1
|
Xue J, Zhuang J, Wang X, Meng T, Wu J, Zhang X, Zhang G. Mechanisms and Therapeutic Strategies for Myocardial Ischemia-Reperfusion Injury in Diabetic States. ACS Pharmacol Transl Sci 2024; 7:3691-3717. [PMID: 39698288 PMCID: PMC11651189 DOI: 10.1021/acsptsci.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
In patients with myocardial infarction, one of the complications that may occur after revascularization is myocardial ischemia-reperfusion injury (IRI), characterized by a depleted myocardial oxygen supply and absence of blood flow recovery after reperfusion, leading to expansion of myocardial infarction, poor healing of myocardial infarction and reversal of left ventricular remodeling, and an increase in the risk for major adverse cardiovascular events such as heart failure, arrhythmia, and cardiac cell death. As a risk factor for cardiovascular disease, diabetes mellitus increases myocardial susceptibility to myocardial IRI through various mechanisms, increases acute myocardial infarction and myocardial IRI incidence, decreases myocardial responsiveness to protective strategies and efficacy of myocardial IRI protective methods, and increases diabetes mellitus mortality through myocardial infarction. This Review summarizes the mechanisms, existing therapeutic strategies, and potential therapeutic targets of myocardial IRI in diabetic states, which has very compelling clinical significance.
Collapse
Affiliation(s)
- Jing Xue
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jialu Zhuang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Xinyue Wang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoqian Zhang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Guiyang Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Tang Q, Liu M, Zhao H, Chen L. Glycogen-binding protein STBD1: Molecule and role in pathophysiology. J Cell Physiol 2023; 238:2010-2025. [PMID: 37435888 DOI: 10.1002/jcp.31078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Starch-binding domain-containing protein 1 (STBD1) is a glycogen-binding protein discovered in skeletal muscle gene differential expression that is pivotal to cellular energy metabolism. Recent studies have indicated that STBD1 is involved in many physiological processes, such as glycophagy, glycogen accumulation, and lipid droplet formation. Moreover, dysregulation of STBD1 causes multiple diseases, including cardiovascular disease, metabolic disease, and even cancer. Deletions and/or mutations in STBD1 promote tumorigenesis. Therefore, STBD1 has garnered considerable interest in the pathology community. In this review, we first summarized the current understanding of STBD1, including its structure, subcellular localization, tissue distribution, and biological functions. Next, we examined the roles and molecular mechanisms of STBD1 in related diseases. Based on available research, we discussed the novel function and future of STBD1, including its potential application as a therapeutic target in glycogen-related diseases. Given the significance of STBD1 in energy metabolism, an in-depth understanding of the protein is crucial for understanding physiological processes and developing therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Qiannan Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hong Zhao
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Crosstalk between Glycogen-Selective Autophagy, Autophagy and Apoptosis as a Road towards Modifier Gene Discovery and New Therapeutic Strategies for Glycogen Storage Diseases. Life (Basel) 2022; 12:life12091396. [PMID: 36143432 PMCID: PMC9504455 DOI: 10.3390/life12091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen storage diseases (GSDs) are rare metabolic monogenic disorders characterized by an excessive accumulation of glycogen in the cell. However, monogenic disorders are not simple regarding genotype–phenotype correlation. Genes outside the major disease-causing locus could have modulatory effect on GSDs, and thus explain the genotype–phenotype inconsistencies observed in these patients. Nowadays, when the sequencing of all clinically relevant genes, whole human exomes, and even whole human genomes is fast, easily available and affordable, we have a scientific obligation to holistically analyze data and draw smarter connections between genotype and phenotype. Recently, the importance of glycogen-selective autophagy for the pathophysiology of disorders of glycogen metabolism have been described. Therefore, in this manuscript, we review the potential role of genes involved in glycogen-selective autophagy as modifiers of GSDs. Given the small number of genes associated with glycogen-selective autophagy, we also include genes, transcription factors, and non-coding RNAs involved in autophagy. A cross-link with apoptosis is addressed. All these genes could be analyzed in GSD patients with unusual discrepancies between genotype and phenotype in order to discover genetic variants potentially modifying their phenotype. The discovery of modifier genes related to glycogen-selective autophagy and autophagy will start a new chapter in understanding of GSDs and enable the usage of autophagy-inducing drugs for the treatment of this group of rare-disease patients.
