1
|
Harzsch S, Dircksen H, Hansson BS. Local olfactory interneurons provide the basis for neurochemical regionalization of olfactory glomeruli in crustaceans. J Comp Neurol 2021; 530:1399-1422. [PMID: 34843626 DOI: 10.1002/cne.25283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
The primary olfactory centers of metazoans as diverse as arthropods and mammals consist of an array of fields of dense synaptic neuropil, the olfactory glomeruli. However, the neurochemical structure of crustacean olfactory glomeruli is largely understudied when compared to the insects. We analyzed the glomerular architecture in selected species of hermit crabs using immunohistochemistry against presynaptic proteins, the neuropeptides orcokinin, RFamide and allatostatin, and the biogenic amine serotonin. Our study reveals an unexpected level of structural complexity, unmatched by what is found in the insect olfactory glomeruli. Peptidergic and aminergic interneurons provide the structural basis for a regionalization of the crustacean glomeruli into longitudinal and concentric compartments. Our data suggest that local olfactory interneurons take a central computational role in modulating the information transfer from olfactory sensory neurons to projection neurons within the glomeruli. Furthermore, we found yet unknown neuronal elements mediating lateral inhibitory interactions across the glomerular array that may play a central role in modulating the transfer of sensory input to the output neurons through presynaptic inhibition. Our study is another step in understanding the function of crustacean olfactory glomeruli as highly complex units of local olfactory processing.
Collapse
Affiliation(s)
- Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | | | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
2
|
Kotsyuba E, Dyachuk V. Localization of neurons expressing choline acetyltransferase, serotonin and/or FMRFamide in the central nervous system of the decapod shore crab Hemigrapsus sanguineus. Cell Tissue Res 2020; 383:959-977. [PMID: 33237479 DOI: 10.1007/s00441-020-03309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Although it is now established that neurons in crustacea contain multiple transmitter substances, little is know about patterns of expression and co-expression or about the functional effects of such co-transmission. The present study was designed to characterize the distributions and potential colocalization of choline acetyltransferase (ChAT), serotonin (5-HT) and neuropeptide H-Phe-Met-Arg-Phe-NH2 (FMRFamide) in the central nervous system (CNS) of the Asian shore crab, Hemigrapsus sanguineus using immunohistochemical analyses in combination with laser scanning confocal microscopy. ChAT was found to be expressed by small, medium-sized, and large neurons in all regions of the brain and ventral nerve cord (VNC). For the most part, ChAT, FMRFamide, and 5-HT are expressed in different neurons, although some colocalization of ChAT- with FMRFamide- or 5-HT-LIR is observed in small and medium-sized cells, mostly neurons that immunostain only weakly. In the brain, such double immunolabeling is observed primarily in neurons of the protocerebrum and, to a particularly great extent, in local olfactory interneurons of the deutocerebrum. The clusters of neurons in the VNC that stain most intensely for ChAT, FMRFamide, and 5-HT, with colocalization in some cases, are located in the subesophageal ganglia. This colocalization appears to be related to function, since it is present in regions of the CNS characterized by multiple afferent projections and outputs to a variety of functionally related centers involved in various physiological and behavioral processes. Further elucidation of the functional significance of these neurons and of the widespread process of co-transmission in the crustaceans should provide fascinating new insights.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
| |
Collapse
|
3
|
Tran NM, Mykles DL, Elizur A, Ventura T. Characterization of G-protein coupled receptors from the blackback land crab Gecarcinus lateralis Y organ transcriptome over the molt cycle. BMC Genomics 2019; 20:74. [PMID: 30669976 PMCID: PMC6341585 DOI: 10.1186/s12864-018-5363-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND G-protein coupled receptors (GPCRs) are ancient, ubiquitous, constitute the largest family of transducing cell surface proteins, and are integral to cell communication via an array of ligands/neuropeptides. Molt inhibiting hormone (MIH) is a key neuropeptide that controls growth and reproduction in crustaceans by regulating the molt cycle. It inhibits ecdysone biosynthesis by a pair of endocrine glands (Y-organs; YOs) through binding a yet uncharacterized GPCR, which triggers a signalling cascade, leading to inhibition of the ecdysis sequence. When MIH release stops, ecdysone is synthesized and released to the hemolymph. A peak in ecdysone titer is followed by a molting event. A transcriptome of the blackback land crab Gecarcinus lateralis YOs across molt