1
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK, Ali N. Calorie restriction modulates neuro-immune system differently in young and aged rats. Int Immunopharmacol 2021; 100:108141. [PMID: 34536745 DOI: 10.1016/j.intimp.2021.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/02/2023]
Abstract
Aging weakens and deregulates the immune system and plays an impact on the central nervous system (CNS). A crosstalk in between the CNS-mediated immune system and the body's overall innate immunity is often found to increase and subsequently accelerate neurodegeneration and behavioural impairment during aging. Dietary calorie restriction (CR) is found to be a beneficial non-invasive anti-aging therapy as it shows rejuvenation of stress response, brain functions and behaviour during aging. The present investigation deals with the consequence of CR diet supplementation for two different duration (one and two consecutive months) on aging-related alteration of the immune response in male albino Wistar rats at the level of (a) lymphocyte viability, proliferation, cytotoxicity, and DNA fragmentation in blood, spleen, and thymus and (b) cytokines (IL-6, IL-10, and TNF-α) in blood, spleen, thymus and different brain-regions to understand the effect of CR diet on neuroimmune system. The results depict that CR diet consumption for consecutive one and two months by the aged (18 and 24 months) rats significantly attenuated the aging-related (a) decrease of blood, splenic and thymic lymphocyte viability, proliferative activity, cytotoxicity, and IL-10 level and (b) increase of (i) blood, splenic and thymic DNA fragmentation and (ii) IL-6 and TNF-α level in those tissues and also in different brain regions. Unlike older rats, in young (4 months) rats, the consumption of CR diet under similar conditions affected those above-mentioned immune parameters reversibly and adversely. This study concludes that (a) aging significantly (p < 0.01) deregulates the above-mentioned immune parameters, (b) consecutive consumption of CR diet for one and two months is (i) beneficial (p < 0.05) to the aging-related immune system [lymphocyte viability, lymphocyte proliferation, cytotoxicity, pro (IL-6 and TNF-α)- and anti (IL-10)-inflammatory cytokines], but (ii) adverse (p < 0.05) to the immune parameters of the young rats, and (c) consumption of CR diet for consecutive two months is more potent (p < 0.05) than that due to one month.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India; Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700 032, India
| |
Collapse
|
2
|
Mooren FC, Krueger K, Ringseis R, Eder K, Liebisch G, Conrad K, Alack K, Hajizadeh Maleki B. Combined effects of moderate exercise and short-term fasting on markers of immune function in healthy human subjects. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1103-R1115. [PMID: 32401626 DOI: 10.1152/ajpregu.00341.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study aimed to investigate the effects of a short-term (36 h) fasting period combined with an acute bout of exercise on markers of immune function and inflammation in healthy human subjects. Fourteen moderately trained male subjects (aged 19-39 yr) participated in a 36-h fasting trial (FA-T), followed by an acute bout of moderate exercise (60% V̇o2max). After 1 wk, the same subjects, as their own control, participated in a nonfasting trial (NFA-T) in which they performed an exercise trial of the same duration and intensity. Blood samples were taken before, immediately after, and 1 h after each exercise bout and analyzed for several immunological and metabolic markers. At baseline, fasting subjects showed lower levels of T cell apoptosis, lymphocyte-proliferative responses, IL-6, monocyte chemoattractant protein-1 (MCP-1), insulin, and leptin (P < 0.05) as well as higher levels of neutrophil oxidative burst and thiobarbituric acid reactive substances (TBARS) than those in the NFA-T (P < 0.05). After the exercise protocol, fasted subjects revealed higher T cell apoptosis, neutrophil oxidative burst, TBARS, TNFα, and MCP-1 levels as well as lower levels of lymphocyte-proliferative response, IL-6, insulin, and leptin than those in the NFA-T (P < 0.05). Short-term fasting aggravates perturbations in markers of immune function, and inflammation was induced by an acute moderate-intensity exercise protocol.