Collapse
|
4
|
Byrnes K, Blessinger S, Bailey NT, Scaife R, Liu G, Khambu B. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B 2022; 12:33-49. [PMID: 35127371 PMCID: PMC8799888 DOI: 10.1016/j.apsb.2021.07.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ that governs body energy metabolism. Autophagy's role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. Though classically known for selective or bulk degradation of cellular components or energy-dense macromolecules, emerging evidence indicates autophagy selectively regulates various signaling proteins to directly impact the expression levels of metabolic enzymes or their upstream regulators. Hence, we review three specific mechanisms by which autophagy can regulate metabolism: A) nutrient regeneration, B) quality control of organelles, and C) signaling protein regulation. The plasticity of the autophagic function is unraveling a new therapeutic approach. Thus, we will also discuss the potential translation of promising preclinical data on autophagy modulation into therapeutic strategies that can be used in the clinic to treat common metabolic disorders.
Collapse
Key Words
- AIM, Atf8 interacting motif
- ATGL, adipose triglyceride lipase
- ATL3, Atlastin GTPase 3
- ATM, ATM serine/threonine kinase
- Autophagy
- BA, bile acid
- BCL2L13, BCL2 like 13
- BNIP3, BCL2 interacting protein 3
- BNIP3L, BCL2 interacting protein 3 like
- CAR, constitutive androstane receptor
- CCPG1, cell cycle progression 1
- CLN3, lysosomal/endosomal transmembrane protein
- CMA, chaperonin mediated autophagy
- CREB, cAMP response element binding protein
- CRY1, cryptochrome 1
- CYP27A1, sterol 27-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- Cryptochrome 1
- DFCP1, double FYVE-containing protein 1
- FAM134B, family with sequence similarity 134, member B
- FFA, free fatty acid
- FOXO1, Forkhead box O1
- FUNDC1, FUN14 domain containing 1
- FXR, farnesoid X receptor
- Farnesoid X receptor
- GABARAPL1, GABA type A receptor associated protein like 1
- GIM, GABARAP-interacting motif
- LAAT-1, lysosomal amino acid transporter 1 homologue
- LALP70, lysosomal apyrase-like protein of 70 kDa
- LAMP1, lysosomal-associated membrane protein-1
- LAMP2, lysosomal-associated membrane protein-2
- LD, lipid droplet
- LIMP1, lysosomal integral membrane protein-1
- LIMP3, lysosomal integral membrane protein-3
- LIR, LC3 interacting region
- LXRa, liver X receptor a
- LYAAT-1, lysosomal amino acid transporter 1
- Liver metabolism
- Lysosome
- MCOLN1, mucolipin 1
- MFSD1, major facilitator superfamily domain containing 1
- NAFLD, non-alcoholic fatty liver disease
- NBR1, BRCA1 gene 1 protein
- NCoR1, nuclear receptor co-repressor 1
- NDP52, calcium-binding and coiled-coil domain-containing protein 2
- NPC-1, Niemann-Pick disease, type C1
- Nutrient regeneration
- OPTN, optineurin
- PEX5, peroxisomal biogenesis factor 5
- PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase
- PINK1, phosphatase and tensin homolog (PTEN)-induced kinase 1
- PKA, protein kinase A
- PKB, protein kinase B
- PLIN2, perilipin 2
- PLIN3, perilipin 3
- PP2A, protein phosphatase 2a
- PPARα, peroxisomal proliferator-activated receptor-alpha
- PQLC2, PQ-loop protein
- PXR, pregnane X receptor
- Quality control
- RETREG1, reticulophagy regulator 1
- ROS, reactive oxygen species
- RTN3, reticulon 3
- RTNL3, a long isoform of RTN3
- S1PR2, sphingosine-1-phosphate receptor 2
- S6K, P70-S6 kinase
- S6RP, S6 ribosomal protein
- SCARB2, scavenger receptor class B member 2
