front Cell Dev Biol 2022; 9:787278. [PMID: 35096819 PMCID: PMC8795835 DOI: 10.3389/fcell.2021.787278] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress–induced apoptosis and senescence of nucleus pulposus (NP) cells play a crucial role in the progression of intervertebral disc degeneration (IVDD). Accumulation of studies has shown that activated autophagy and enhanced autophagic flux can alleviate IVDD. In this study, we explored the effects of apigenin on IVDD in vitro and in vivo. Apigenin was found to inhibit tert-butyl hydroperoxide (TBHP)–induced apoptosis, senescence, and ECM degradation in NP cells. In addition, apigenin treatment can restore the autophagic flux blockage caused by TBHP. Mechanistically, we found that TBHP may induce autophagosome and lysosome fusion interruption and lysosomal dysfunction, while apigenin alleviates these phenomena by promoting the nuclear translocation of TFEB via the AMPK/mTOR signaling pathway. Furthermore, apigenin also exerts a protective effect against the progression of IVDD in the puncture-induced rat model. Taken together, these findings indicate that apigenin protects NP cells against TBHP-induced apoptosis, senescence, and ECM degradation via restoration of autophagic flux in vitro, and it also ameliorates IVDD progression in rats in vivo, demonstrating its potential for serving as an effective therapeutic agent for IVDD.
Collapse
Affiliation(s)
- Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zuoxi Chen
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Xin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenxuan Hong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qishan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Cheng F, Yang H, Cheng Y, Liu Y, Hai Y, Zhang Y. The role of oxidative stress in intervertebral disc cellular senescence. Front Endocrinol (Lausanne) 2022; 13:1038171. [PMID: 36561567 PMCID: PMC9763277 DOI: 10.3389/fendo.2022.1038171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
With the aggravation of social aging and the increase in work intensity, the prevalence of spinal degenerative diseases caused by intervertebral disc degeneration(IDD)has increased yearly, which has driven a heavy economic burden on patients and society. It is well known that IDD is associated with cell damage and degradation of the extracellular matrix. In recent years, it has been found that IDD is induced by various mechanisms (e.g., genetic, mechanical, and exposure). Increasing evidence shows that oxidative stress is a vital activation mechanism of IDD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) could regulate matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and aging of intervertebral disc cells. However, up to now, our understanding of a series of pathophysiological mechanisms of oxidative stress involved in the occurrence, development, and treatment of IDD is still limited. In this review, we discussed the oxidative stress through its mechanisms in accelerating IDD and some antioxidant treatment measures for IDD.
Collapse
Affiliation(s)
| | | | | | - Yuzeng Liu
- *Correspondence: Yuzeng Liu, ; Yong Hai, ; ; Yangpu Zhang,
| | - Yong Hai
- *Correspondence: Yuzeng Liu, ; Yong Hai, ; ; Yangpu Zhang,
| | - Yangpu Zhang
- *Correspondence: Yuzeng Liu, ; Yong Hai, ; ; Yangpu Zhang,
| |
Collapse
|
36
|
Zheng HL, Xu WN, Chen PB, Jiang LS, Zheng XF, Jiang SD. Increased Expression of Prolyl Endopeptidase Induced by Oxidative Stress in Nucleus Pulposus Cells Aggravates Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9731800. [PMID: 35464773 PMCID: PMC9020979 DOI: 10.1155/2022/9731800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
A healthy microenvironment of the intervertebral disc tissue is characterized by hypoxia owing to its sparse vascular distribution. Oxidative stress plays a pivotal role in the pathological development of intervertebral disc degeneration (IVDD). We found that the expression of prolyl endopeptidase (PREP) increased in degenerative nucleus pulposus (NP) tissues. The purpose of this study was to determine whether PREP is involved in oxidative-stress-induced IVDD. Tertbutyl hydroperoxide can inhibit the expression of PREP by activating the PI3K/AKT signaling pathway at low concentrations in NP cells. Knockdown of PREP protected NP cells from apoptosis induced by oxidative stress, whereas overexpression of PREP exacerbated the apoptosis of NP cells. We also investigated the connection between the PI3K/AKT signaling pathway and PREP and found that the activation of the PI3K/AKT signaling pathway downregulated the expression of PREP by inhibiting p53. As a crucial transcription factor, p53 binds to the PREP promoter region and promotes its transcription. Overexpression of PREP also impairs protein secretion in the extracellular matrix of NP cells. Furthermore, the in vivo knockout of PREP could attenuate puncture-induced IVDD. These findings suggested that the downregulation of PREP might maintain the viability of NP cells and attenuate IVDD under oxidative stress.