was utilized in this study to curate the list of GPCRs and their expression in order to better assess which GPCRs are involved in the molt process. RESULTS Ninety-nine G. lateralis putative GPCRs were obtained by screening the YO transcriptome against the Pfam database. Phylogenetic analysis classified 49 as class A (Rhodopsin-like receptor), 35 as class B (Secretin receptor), and 9 as class C (metabotropic glutamate). Further phylogenetic analysis of class A GPCRs identified neuropeptide GPCRs, including those for Allatostatin A, Allatostatin B, Bursicon, CCHamide, FMRFamide, Proctolin, Corazonin, Relaxin, and the biogenic amine Serotonin. Three GPCRs clustered with recently identified putative CHH receptors (CHHRs), and differential expression over the molt cycle suggests that they are associated with ecdysteroidogenesis regulation. Two putative Corazonin receptors showed much higher expression in the YOs compared with all other GPCRs, suggesting an important role in molt regulation. CONCLUSIONS Molting requires an orchestrated regulation of YO ecdysteroid synthesis by multiple neuropeptides. In this study, we curated a comprehensive list of GPCRs expressed in the YO and followed their expression across the molt cycle. Three putative CHH receptors were identified and could include an MIH receptor whose activation negatively regulates molting. Orthologs of receptors that were found to be involved in molt regulation in insects were also identified, including LGR3 and Corazonin receptor, the latter of which was expressed at much higher level than all other receptors, suggesting a key role in YO regulation.
Collapse
Affiliation(s)
- Nhut M Tran
- GeneCology Research Centre, School of Science and Engineering University of the Sunshine Coast, Queensland, 4556, Australia
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Abigail Elizur
- GeneCology Research Centre, School of Science and Engineering University of the Sunshine Coast, Queensland, 4556, Australia
| | - Tomer Ventura
- GeneCology Research Centre, School of Science and Engineering University of the Sunshine Coast, Queensland, 4556, Australia.
| |
Collapse
|
4
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
5
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
6
|
Fabian-Fine R, Anderson CM, Roush MA, Johnson JAG, Liu H, French AS, Torkkeli PH. The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei. Cell Tissue Res 2017; 370:71-88. [PMID: 28687927 DOI: 10.1007/s00441-017-2652-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
The spider Cupiennius salei is a well-established model for investigating information processing in arthropod sensory systems. Immunohistochemistry has shown that several neurotransmitters exist in the C. salei nervous system, including GABA, glutamate, histamine, octopamine and FMRFamide, while electrophysiology has found functional roles for some of these transmitters. There is also evidence that acetylcholine (ACh) is present in some C. salei neurons but information about the distribution of cholinergic neurons in spider nervous systems is limited. Here, we identify C. salei genes that encode enzymes essential for cholinergic transmission: choline ACh transferase (ChAT) and vesicular ACh transporter (VAChT). We used in-situ hybridization with an mRNA probe for C. salei ChAT gene to locate somata of cholinergic neurons in the central nervous system and immunohistochemistry with antisera against ChAT and VAChT to locate these proteins in cholinergic neurons. All three markers labeled similar, mostly small neurons, plus a few mid-sized neurons, in most ganglia. In the subesophageal ganglia, labeled neurons are putative efferent, motor or interneurons but the largest motor and interneurons were unlabeled. Groups of anti-ChAT labeled small neurons also connect the optic neuropils in the spider protocerebrum. Differences in individual cell labeling intensities were common, suggesting a range of ACh expression levels. Double-labeling found a subpopulation of anti-VAChT-labeled central and mechanosensory neurons that were also immunoreactive to antiserum against FMRFamide-like peptides. Our findings suggest that ACh is an important neurotransmitter in the C. salei central and peripheral nervous systems.
Collapse
Affiliation(s)
- Ruth Fabian-Fine
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA.
| | - Carly M Anderson
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA
| | - Molly A Roush
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA
| | - Jessica A G Johnson
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
7
|
Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input? Cell Tissue Res 2017; 369:255-271. [PMID: 28389816 DOI: 10.1007/s00441-017-2607-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/20/2017] [Indexed: 10/19/2022]
Abstract
Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the "Pacific White Shrimp" and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods ("ground-dwelling decapods"), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.
