1
|
Zhu F, Yang M, Wang D, Jiang Y, Jia C, Fu Y, Yu A, Liu H, Wang M, Wang T, Liu H, Li J. Spatial distribution of maternal factors in pig mature oocytes. Anim Biotechnol 2024; 35:2394692. [PMID: 39185998 DOI: 10.1080/10495398.2024.2394692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
It is known that asymmetrical maternal transcripts play an important role in the cell fate of the early embryo, but few studies are available in mammal oocytes especially in pig. To investigate the spatial factors in pig oocytes, the oriented bisection was established for collecting karyoplasts (NSOs) and cytoplasts (SSOs) with more than 95% efficiency. Subsequently, RNA-Seq and LC-MS/MS analysis were performed on NSOs and SSOs. Although no differentially expressed genes (DEGs) could be detected between NSOs and SSOs, 89 of the differentially expressed proteins (DEPs) were detected, that 58 proteins higher expressed but 31 proteins lower expressed in NSOs compared with SSOs. These DEPs mainly participated in the 'cell cycle' and 'ribosome' pathway, while the up-regulated DEPs were mainly GO in 'spindle' and 'positive regulation of translation', and the down-regulated DEPs were in 'cytosolic small ribosomal subunit' and 'mRNA binding'. The up-regulated DEP SIRT5 which are related to the regulation of gene expression, epigenetic were further detected and revealed. A spatial asymmetry of maternal factors at the protein level was firstly detected in pig mature oocytes.
Collapse
Affiliation(s)
- Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Chen L, Liang S, Li J, Li Q, Sun Q. Analyzing the impact of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on the reproductive system using network toxicology and molecular docking. Heliyon 2024; 10:e39419. [PMID: 39492895 PMCID: PMC11530895 DOI: 10.1016/j.heliyon.2024.e39419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Growing evidence suggests that perfluorinated compounds (PFCs) contribute to reproductive toxicity, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) being the most extensively studied. These chemicals are known to lower testosterone levels and compromise the integrity of the blood-testis barrier. However, the specific mechanisms of their reproductive toxicity remain largely unknown due to research limitations. In this study, we utilized network pharmacology to pinpoint the core genes and signaling pathways implicated in the reproductive toxicity caused by PFOA and PFOS. Molecular docking was employed to validate the interactions between these compounds and their targets. Key targets identified include CCL2, CXCR4, RPS27A, RPL5, PSMA7, and PSMC1, which are crucial in mediating reproductive toxicity. These genes are primarily involved in the chemokine signaling pathway, viral protein interactions with cytokines and cytokine receptors, and ribosomal functions. This study underscores the effectiveness of combining network toxicology and molecular docking to analyze the toxicity and molecular mechanisms of mixed environmental pollutants.
Collapse
Affiliation(s)
| | | | - Jiaxin Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Qian Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Qingwen Sun
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| |
Collapse
|
3
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Liu WS, Li RM, Le YH, Zhu ZL. Construction of a mitophagy-related prognostic signature for predicting prognosis and tumor microenvironment in lung adenocarcinoma. Heliyon 2024; 10:e35305. [PMID: 39170577 PMCID: PMC11336613 DOI: 10.1016/j.heliyon.2024.e35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mitophagy is the selective degradation of mitochondria by autophagy. It becomes increasingly clear that mitophagy pathways are important for cancer cells to adapt to their high-energy needs. However, which genes associated with mitophagy could be used to prognosis cancer is unknown. Methods We created a clinical prognostic model using mitophagy-related genes (MRGs) in lung adenocarcinoma (LUAD) patients for the first time, and we employed bioinformatics methods to search for biomarkers that affect the progression and prognosis of LUAD. Transcriptome data for LUAD were obtained from The Cancer Genome Atlas (TCGA) database, and additional expression data from LUAD patients were sourced from the Gene Expression Omnibus (GEO) database. Furthermore, 25 complete MRGs were identified based on annotations from the MSigDB database. Results A comparison of the mitophagy scores between the groups with high and low scores was done using receiver operating characteristic (ROC) curves, which also revealed the differential gene expression patterns between the two groups. Using Kaplan-Meier analysis, two prognostic MRGs from the groups with high and low mitophagy scores were identified: TOMM40 and VDAC1. Using univariate and multivariate Cox regression, the relationship between the expression levels of these two genes and prognostic clinical features of LUAD was examined further.The prognosis of LUAD patients was shown to be significantly correlated (P < 0.05) with the expression levels of these two genes. Conclusions Our prognostic model would improve the prognosis of LUAD and guide clinical treatments.