Collapse
Affiliation(s)
- Huo-Liang Zheng
- 1Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| | - Wen-Ning Xu
- 2Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, 6 Southern Medical University, Guangzhou 510280, China
| | - Peng-Bo Chen
- 1Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| | - Lei-Sheng Jiang
- 1Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| | - Xin-Feng Zheng
- 1Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| | - Sheng-Dan Jiang
- 1Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| |
Collapse
|
37
|
Wang Z, Shen J, Feng E, Jiao Y. AMPK as a Potential Therapeutic Target for Intervertebral Disc Degeneration. Front Mol Biosci 2021; 8:789087. [PMID: 34957218 PMCID: PMC8692877 DOI: 10.3389/fmolb.2021.789087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As the principal reason for low back pain, intervertebral disc degeneration (IDD) affects the health of people around the world regardless of race or region. Degenerative discs display a series of characteristic pathological changes, including cell apoptosis, senescence, remodeling of extracellular matrix, oxidative stress and inflammatory local microenvironment. As a serine/threonine-protein kinase in eukaryocytes, AMP-activated protein kinase (AMPK) is involved in various cellular processes through the modulation of cell metabolism and energy balance. Recent studies have shown the abnormal activity of AMPK in degenerative disc cells. Besides, AMPK regulates multiple crucial biological behaviors in IDD. In this review, we summarize the pathophysiologic changes of IDD and activation process of AMPK. We also attempt to generalize the role of AMPK in the pathogenesis of IDD. Moreover, therapies targeting AMPK in alleviating IDD are analyzed, for better insight into the potential of AMPK as a therapeutic target.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Erwei Feng
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Jiao
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Shi PZ, Wang JW, Wang PC, Han B, Lu XH, Ren YX, Feng XM, Cheng XF, Zhang L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway. World J Stem Cells 2021; 13:1928-1946. [PMID: 35069991 PMCID: PMC8727228 DOI: 10.4252/wjsc.v13.i12.1928] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In degenerative intervertebral disc (IVD), an unfavorable IVD environment leads to increased senescence of nucleus pulposus (NP)-derived mesenchymal stem cells (NPMSCs) and the inability to complete the differentiation from NPMSCs to NP cells, leading to further aggravation of IVD degeneration (IDD). Urolithin A (UA) has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.
AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.
METHODS In vitro, we harvested NPMSCs from rat tails, and divided NPMSCs into four groups: the control group, H2O2 group, H2O2 + UA group, and H2O2 + UA + SR-18292 group. Senescence-associated β-Galactosidase (SA-β-Gal) activity, cell cycle, cell proliferation ability, and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α (SIRT1/ PGC-1α) pathway-related proteins and mRNA were used to evaluate the protective effects of UA. In vivo, an animal model of IDD was constructed, and X-rays, magnetic resonance imaging, and histological analysis were used to assess whether UA could alleviate IDD in vivo.
RESULTS We found that H2O2 can cause NPMSCs senescence changes, such as cell cycle arrest, reduced cell proliferation ability, increased SA-β-Gal activity, and increased expression of senescence-related proteins and mRNA. After UA pretreatment, the abovementioned senescence indicators were significantly alleviated. To further demonstrate the mechanism of UA, we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1α pathway that regulates mitochondrial function. UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1α pathway. In vivo, we found that UA treatment alleviated an animal model of IDD by assessing the disc height index, Pfirrmann grade and the histological score.
CONCLUSION In summary, UA could activate the SIRT1/PGC-1α signaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.
Collapse
Affiliation(s)
- Peng-Zhi Shi
- Department of Orthopedic, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Jun-Wu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Ping-Chuan Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Bo Han
- Department of Orthopedic, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xu-Hua Lu
- Department of Orthopedics, Changzheng Hospital of The Second Military Medical University, Shanghai 200003, China
| | - Yong-Xin Ren
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xiao-Fei Cheng
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedics Implants, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
39
|
Zhou M, He SJ, Liu W, Yang MJ, Hou ZY, Meng Q, Qian ZL. EZH2 upregulates the expression of MAPK1 to promote intervertebral disc degeneration via suppression of miR-129-5p. J Gene Med 2021; 24:e3395. [PMID: 34668273 DOI: 10.1002/jgm.3395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was designed to verify whether enhancer of zeste homolog 2 (EZH2) affects intervertebral disc degeneration (IVDD) development through regulation of microRNA (miR)-129-5p/MAPK1. METHODS Initially, we collected lumbar nucleus pulposus (NP) tissue samples from patients with juvenile idiopathic scoliosis (n = 14) and IVDD (n = 34). We measured the expression of related genes in clinical IVDD tissues and a lipopolysaccharide (LPS)-induced NP cell model. After loss- and gain- function assays, NP cell proliferation and senescence were examined. The targeting relationship between miR-129-5p and MAPK1 was explored by dual luciferase reporter gene and RIP assays. The enrichment of EZH2 and H3K27me3 in miR-129-5p promoter was verified by ChIP. Finally, an IVDD rat model was established to test the effects of transduction with lentiviral vector carrying miR-129-5p agomir and/or oe-EZH2 in vivo. RESULTS miR-129-5p was underexpressed, and EZH2 and MAPK1 levels are overexpressed in lumbar nucleus pulposus from human IVDD patients and in LPS-induced NP cells. miR-129-5p overexpression or silencing of MAPK1 promoted proliferation of NP cells, while inhibiting their senescence. EZH2 inhibited miR-129-5p through H3K27me3 modification in the miR-129-5p promoter. miR-129-5p could targeted the downregulation of MAPK1 expression. EZH2 overexpression increased the release of inflammatory factors and cell senescence factors, which was reversed by miR-129-5p agomir in vivo. CONCLUSIONS Taken together, EZH2 inhibits miR-129-5p through H3K27me3 modification, which upregulates MAPK1, thereby promoting the development of IVDD.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China.,Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Shuang-Jun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Danyang, Jiangsu, P. R. China
| | - Wei Liu
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Mao-Jie Yang
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Zhen-Yang Hou
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Qian Meng
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Zhong-Lai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
40
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|