- SEC62, SEC62 homolog, preprotein translocation factor
- SIRT1, sirtuin 1
- SLC36A1, solute carrier family 36 member 1
- SLC38A7, solute carrier family 38 member 7
- SLC38A9, sodium-coupled neutral amino acid transporter 9
- SNAT7, sodium-coupled neutral amino acid transporter 7
- SPIN, spindling
- SQSTM1, sequestosome 1
- STBD1, starch-binding domain-containing protein 1
- Signaling proteins
- TBK1, serine/threonine-protein kinase
- TEX264, testis expressed 264, ER-phagy receptor
- TFEB/TFE3, transcription factor EB
- TGR5, takeda G protein receptor 5
- TRAC-1, thyroid-hormone-and retinoic acid-receptor associated co-repressor 1
- TRPML1, transient receptor potential mucolipin 1
- ULK1, Unc-51 like autophagy activating kinase 1
- UPR, unfolded protein response
- V-ATPase, vacuolar-ATPase
- VDR, vitamin D3 receptor
- VLDL, very-low-density lipoprotein
- WIPI1, WD repeat domain phosphoinositide-interacting protein 1
- mTORC1, mammalian target of rapamycin complex 1
Collapse
|
5
|
Glycophagy: An emerging target in pathology. Clin Chim Acta 2018; 484:298-303. [DOI: 10.1016/j.cca.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022]
|
6
|
Kolb-Lenz D, Fuchs R, Lohberger B, Heitzer E, Meditz K, Pernitsch D, Pritz E, Groselj-Strele A, Leithner A, Liegl-Atzwanger B, Rinner B. Characterization of the endolysosomal system in human chordoma cell lines: is there a role of lysosomes in chemoresistance of this rare bone tumor? Histochem Cell Biol 2018; 150:83-92. [PMID: 29725750 DOI: 10.1007/s00418-018-1673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Chordoma is a rare tumor of the bone derived from remnants of the notochord with pronounced chemoresistance. A common feature of the notochord and chordoma cells is distinct vacuolization. Recently, the notochord vacuole was described as a lysosome-related organelle. Since lysosomes are considered as mediators of drug resistance in cancer, we were interested whether they may also play a role in chemoresistance of chordoma. We characterized the lysosomal compartment in chordoma cell lines by cytochemistry, electron microscopy (ELMI) and mutational analysis of genes essential for the physiology of lysosomes. Furthermore, we tested for the first time the cytotoxicity of chloroquine, which targets lysosomes, on chordoma. Cytochemical stainings clearly demonstrated a huge mass of lysosomes in chordoma cell lines with perinuclear accumulation. Also vacuoles in chordoma cells were positive for the lysosomal marker LAMP1 but showed no acidic pH. Genetic analysis detected no apparent mutation associated with known lysosomal pathologies suggesting that vacuolization and the huge lysosomal mass of chordoma cell lines is rather a relict of the notochord than a result of transformation. ELMI investigation of chordoma cells confirmed the presence of large vacuoles, lysosomes and autophagosomes with heterogeneous ultrastructure embedded in glycogen. Interestingly, chordoma cells seem to mobilize cellular glycogen stores via autophagy. Our first preclinical data suggested no therapeutically benefit of chloroquine for chordoma. Even though, chordoma cells are crammed with lysosomes which are according to their discoverer de Duve "cellular suicide bags". Destabilizing these "suicide bags" might be a promising strategy for the treatment of chordoma.
Collapse
Affiliation(s)
- Dagmar Kolb-Lenz
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
- Chair of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Robert Fuchs
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010, Graz, Austria.