Collapse
Affiliation(s)
- Frank C Mooren
- Witten/Herdecke University, Faculty of Health/School of Medicine, Witten, Germany
| | - Karsten Krueger
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Regensburg, Germany
| | - Kerstin Conrad
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University, Giessen, Germany
| | - Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University, Giessen, Germany
| | - Behzad Hajizadeh Maleki
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
3
|
Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Front Immunol 2017; 8:1164. [PMID: 28979265 PMCID: PMC5611400 DOI: 10.3389/fimmu.2017.01164] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR) and ad lib fed (AL) mice were examined after a sublethal flu infection. All mice lost 10–20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These exploratory studies highlight the impact of caloric restriction on fecal microbiome in both young and aged animals, as well as the many complex relationships between flu responses and gut microbiota. Thus, these preliminary studies provide the necessary groundwork to examine how gut microbiota alterations may be leveraged to influence declining immune responses with aging.
Collapse
Affiliation(s)
- Jenna M Bartley
- UConn Center on Aging, Farmington, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| | - Xin Zhou
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - George A Kuchel
- UConn Center on Aging, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - George M Weinstock
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Laura Haynes
- UConn Center on Aging, Farmington, CT, United States.,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
4
|
Al-Khalaf HH, Aboussekhra A. Survivin expression increases during aging and enhances the resistance of aged human fibroblasts to genotoxic stress. AGE (DORDRECHT, NETHERLANDS) 2013; 35:549-562. [PMID: 22252435 PMCID: PMC3636406 DOI: 10.1007/s11357-011-9378-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
Survivin, an important anti-apoptotic protein, is highly expressed in most cancers, which generally arise in cells of older individuals. We have shown here accumulation of survivin and phospho-survivin in aged normal human skin fibroblasts and mice organs. This age-related accumulation of survivin was due to protein stabilization through association with the molecular chaperone Hsp90 protein, which was also up-regulated during aging. Interestingly, Hsp90 binds preferentially to phospho-survivin, which explains its higher stability. In addition, we provide clear evidence that aged cells exhibit apoptosis resistance when challenged with UV light, cisplatin, γ-rays or H2O2 as compared to their younger counterparts. In response to γ-rays and H2O2, the levels of Bcl-2 and both forms of survivin were up-regulated in old cells, but not in their corresponding young ones. This repression of survivin and phospho-survivin in young cells is p53 dependent. Importantly, survivin inhibition/down-regulation with flavopiridol or specific shRNAs increased the apoptotic response of old fibroblasts to various genotoxic agents, and restored the pro-apoptotic Bax/Bcl2 ratio and the increase in the levels of cleaved caspase-3 and PARP in old cells. These results show the role of survivin in the age-dependent resistance of human fibroblasts, and provide new insights into the molecular mechanisms that underlie the complex relationship between aging, apoptosis, and cancer.
Collapse
Affiliation(s)
- Huda H. Al-Khalaf
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, MBC #03-66, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, MBC #03-66, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
5
|
Nagano K, Suzaki E, Nagano Y, Kataoka K, Ozawa K. The activation of apoptosis factor in hindlimb unloading-induced muscle atrophy under normal and low-temperature environmental conditions. Acta Histochem 2008; 110:505-18. [PMID: 18420259 DOI: 10.1016/j.acthis.2007.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 11/26/2007] [Accepted: 12/04/2007] [Indexed: 01/13/2023]
Abstract
In order to identify the apoptosis-induced factors and apoptosis pathway in hindlimb unloading muscle atrophy, the reciprocal relationships between caspase-3 activation and factors related to mitochondria, other organelle pathways, oxidative stress and nitric oxide were investigated. Male Wistar rats were divided into four groups, two groups of hindlimb-unloaded rats were maintained under normal (25 degrees C) and low-temperature (10 degrees C) environmental conditions for a 3-week experimental period, plus two corresponding control groups. Active caspase-3-containing myofibers were observed in the hindlimb-unloaded rats in normal and low-temperature environments, but not in the control rats. In these caspase-3-containing fibers, DNA fragmentation, dystrophin breakdown, increased immunolabeling of mu-calpain, decreased cytochrome c, cathepsin-D effusion from the lysosomes and increased lipid peroxidation were observed, while no changes in active caspase-12, eNOS or nNOS immunolabeling were seen. Furthermore, although caspase-3 activation was observed in type-I fibers, caspase-12 labeling was observed in fibers of the hybrid type. These results show that the apoptosis observed in hindlimb unloading-induced muscle atrophy is caused by activation of the caspase cascade via the lysosome pathway. Moreover, the results suggest that caspase-12 does not activate caspase-3 due to differences in the cell differentiation or the apoptosis-inducing stimulation.