Collapse
|
8
|
Martin C, Gross V, Pflüger HJ, Stevenson PA, Mayer G. Assessing segmental versus non-segmental features in the ventral nervous system of onychophorans (velvet worms). BMC Evol Biol 2017; 17:3. [PMID: 28049417 PMCID: PMC5209844 DOI: 10.1186/s12862-016-0853-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 11/12/2022] Open
Abstract
Background Due to their phylogenetic position as one of the closest arthropod relatives, studies of the organisation of the nervous system in onychophorans play a key role for understanding the evolution of body segmentation in arthropods. Previous studies revealed that, in contrast to the arthropods, segmentally repeated ganglia are not present within the onychophoran ventral nerve cords, suggesting that segmentation is either reduced or might be incomplete in the onychophoran ventral nervous system. Results To assess segmental versus non-segmental features in the ventral nervous system of onychophorans, we screened the nerve cords for various markers, including synapsin, serotonin, gamma-aminobutyric acid, RFamide, dopamine, tyramine and octopamine. In addition, we performed retrograde fills of serially repeated commissures and leg nerves to localise the position of neuronal somata supplying those. Our data revealed a mixture of segmental and non-segmental elements within the onychophoran nervous system. Conclusions We suggest that the segmental ganglia of arthropods evolved by a gradual condensation of subsets of neurons either in the arthropod or the arthropod-tardigrade lineage. These findings are in line with the hypothesis of gradual evolution of segmentation in panarthropods and thus contradict a loss of ancestral segmentation within the onychophoran lineage. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0853-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany.
| | - Vladimir Gross
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
| | - Hans-Joachim Pflüger
- Institute of Biology, Neurobiology, Free University of Berlin, Königin-Luise-Str. 28-30, D-14195, Berlin, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, Talstraße 33, D-04103, Leipzig, Germany
| | - Georg Mayer
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
| |
Collapse
|
9
|
Buckley SJ, Fitzgibbon QP, Smith GG, Ventura T. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. Gen Comp Endocrinol 2016; 228:111-127. [PMID: 26850661 DOI: 10.1016/j.ygcen.2016.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations.
Collapse
Affiliation(s)
- Sean J Buckley
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Quinn P Fitzgibbon
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory G Smith
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
10
|
Krieger J, Braun P, Rivera NT, Schubart CD, Müller CH, Harzsch S. Comparative analyses of olfactory systems in terrestrial crabs (Brachyura): evidence for aerial olfaction? PeerJ 2015; 3:e1433. [PMID: 26713228 PMCID: PMC4690415 DOI: 10.7717/peerj.1433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Adaptations to a terrestrial lifestyle occurred convergently multiple times during the evolution of the arthropods. This holds also true for the "true crabs" (Brachyura), a taxon that includes several lineages that invaded land independently. During an evolutionary transition from sea to land, animals have to develop a variety of physiological and anatomical adaptations to a terrestrial life style related to respiration, reproduction, development, circulation, ion and water balance. In addition, sensory systems that function in air instead of in water are essential for an animal's life on land. Besides vision and mechanosensory systems, on land, the chemical senses have to be modified substantially in comparison to their function in water. Among arthropods, insects are the most successful ones to evolve aerial olfaction. Various aspects of terrestrial adaptation have also been analyzed in those crustacean lineages that evolved terrestrial representatives including the taxa Anomala, Brachyura, Amphipoda, and Isopoda. We are interested in how the chemical senses of terrestrial crustaceans are modified to function in air. Therefore, in this study, we analyzed the brains and more specifically the structure of the olfactory system of representatives of brachyuran crabs that display different degrees of terrestriality, from exclusively marine to mainly terrestrial. The methods we used included immunohistochemistry, detection of autofluorescence- and confocal microscopy, as well as three-dimensional reconstruction and morphometry. Our comparative approach shows that both the peripheral and central olfactory pathways are reduced in terrestrial members in comparison to their marine relatives, suggesting a limited function of their olfactory system on land. We conclude that for arthropod lineages that invaded land, evolving aerial olfaction is no trivial task.