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Ellen Heitzer
- Diagnostic & Research Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Katharina Meditz
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8010, Graz, Austria
| | - Dominique Pernitsch
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Elisabeth Pritz
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Andrea Groselj-Strele
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic & Research Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8010, Graz, Austria
| |
Collapse
|
7
|
Delbridge LMD, Mellor KM, Taylor DJR, Gottlieb RA. Myocardial autophagic energy stress responses--macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 2015; 308:H1194-204. [PMID: 25747748 DOI: 10.1152/ajpheart.00002.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022]
Abstract
An understanding of the role of autophagic processes in the management of cardiac metabolic stress responses is advancing rapidly and progressing beyond a conceptualization of the autophagosome as a simple cell recycling depot. The importance of autophagy dysregulation in diabetic cardiomyopathy and in ischemic heart disease - both conditions comprising the majority of cardiac disease burden - has now become apparent. New findings have revealed that specific autophagic processes may operate in the cardiomyocyte, specialized for selective recognition and management of mitochondria and glycogen particles in addition to protein macromolecular structures. Thus mitophagy, glycophagy, and macroautophagy regulatory pathways have become the focus of intensive experimental effort, and delineating the signaling pathways involved in these processes offers potential for targeted therapeutic intervention. Chronically elevated macroautophagic activity in the diabetic myocardium is generally observed in association with structural and functional cardiomyopathy; yet there are also numerous reports of detrimental effect of autophagy suppression in diabetes. Autophagy induction has been identified as a key component of protective mechanisms that can be recruited to support the ischemic heart, but in this setting benefit may be mitigated by adverse downstream autophagic consequences. Recent report of glycophagy upregulation in diabetic cardiomyopathy opens up a novel area of investigation. Similarly, a role for glycogen management in ischemia protection through glycophagy initiation is an exciting prospect under investigation.
Collapse
Affiliation(s)
- Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia;
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, New Zealand; and
| | - David J R Taylor
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
8
|
Kalamidas SA, Kondomerkos DJ. Autophagosomal glycogen-degrading activity and its relationship to the general autophagic activity in newborn rat hepatocytes: The effects of parenteral glucose administration. Microsc Res Tech 2009; 73:495-502. [DOI: 10.1002/jemt.20788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Halapas A, Armakolas A, Koutsilieris M. Autophagy: a target for therapeutic interventions in myocardial pathophysiology. Expert Opin Ther Targets 2009; 12:1509-22. [PMID: 19007320 DOI: 10.1517/14728220802555554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Autophagy is a major degradative and highly conserved process in eukaryotic cells that is activated by stress signals. This self-cannibalisation is activated as a response to changing environmental conditions, cellular remodelling during development and differentiation, and maintenance of homeostasis. OBJECTIVE To review autophagy regarding its process, molecular mechanisms and regulation in mammalian cells, and its role in myocardial pathophysiology. RESULTS/CONCLUSION Autophagy is a multistep process regulated by diverse, intracellular and/or extracellular signalling complexes and pathways. In the heart, normally, autophagy occurs at low basal levels, where it represents a homeostatic mechanism for the maintenance of cardiac function and morphology. However, in the diseased heart the functional role of the enhanced autophagy is unclear and studies have yielded conflicting results. Recently, it was shown that during myocardial ischemia autophagy promotes survival by maintaining energy homeostasis. Also, rapamycin was demonstrated to prevent cardiac hypertrophy. In heart failure, upregulation of autophagy acts as an adaptive response that protects cells from hemodynamic stress. In addition, sirolimus-eluting stents have been shown to lower re-stenosis rates in patients with coronary artery disease after angioplasty. Thus, this mechanism can become a major target for therapeutic intervention in heart pathophysiology.
Collapse
Affiliation(s)
- Antonis Halapas
- National and Kapodistrian University of Athens, Medical School, Department of Experimental Physiology, Goudi-Athens, Greece
| | | | | |
Collapse
|
10
|
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006; 202:631-8. [PMID: 16781826 DOI: 10.1016/j.prp.2006.04.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.
Collapse
Affiliation(s)
- O B Kotoulas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | |
Collapse
|
11
|
Abstract
Autophagy is a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles in eukaryotic cells. A large number of intracellular/extracellular stimuli, including amino acid starvation and invasion of microorganisms, are able to induce the autophagic response in cells. The discovery of the ATG genes in yeast has greatly advanced our understanding of the molecular mechanisms participating in autophagy and the genes involved in regulating the autophagic pathway. Many yeast genes have mammalian homologs, suggesting that the basic machinery for autophagy has been evolutionarily conserved along the eukaryotic phylum. The regulation of autophagy is a very complex process. Many signaling pathways, including target of rapamycin (TOR) or mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-I (PI3K-I)/PKB, GTPases, calcium and protein synthesis all play important roles in regulating autophagy. The molecular mechanisms and regulation of autophagy are discussed in this review.