Collapse
Affiliation(s)
- Katsuhito Nagano
- Division of Clinical Pharmacotherapeutics, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima University, Japan.
| | | | | | | | | |
Collapse
|
6
|
Nikolich-Zugich J, Messaoudi I. Mice and flies and monkeys too: caloric restriction rejuvenates the aging immune system of non-human primates. Exp Gerontol 2005; 40:884-93. [PMID: 16087306 DOI: 10.1016/j.exger.2005.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 11/21/2022]
Abstract
Humanity has been obsessed with extending life span and reversing the aging process throughout recorded history and this quest most likely preceded the invention of the written word. The search for eternal youth has spurred holy wars and precipitated the discovery of the new world (the 'Fountain of youth'). It therefore comes as no surprise that an increasingly greater amount of research effort is dedicated to improve our understanding of the aging process and finding interventions to moderate its impact on health. Caloric restriction (CR) is the only intervention in biology that consistently extends maximal and median life span in a variety of short-lived species. Several theories to explain the mechanisms of action of CR have been put forth, including the possibility that CR acts by retarding immune senescence. The question remains, however, whether CR will have the same beneficial impact on human aging, and, if so, how long does CR need to last to produce beneficial effects. To address this question, several groups initiated long-term studies in Rhesus macaques (RM) in the 1980s. Here, we review published data describing the impact of CR on the aging immune system of mice and primates, and discuss our unpublished data that delineate similarities and differences in the effects of CR upon T cell aging and homeostasis between these two models.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | |
Collapse
|
7
|
Switzer KC, McMurray DN, Chapkin RS. Effects of dietary n-3 polyunsaturated fatty acids on T-cell membrane composition and function. Lipids 2005; 39:1163-70. [PMID: 15736911 DOI: 10.1007/s11745-004-1343-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dietary n-3 PUFA have been shown to attenuate T-cell-mediated inflammation, in part, by suppressing T-cell activation and proliferation. n-3 PUFA have also been shown to promote apoptosis, another important mechanism for the prevention of chronic inflammation by maintaining T-cell homeostasis through the contraction of populations of activated T cells. Recent studies have specifically examined Fas death receptor-mediated activation-induced cell death (AICD), since it is the form of apoptosis associated with peripheral T-cell deletion involved in immunological tolerance and T-cell homeostasis. Data from our laboratory indicate that n-3 PUFA promote AICD in T helper 1 polarized cells, which are the mediators of chronic inflammation. Since Fas and components of the death-inducing signaling complex are recruited to plasma membrane microdomains (rafts), the effect of dietary n-3 PUFA on raft composition and resident protein localization has been the focus of recent investigations. Indeed, there is now compelling evidence that dietary n-3 PUFA are capable of modifying the composition of T-cell membrane microdomains (rafts). Because the lipids found in membrane microdomains actively participate in signal transduction pathways, these results support the hypothesis that dietary n-3 PUFA influence signaling complexes and modulate T-cell cytokinetics in vivo by altering T-cell raft composition.
Collapse
Affiliation(s)
- Kirsten C Switzer
- Molecular and Cell Biology Section, Faculty of Nutrition, Texas A&M University Health Science Center, College Station, Texas 77843-2471, USA
| | | | | |
Collapse
|
8
|
Turnbull IR, Buchman TG, Javadi P, Woolsey CA, Hotchkiss RS, Karl IE, Coopersmith CM. Age disproportionately increases sepsis-induced apoptosis in the spleen and gut epithelium. Shock 2005; 22:364-8. [PMID: 15377893 DOI: 10.1097/01.shk.0000142552.77473.7d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both aging and sepsis independently increase splenic and gut epithelial apoptosis. Sepsis-induced apoptosis in either cell type is also associated with increased mortality in young mice. We sought to determine whether age alters sepsis-induced splenic and gut epithelial cell death. Young (2 months) and aged (22 months) male ND4 mice were subjected to either single-puncture cecal ligation and puncture (CLP) with a 23-gauge needle or sham laparotomy. Apoptosis was assessed 24 hours later in the spleen and gut epithelium by active caspase 3 and hematoxylin and eosin staining. Aged septic mice had increased splenic apoptosis compared with either young septic animals or aged sham animals (15 vs. 7 vs. 5 apoptotic cells/high-powered field, P < 0.05). Similarly, aged septic animals had an elevation in gut epithelial cell death compared with either young septic or aged sham mice (33 vs. 16 vs. 6 apoptotic cells/100 contiguous crypts, P < 0.05). Elevated intestinal cell death was not associated with changes in either gut proliferation or cell division. To verify that the increase in splenic apoptosis seen in septic aged animals was not strain specific, double-puncture CLP with a 25-gauge needle or sham laparotomy was performed on young (4 months) or aged (24 months) C57BL/6 male mice. Similar to results seen in outbred animals, aged septic animals in this inbred strain had increased splenic apoptosis compared with either young septic animals or aged sham animals (23 vs. 7 vs. 4 apoptotic cells/ high powered field, P < 0.05). These results indicate that although infection and aging each independently cause an increase in splenic and gut epithelial apoptosis, their combination leads to a disproportionate increase in cell death in these rapidly dividing cell populations,and potentially plays a role in the marked increase in mortality seen with aging in sepsis.