Collapse
Affiliation(s)
- Wu-Sheng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Ru-Mei Li
- Department of Endocrinology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Yong-Hong Le
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Zan-Lei Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| |
Collapse
|
5
|
Lin G, Cai H, Hong Y, Yao M, Ye W, Li W, Liang W, Feng S, Lv Y, Ye H, Cai C, Cai G. Implications of m 5C modifications in ribosomal proteins on oxidative stress, metabolic reprogramming, and immune responses in patients with mid-to-late-stage head and neck squamous cell carcinoma: Insights from nanopore sequencing. Heliyon 2024; 10:e34529. [PMID: 39149042 PMCID: PMC11324834 DOI: 10.1016/j.heliyon.2024.e34529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Background Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignancy characterized by a high incidence and recurrence rate. 5-methylcytosine (m5C) RNA modification is a common alteration affecting cancer progression; however, how m5C operates within the tumor microenvironment of HNSCC remains to be elucidated. Methods We conducted Nanopore sequencing on 3 pairs of cancer and paracancerous tissues from mid- and late-stage HNSCC, obtaining 132 upregulated genes (transcriptomically upregulated, m5C elevated) and 129 downregulated genes (transcriptomically downregulated, m5C reduced). Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed; a differential gene interaction network (PPI) was constructed, revealing the interactions of each gene with others in the network. Co-expression analysis was performed on the genes within the PPI, unveiling their expression and regulatory relationships. Through GSVA analysis, variations in related pathways under different states were identified. Furthermore, results of m5C in lncRNA were screened, followed by target gene prediction. Results Sequencing results from the 3 pairs of mid- and late-stage HNSCC cancer and paracancerous tissues demonstrated that RPS27A, RPL8, and the lncRNAs including differentiation antagonizing nonprotein coding RNA (DANCR), DCST1 antisense RNA 1 (CCDC144NL-AS1), Growth Arrest-Specific Transcript 5 (GAS5), Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), and Small Nucleolar RNA Host Gene 3 (SNHG3), etc., under m5Cregulation, have close connections with surrounding genes. The differentially m5Cmodified genes are primarily involved in ribosomal protein synthesis, oxidative stress response, metabolic reprogramming, immunity, and other life processes; pathways like mitochondrial protein import and photodynamic therapy induced unfolded protein response are upregulated in the tumor, while pathways, including the classic P53, are suppressed. Analysis on m5C-regulated long non-coding RNAs (lncRNAs) revealed tight associations with RPS27A and RPL8 as well. Conclusion Our study identifies the key factors and signaling pathways involving m5C in HNSCC. The findings suggest that ribosome-related genes might regulate ribosomal protein synthesis, oxidative stress response, metabolic reprogramming, and immune response through m5C RNA modification by means like hypoxia and ferroptosis, thereby playing a pivotal role in the onset and progression of HNSCC. Hence, attention should be paid to the role of ribosomes in HNSCC. These findings may facilitate the precision and individualized treatment of patients with mid- and late-stage HNSCC in clinical settings.
Collapse
Affiliation(s)
- Gongbiao Lin
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, China
| | - Haoxi Cai
- School of Stomatology, Ningxia Medical University, China
| | - Yihong Hong
- Community Health Service Center of Xidu Street, Fengxian District, Shanghai, China
| | - Min Yao
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Weiwei Ye
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Wenzhi Li
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Wentao Liang
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Shiqiang Feng
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Yunxia Lv
- Department of Thyroid and Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, China
| | - Hui Ye
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
| | - Chengfu Cai
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
- Department of Clinical Medical, Fujian Medical University, China
| | - Gengming Cai
- Department of Otolaryngology-Head and Neck Surgery, Haicang Hospital of Xiamen, Affiliated Haicang Hospital of Xiamen Medical College, The Sixth Hospital of Xiamen City, China
- Department of Clinical Medical, Fujian Medical University, China
| |
Collapse
|
6
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
7
|
Perera CJ, Hosen SZ, Khan T, Fang H, Mekapogu AR, Xu Z, Falasca M, Chari ST, Wilson JS, Pirola R, Greening DW, Apte MV. Proteomic profiling of small extracellular vesicles derived from mouse pancreatic cancer and stellate cells: Role in pancreatic cancer. Proteomics 2024; 24:e2300067. [PMID: 38570832 DOI: 10.1002/pmic.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers. However, given the pivotal role played by stellate cells (PSCs, which produce the collagenous stroma in PC), it is essential to also assess PSC-sEV cargo in biomarker discovery. Thus, this study aimed to isolate and characterise sEVs from mouse PC cells and PSCs cultured alone or as co-cultures and performed proteomic profiling and pathway analysis. Proteomics confirmed the enrichment of specific markers in the sEVs compared to their cells of origin as well as the proteins that are known to express in each of the culture types. Most importantly, for the first time it was revealed that PSC-sEVs are enriched in proteins (including G6PI, PGAM1, ENO1, ENO3, and LDHA) that mediate pathways related to development of diabetes, such as glucose metabolism and gluconeogenesis revealing a potential role of PSCs in pancreatic cancer-related diabetes (PCRD). PCRD is now considered a harbinger of PC and further research will enable to identify the role of these components in PCRD and may develop as novel candidate biomarkers of PC.