Collapse
Affiliation(s)
- Jakob Krieger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Philipp Braun
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Nicole T. Rivera
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Christoph D. Schubart
- Institute for Zoology, Department of Zoology & Evolution, Universität Regensburg, Regensburg, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, Department of General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Zhang Y, Buchberger A, Muthuvel G, Li L. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress. Proteomics 2015; 15:3969-79. [PMID: 26475201 DOI: 10.1002/pmic.201500256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023]
Abstract
Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides.
Collapse
Affiliation(s)
- Yuzhuo Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Dickinson PS, Calkins A, Stevens JS. Related neuropeptides use different balances of unitary mechanisms to modulate the cardiac neuromuscular system in the American lobster, Homarus americanus. J Neurophysiol 2014; 113:856-70. [PMID: 25392168 DOI: 10.1152/jn.00585.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To produce flexible outputs, neural networks controlling rhythmic motor behaviors can be modulated at multiple levels, including the pattern generator itself, sensory feedback, and the response of the muscle to a given pattern of motor output. We examined the role of two related neuropeptides, GYSDRNYLRFamide (GYS) and SGRNFLRFamide (SGRN), in modulating the neurogenic lobster heartbeat, which is controlled by the cardiac ganglion (CG). When perfused though an isolated whole heart at low concentrations, both peptides elicited increases in contraction amplitude and frequency. At higher concentrations, both peptides continued to elicit increases in contraction amplitude, but GYS caused a decrease in contraction frequency, while SGRN did not alter frequency. To determine the sites at which these peptides induce their effects, we examined the effects of the peptides on the periphery and on the isolated CG. When we removed the CG and stimulated the motor nerve with constant bursts of stimuli, both GYS and SGRN increased contraction amplitude, indicating that each peptide modulates the muscle or the neuromuscular junction. When applied to the isolated CG, neither peptide altered burst frequency at low peptide concentrations; at higher concentrations, SGRN decreased burst frequency, whereas GYS continued to have no effect on frequency. Together, these data suggest that the two peptides elicit some of their effects using different mechanisms; in particular, given the known feedback pathways within this system, the importance of the negative (nitric oxide) relative to the positive (stretch) feedback pathways may differ in the presence of the two peptides.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology and Neuroscience Program, Bowdoin College, Brunswick, Maine
| | - Andrew Calkins
- Department of Biology and Neuroscience Program, Bowdoin College, Brunswick, Maine
| | - Jake S Stevens
- Department of Biology and Neuroscience Program, Bowdoin College, Brunswick, Maine
| |
Collapse
|
13
|
Chen R, Xiao M, Buchberger A, Li L. Quantitative neuropeptidomics study of the effects of temperature change in the crab Cancer borealis. J Proteome Res 2014; 13:5767-76. [PMID: 25214466 PMCID: PMC4261957 DOI: 10.1021/pr500742q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Temperature changes influence the
reaction rates of all biological
processes, which can pose dramatic challenges to cold-blooded organisms,
and the capability to adapt to temperature fluctuations is crucial
for the survival of these animals. In order to understand the roles
that neuropeptides play in the temperature stress response, we employed
a mass spectrometry-based approach to investigate the neuropeptide
changes associated with acute temperature elevation in three neural
tissues from the Jonah crab Cancer borealis. At high temperature, members from two neuropeptide families, including
RFamide and RYamide, were observed to be significantly reduced in
one of the neuroendocrine structures, the pericardial organ, while
several orcokinin peptides were detected to be decreased in another
major neuroendocrine organ, the sinus gland. These results implicate
that the observed neuropeptides may be involved with temperature perturbation
response via hormonal regulation. Furthermore, a temperature stress
marker peptide with the primary sequence of SFRRMGGKAQ (m/z 1137.7) was detected and de novo sequenced in
the circulating fluid (hemolymph) from animals under thermal perturbation.