Collapse
Affiliation(s)
- Isaiah R Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Dietary restriction is beneficial in preventing a multitude of diseases, many of which may involve the immune system in their etiology. Recent reports examining dietary restriction focused on T lymphocytes and macrophages. Dietary restriction delays the onset of T-lymphocyte-dependent autoimmune disease; this may be attributed to improved antioxidant defense mechanisms, blunting shifts in T-lymphocyte subset proportions and preventing DNA mutation frequencies. The beneficial effects of dietary restriction were shown in both the CD4 and CD8 T-lymphocyte subsets as well as in various immune compartments such as the spleen, mesenteric lymph nodes, peripheral blood, thymus, and salivary glands. In contrast, dietary restriction may have negative effects on macrophage function because recent evidence showed that dietary restriction rendered mice more susceptible to peritonitis and stimulated macrophages produced lower amounts of cytokines. The application of dietary restriction regimens to humans would be difficult; however, understanding the biochemical and molecular targets of dietary restriction in the immune system may lead to the development of new dietary strategies to delay or prevent the onset of aging, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Christopher A Jolly
- Division of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Vasconcelos ZFM, Santos BM, Costa ES, Lima M, Tabak DG, Bouzas LF, Azevedo WM, Barcinski MA, Bonomo A. T-lymphocyte function from peripheral blood stem-cell donors is inhibited by activated granulocytes. Cytotherapy 2004; 5:336-45. [PMID: 12944240 DOI: 10.1080/14653240310002252] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND PBSC transplant provides 10 times more T cells than BMT However, the incidence and severity of acute GvHD is similar among recipients of both types of transplants. Studies in mouse models suggest that the similar clinical outcome in BMT and PBSCT is due to differences in the lymphokine profiles. METHODS PBMC, PBMC from G-CSF mobilized donors (G-PBMC)and BM mononuclear cells (BM-MC) were analyzed by flow cytometry and ELISA to detect gamma-IFN and IL-4 production. Hematoxylin and eosin staining was used to identify morphology and annexin/propidium-iodide was used for apoptosis assays. RESULTS We show decreased production of gamma-interferon (85%) and IL-4 (60%) in G-PBMC when compared with either PBMC or BM-MCT cells on ex vivo assays. Surprisingly, 85% of fresh G-PBMC is composed of low-density granulocytes (LDG), which undergo apoptosis after 48 h in culture. At this same time, gamma-IFN production from G-PBMC T cell was reverted. In vitro, G-CSF converts granulocytes into LDGs, able to inhibit T-cell function by H2O2 production, and not through immune-deviation towards a Th2-type phenotype. DISCUSSION We show that the estimated numbers of Th1 and Th2 cells infused in BMT and PBSCT do not differ significantly. These findings are discussed with reference to the relatively low incidence of acute GvHD in PBSCT shown in the literature. We suggest that these results might depend on the high number of granulocytes and progenitors infused. The potential use of granulocytes as immunosupressive short-term therapy is now being investigated by our group using a mouse experimental model.
Collapse
Affiliation(s)
- Z F M Vasconcelos
- Centro Nacional de Transplante de Medula Osea, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Anti-aging medicine literaturewatch. JOURNAL OF ANTI-AGING MEDICINE 2003; 6:45-64. [PMID: 12971397 DOI: 10.1089/109454503765361588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|