Collapse
Affiliation(s)
- Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Sm Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Tanzila Khan
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Haoyun Fang
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, M. D Anderson Cancer Centre, University of Texas, Houston, Texas, USA
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Ron Pirola
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
8
|
Chen Z, Liu T, Yuan H, Sun H, Liu S, Zhang S, Liu L, Jiang S, Tang Y, Liu Z. Bioinformatics integration reveals key genes associated with mitophagy in myocardial ischemia-reperfusion injury. BMC Cardiovasc Disord 2024; 24:183. [PMID: 38539069 PMCID: PMC10967080 DOI: 10.1186/s12872-024-03834-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 11/14/2024] Open
Abstract
BACKGROUND Myocardial ischemia is a prevalent cardiovascular disorder associated with significant morbidity and mortality. While prompt restoration of blood flow is essential for improving patient outcomes, the subsequent reperfusion process can result in myocardial ischemia-reperfusion injury (MIRI). Mitophagy, a specialized autophagic mechanism, has consistently been implicated in various cardiovascular disorders. However, the specific connection between ischemia-reperfusion and mitophagy remains elusive. This study aims to elucidate and validate central mitophagy-related genes associated with MIRI through comprehensive bioinformatics analysis. METHODS We acquired the microarray expression profile dataset (GSE108940) from the Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) using GEO2R. Subsequently, these DEGs were cross-referenced with the mitophagy database, and differential nucleotide sequence analysis was performed through enrichment analysis. Protein-protein interaction (PPI) network analysis was employed to identify hub genes, followed by clustering of these hub genes using cytoHubba and MCODE within Cytoscape software. Gene set enrichment analysis (GSEA) was conducted on central genes. Additionally, Western blotting, immunofluorescence, and quantitative polymerase chain reaction (qPCR) analyses were conducted to validate the expression patterns of pivotal genes in MIRI rat model and H9C2 cardiomyocytes. RESULTS A total of 2719 DEGs and 61 mitophagy-DEGs were identified, followed by enrichment analyses and the construction of a PPI network. HSP90AA1, RPS27A, EEF2, EIF4A1, EIF2S1, HIF-1α, and BNIP3 emerged as the seven hub genes identified by cytoHubba and MCODE of Cytoscape software. Functional clustering analysis of HIF-1α and BNIP3 yielded a score of 9.647, as determined by Cytoscape (MCODE). In our MIRI rat model, Western blot and immunofluorescence analyses confirmed a significant elevation in the expression of HIF-1α and BNIP3, accompanied by a notable increase in the ratio of LC3II to LC3I. Subsequently, qPCR confirmed a significant upregulation of HIF-1α, BNIP3, and LC3 mRNA in the MIRI group. Activation of the HIF-1α/BNIP3 pathway mediates the regulation of the degree of Mitophagy, thereby effectively reducing apoptosis in rat H9C2 cardiomyocytes. CONCLUSIONS This study has identified seven central genes among mitophagy-related DEGs that may play a pivotal role in MIRI, suggesting a correlation between the HIF-1α/BNIP3 pathway of mitophagy and the pathogenesis of MIRI. The findings highlight the potential importance of mitophagy in MIRI and provide valuable insights into underlying mechanisms and potential therapeutic targets for further exploration in future studies.