Collapse
Affiliation(s)
- Ya-Ping Yang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, China
| | | | | | | |
Collapse
|
12
|
Kalamidas SA, Kondomerkos DJ, Kotoulas OB, Hann AC. Electron microscopic and biochemical study of the effects of rapamycin on glycogen autophagy in the newborn rat liver. Microsc Res Tech 2004; 63:215-9. [PMID: 14988919 DOI: 10.1002/jemt.20032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of rapamycin on glycogen autophagy in the newborn rat liver were studied using biochemical determinations, electron microscopy, and morphometric analysis. Rapamycin increased the fractional volume of hepatocytic autophagic vacuoles, the liver lysosomal glycogen-hydrolyzing activity of acid glucosidase, the degradation of glycogen inside the autophagic vacuoles, and decreased the activity of acid mannose 6-phosphatase. These findings suggest that rapamycin, a known inhibitor of the mammalian target of rapamycin (mTOR) signaling, induces glycogen autophagy in the newborn rat hepatocytes. mTOR may participate in the regulation of this process.
Collapse
Affiliation(s)
- S A Kalamidas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
13
|
Kondomerkos DJ, Kalamidas SA, Kotoulas OB. An electron microscopic and biochemical study of the effects of glucagon on glycogen autophagy in the liver and heart of newborn rats. Microsc Res Tech 2004; 63:87-93. [PMID: 14722905 DOI: 10.1002/jemt.20000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effects of glucagon on the ultrastructural appearance and acid glucosidase activities in the liver and heart of newborn rats were studied. Liver or heart glycogen-hydrolyzing activity of acid glucosidase increased 3 hours after birth and gradually decreased from 3 to 9 hours. Maltose-hydrolyzing activity of acid glucosidase also rose 3 hours after birth, maintained a plateau between 3 and 6 hours, and fell at 9 hours. The administration of glucagon increased autophagic activity in the hepatocytes at the age of 6 hours. Glycogen inside the autophagic vacuoles was decreased, apparently due to the increased glycogen degradation. Glycogen-hydrolyzing activity was elevated in both the liver and the heart. Maltose-hydrolyzing activity was elevated in the liver, but not in the heart. The results of this study suggest that the glycogen-hydrolyzing and maltose-hydrolyzing activities of acid glucosidase are due to different enzymes. Glucagon's effect on the glycogen-hydrolyzing acid glucosidase activity and autophagosomal morphology is similar in both the liver and the heart.
Collapse
Affiliation(s)
- D J Kondomerkos
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | | | | |
Collapse
|
14
|
Abstract
Glycogen autophagy, which includes the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective process under conditions of demand for the massive hepatic production of glucose, as in the postnatal period. It represents a link between autophagy and glycogen metabolism. The formation of autophagic vacuoles in the hepatocytes of newborn animals is spatially and biochemically related to the degradation of cell glycogen. Many molecular elements and signaling pathways including the cyclic AMP/cyclic AMP-dependent protein kinase and the phosphoinositides/TOR pathways are implicated in the control of this process. These two pathways may converge on the same target to regulate glycogen autophagy.
Collapse
Affiliation(s)
- Othon B Kotoulas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina 451 10, Greece.
| | | | | |
Collapse
|
15
|
Petiot A, Pattingre S, Arico S, Meley D, Codogno P. Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct Funct 2002; 27:431-41. [PMID: 12576636 DOI: 10.1247/csf.27.431] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Macroautophagy is a major lysosomal catabolic process conserved from yeast to human. The formation of autophagic vacuoles is stimulated by a variety of intracellular and extracellular stress situations including amino acid starvation, aggregation of misfolded proteins, and accumulation of damaged organelles. Several signaling pathways control the formation of autophagic vacuoles. As some of them are engaged in the control of protein synthesis or cell survival this suggests that macroautophagy is intimately associated with the execution of cell proliferation and cell death programs. Whether or not these different signaling pathways converge to a unique point to trigger the formation of autophagic vacuole remains an open question.
Collapse
Affiliation(s)
- Anne Petiot
- Department of Biochemistry, University of Geneva, Science II, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|