Collapse
Affiliation(s)
- Zhian Chen
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Tianying Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Hao Yuan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Han Sun
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Sitong Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuai Zhang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Li Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuang Jiang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Yong Tang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| | - Zhi Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| |
Collapse
|
9
|
Liu A, Chen C, Chen K, Shi Y, Grabowski RC, Qiu X. Effects of parental exposure to amitriptyline on the survival, development, behavior, and gene expression in zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169173. [PMID: 38064809 DOI: 10.1016/j.scitotenv.2023.169173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
In mammals, parental exposure to amitriptyline (AMI) has been proven to contribute to congenital disabilities in their offspring. However, no studies have paid attention to the adverse effects of parental exposure to amitriptyline on fish offspring. In this study, we exposed adult zebrafish (F0) to AMI (0.8 μg/L) for 21 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water for 5 days. The mortality rate, average hatching time, and heart rate at 48 h post-fertilization (hpf) of F1 were investigated. Our results showed that parental exposure to AMI induced tachycardia and increased mortality in F1 zebrafish. Under a light/dark transition test, F1 larvae born from AMI-exposed parents exhibited lower locomotor activity in the dark period and decreased thigmotaxis in the light period. The transcriptome analysis showed that parental AMI exposure dysregulated some key pathways in their offspring. Through the prediction of key driver analysis, six differentially expressed genes (DEGs) were revealed as key driver genes involved in protein processing in endoplasmic reticulum (hspa5, hsp70.1, hsp90a), ribosome (rps27a) and PPAR signaling pathway (pparab and fabp2). Considering that the concentration of AMI residual components in natural water bodies may be over our test concentration (0.8 μg/L), our findings suggested that toxicity of parental exposure to the offspring of fish should receive greater attention.
Collapse
Affiliation(s)
- Anqi Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Robert C Grabowski
- Centre for Water, Environment and Development, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
10
|
Schröder M, Renatus M, Liang X, Meili F, Zoller T, Ferrand S, Gauter F, Li X, Sigoillot F, Gleim S, Stachyra TM, Thomas JR, Begue D, Khoshouei M, Lefeuvre P, Andraos-Rey R, Chung B, Ma R, Pinch B, Hofmann A, Schirle M, Schmiedeberg N, Imbach P, Gorses D, Calkins K, Bauer-Probst B, Maschlej M, Niederst M, Maher R, Henault M, Alford J, Ahrne E, Tordella L, Hollingworth G, Thomä NH, Vulpetti A, Radimerski T, Holzer P, Carbonneau S, Thoma CR. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. Nat Commun 2024; 15:275. [PMID: 38177131 PMCID: PMC10766610 DOI: 10.1038/s41467-023-44237-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.
Collapse
Affiliation(s)
- Martin Schröder
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Ridgeline Discovery, Basel, Switzerland
| | - Xiaoyou Liang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Fabian Meili
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Francois Gauter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Xiaoyan Li
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Scott Gleim
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jason R Thomas
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Damien Begue
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Peggy Lefeuvre
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - BoYee Chung
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Renate Ma
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Benika Pinch
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Andreas Hofmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Patricia Imbach
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Delphine Gorses
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Keith Calkins
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Matt Niederst
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rob Maher
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Martin Henault
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - John Alford
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Erik Ahrne
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Vulpetti
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Ridgeline Discovery, Basel, Switzerland
| | - Philipp Holzer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Seth Carbonneau
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Claudio R Thoma
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
- Ridgeline Discovery, Basel, Switzerland.
| |
Collapse
|
11
|
Pei C, Todorov P, Cao M, Kong Q, Isachenko E, Rahimi G, Mallmann-Gottschalk N, Uribe P, Sanchez R, Isachenko V. Comparative Transcriptomic Analyses for the Optimization of Thawing Regimes during Conventional Cryopreservation of Mature and Immature Human Testicular Tissue. Int J Mol Sci 2023; 25:214. [PMID: 38203385 PMCID: PMC10778995 DOI: 10.3390/ijms25010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cryopreservation of human testicular tissue, as a key element of anticancer therapy, includes the following stages: saturation with cryoprotectants, freezing, thawing, and removal of cryoprotectants. According to the point of view existing in "classical" cryobiology, the thawing mode is the most important consideration in the entire process of cryopreservation of any type of cells, including cells of testicular tissue. The existing postulate in cryobiology states that any frozen types of cells must be thawed as quickly as possible. The technologically maximum possible thawing temperature is 100 °C, which is used in our technology for the cryopreservation of testicular tissue. However, there are other points of view on the rate of cell thawing, according to how thawing should be carried out at physiological temperatures. In fact, there are morphological and functional differences between immature (from prepubertal patients) and mature testicular tissue. Accordingly, the question of the influence of thawing temperature on both types of tissues is relevant. The purpose of this study is to explore the transcriptomic differences of cryopreserved mature and immature testicular tissue subjected to different thawing methods by RNA sequencing. Collected and frozen testicular tissue samples were divided into four groups: quickly (in boiling water at 100 °C) thawed cryopreserved mature testicular tissue (group 1), slowly (by a physiological temperature of 37 °C) thawed mature testicular tissue (group 2), quickly thawed immature testicular tissue (group 3), and slowly thawed immature testicular tissue (group 4). Transcriptomic differences were assessed using differentially expressed genes (DEG), the Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), and protein-protein interaction (PPI) analyses. No fundamental differences in the quality of cells of mature and immature testicular tissue after cryopreservation were found. Generally, thawing of mature and immature testicular tissue was more effective at 100 °C. The greatest difference in the intensity of gene expression was observed in ribosomes of cells thawed at 100 °C in comparison with cells thawed at 37 °C. In conclusion, an elevated speed of thawing is beneficial for frozen testicular tissue.
Collapse
Affiliation(s)
- Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria;
| | - Mengyang Cao
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Qingduo Kong
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
- Medizinisches Versorgungszentrum AMEDES für IVF- und Pränatalmedizin in Köln GmbH, 50968 Cologne, Germany
| | - Nina Mallmann-Gottschalk
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Pamela Uribe
- Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile; (P.U.); (R.S.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
| | - Raul Sanchez
- Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile; (P.U.); (R.S.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| |
Collapse
|
12
|
Huang PY, Chiang CC, Huang CY, Lin PY, Kuo HC, Kuo CH, Hsieh CC. Lunasin ameliorates glucose utilization in C2C12 myotubes and metabolites profile in diet-induced obese mice benefiting metabolic disorders. Life Sci 2023; 333:122180. [PMID: 37848083 DOI: 10.1016/j.lfs.2023.122180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
AIMS Obesity is the main cause of low-grade inflammation and oxidation, resulting in insulin resistance. This study aimed to investigate the effects of a seed peptide lunasin on glucose utilization in C2C12 myotubes and the metabolite profiles in obese mice. MAIN METHODS C2C12 myotubes were challenged by palmitic acid (PA) to mimic the obese microenvironment and inflammation, cell vitality, and glucose utilization were determined. C57BL6/j mice were divided into low-fat diet (LF), high-fat diet (HF), and HF with intraperitoneally injected lunasin (HFL) groups. Glucose intolerance and metabolite profiles of the tissues were analyzed. KEY FINDINGS In vitro, C2C12 myotubes treated with lunasin showed decreased proinflammatory cytokines and increased cell vitality under palmitic acid conditions. Lunasin improved glucose uptake and glucose transporter 4 expression by activating insulin receptor substrate-1 and AKT phosphorylation. Next-generation sequencing revealed that lunasin regulates genes expression by promoting insulin secretion and decreasing oxidative stress. In vivo, HF mice showed increased tricarboxylic acid cycle and uric acid metabolites but decreased bile acids metabolites and specific amino acids. Lunasin intervention improved glucose intolerance and modulated metabolites associated with increased insulin sensitivity and decreased metabolic disorders. SIGNIFICANCE This study is the first to reveal that lunasin is a promising regulator of anti-inflammation, anti-oxidation, and glucose utilization in myotubes and ameliorating glucose uptake and metabolite profiles in obese mice, contributing to glucose homeostasis and benefiting metabolic disorders.
Collapse
Affiliation(s)
- Pei-Ying Huang
- Department of Biochemical Science &Technology, National Taiwan University, Taipei, Taiwan.
| | - Ching-Ching Chiang
- School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Ya Huang
- School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pin-Yu Lin
- School of Life Science, Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chia-Chien Hsieh
- Department of Biochemical Science &Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Shi H, Xie J, Pei S, He D, Hou H, Xu S, Fu Z, Shi X. Digging out the biology properties of tRNA-derived small RNA from black hole. Front Genet 2023; 14:1232325. [PMID: 37953919 PMCID: PMC10637384 DOI: 10.3389/fgene.2023.1232325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.
Collapse
Affiliation(s)
- Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danni He
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Huyang Hou
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Li Z, Bu D, Wang X, Zhu L, Lei D, Tang F, Sun X, Chen C, Ji X, Bai S. Chidamide and Oxaliplatin Synergistically Inhibit Colorectal Cancer Growth by Regulating the RPS27A-MDM2-P53 Axis. Onco Targets Ther 2023; 16:703-721. [PMID: 37667747 PMCID: PMC10475304 DOI: 10.2147/ott.s416824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose The present study explored the anti-tumor effects of chidamide plus oxaliplatin on colorectal cancer (CRC) and examined its underlying mechanism. Material and Methods First, the Combination Index (CI) of chidamide and oxaliplatin was evaluated via CCK-8 assay. Second, the effects of chidamide and oxaliplatin monotherapy and the combined treatment on cell proliferation, invasion, migration, and apoptosis were detected. Third, whole-transcriptome RNA sequencing (RNA-seq) was performed to seek the potential targeted gene by which chidamide plus oxaliplatin exerted anti-tumor effects. Fourth, the validation of the targeted gene and the signal pathway it regulated were performed. Finally, the anti-tumor effect of chidamide plus oxaliplatin on mice xenograft was examined. Results Chidamide and oxaliplatin acted synergistically to inhibit CRC growth in vitro and in vivo (CI<1). Besides, compared with oxaliplatin monotherapy, chidamide could significantly enhance oxaliplatin-induced inhibition in cell proliferation, invasion, and migration, and promotion in HCT-116 and RKO cell apoptosis (P<0.05). The RNA-seq displayed that, compared to oxaliplatin monotherapy, RPS27A mRNA was evidently decreased in HCT-116 cells treated with chidamide plus oxaliplatin (P<0.001). Then, we found RPS27A was highly expressed in CRC tissues and CRC cell lines (P<0.001). Silence of RPS27A attenuated proliferation and induced apoptosis in HCT-116 and RKO cells via downregulation of MDM2 expression and upregulation of P53. Next, RPS27A overexpression could partially reverse chidamide plus oxaliplatin induced growth inhibition and apoptosis in HCT-116 and RKO cells (P<0.01). RPS27A overexpression could promote the upregulation of MDM2 and downregulation of P53 after the combined treatment of chidamide with oxaliplatin. Conclusion Chidamide and oxaliplatin acted synergistically to suppress CRC growth by the inhibition of the RPS27A-MDM2-p53 axis.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Deyong Bu
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xiaobin Wang
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Lin Zhu
- Department of Ultrasound, the Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Daoyan Lei
- Department of Ultrasound, Jiangchuan District People’s Hospital, Yuxi, Yunnan, 652600, People’s Republic of China
| | - Fengling Tang
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xianghua Sun
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Cheng Chen
- Department of Breast Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xiang Ji
- Department of Day Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Song Bai
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| |
Collapse
|
15
|
Lee SO, Kelliher JL, Song W, Tengler K, Sarkar A, Dray E, Leung JWC. UBA80 and UBA52 fine-tune RNF168-dependent histone ubiquitination and DNA repair. J Biol Chem 2023; 299:105043. [PMID: 37451480 PMCID: PMC10413357 DOI: 10.1016/j.jbc.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The ubiquitin signaling pathway is crucial for the DNA damage response pathway. More specifically, RNF168 is integral in regulating DNA repair proteins at damaged chromatin. However, the detailed mechanism by which RNF168 is regulated in cells is not fully understood. Here, we identify the ubiquitin-ribosomal fusion proteins UBA80 (also known as RPS27A) and UBA52 (also known as RPL40) as interacting proteins for H2A/H2AX histones and RNF168. Both UBA80 and UBA52 are recruited to laser-induced micro-irradiation DNA damage sites and are required for DNA repair. Ectopic expression of UBA80 and UBA52 inhibits RNF168-mediated H2A/H2AX ubiquitination at K13/15 and impairs 53BP1 recruitment to DNA lesions. Mechanistically, the C-terminal ribosomal fragments of UBA80 and UBA52, S27A and L40, respectively, limit RNF168-nucleosome engagement by masking the regulatory acidic residues at E143/E144 and the nucleosome acidic patch. Together, our results reveal that UBA80 and UBA52 antagonize the ubiquitination signaling pathway and fine-tune the spatiotemporal regulation of DNA repair proteins at DNA damage sites.
Collapse
Affiliation(s)
- Seong-Ok Lee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jessica L Kelliher
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wan Song
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kyle Tengler
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aradhan Sarkar
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|