Collapse
Affiliation(s)
- Ruibing Chen
- Research Center of Basic Medical Sciences, Tianjin Medical University , Tianjin 300070, China
| | | | | | | |
Collapse
|
14
|
Zatylny-Gaudin C, Favrel P. Diversity of the RFamide Peptide Family in Mollusks. Front Endocrinol (Lausanne) 2014; 5:178. [PMID: 25386166 PMCID: PMC4208409 DOI: 10.3389/fendo.2014.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/06/2014] [Indexed: 01/25/2023] Open
Abstract
Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) have been identified in mollusks. FLPs were initially isolated and molecularly characterized in model mollusks using biochemical methods. The development of recombinant technologies and, more recently, of genomics has boosted knowledge on their diversity in various mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide peptides that appear to result from the expression of only five genes: the FMRFamide-related peptide gene, the LFRFamide gene, the luqin gene, the neuropeptide F gene, and the cholecystokinin/sulfakinin gene. FLPs display a complex spatiotemporal pattern of expression in the central and peripheral nervous system. Working as neurotransmitters, neuromodulators, or neurohormones, FLPs are involved in the control of a great variety of biological and physiological processes including cardiovascular regulation, osmoregulation, reproduction, digestion, and feeding behavior. From an evolutionary viewpoint, the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling pathways by characterizing the specific receptors these peptides bind remains another exciting objective.
Collapse
Affiliation(s)
- Celine Zatylny-Gaudin
- Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France
- Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France
- Université Pierre et Marie Curie, BOREA, Paris, France
- UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France
- IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France
| | - Pascal Favrel
- Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA), Caen, France
- Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA, Paris, France
- Université Pierre et Marie Curie, BOREA, Paris, France
- UMR 7208 Centre National de la Recherche Scientifique, BOREA, Paris, France
- IRD 207, L’Institut de recherche pour le développement, BOREA, Paris, France
- *Correspondence: Pascal Favrel, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, Caen Cedex 5 14032, France e-mail:
| |
Collapse
|
15
|
Wiwatpanit T, Powers B, Dickinson PS. Inter-animal variability in the effects of C-type allatostatin on the cardiac neuromuscular system in the lobster Homarus americanus. ACTA ACUST UNITED AC 2012; 215:2308-18. [PMID: 22675192 DOI: 10.1242/jeb.069989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the global effects of many modulators on pattern generators are relatively consistent among preparations, modulators can induce different alterations in different preparations. We examined the mechanisms that underlie such variability in the modulatory effects of the peptide C-type allatostatin (C-AST; pQIRYHQCYFNPISCF) on the cardiac neuromuscular system of the lobster Homarus americanus. Perfusion of C-AST through the semi-intact heart consistently decreased the frequency of ongoing contractions. However, the effect of C-AST on contraction amplitude varied between preparations, decreasing in some preparations and increasing in others. To investigate this variable effect, we examined the effects of C-AST both peripherally and centrally. When contractions of the myocardium were elicited by controlled stimuli, C-AST did not alter heart contraction at the periphery (myocardium or neuromuscular junction) in any hearts. However, when applied either to the semi-intact heart or to the cardiac ganglion (CG) isolated from hearts that responded to C-AST with increased contraction force, C-AST increased both motor neuron burst duration and the number of spikes per burst by about 25%. In contrast, CG output was increased only marginally in hearts that responded to C-AST with a decrease in contraction amplitude, suggesting that the decrease in amplitude in those preparations resulted from decreased peripheral facilitation. Our data suggest that the differential effects of a single peptide on the cardiac neuromuscular system are due solely to differential effects of the peptide on the pattern generator; the extent to which the peptide induces increased burst duration is crucial in determining its overall effect on the system.
Collapse
Affiliation(s)
- Teerawat Wiwatpanit
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | |
Collapse
|
16
|
Polanska MA, Tuchina O, Agricola H, Hansson BS, Harzsch S. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Mol Brain 2012; 5:29. [PMID: 22967845 PMCID: PMC3523048 DOI: 10.1186/1756-6606-5-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal's first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins) integrate into this system, a large family of neuropeptides that share the C-terminal motif -YXFGLamide. RESULTS We used an antiserum that was raised against the A-type Diploptera punctata (Dip)-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae). Allatostatin A-like immunoreactivity (ASTir) was widely distributed in the animal's brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory glomeruli are also mostly distinct. CONCLUSIONS We discuss our findings against the background of the known neurotransmitter complexity in the crustacean olfactory pathway and summarize what is now about the neuronal connectivity in the olfactory glomeruli. A-type allatostatins, in addition to their localization in protocerebral brain areas, seem to be involved in modulating the olfactory signal at the level of the deutocerebrum. They contribute to the complex local circuits within the crustacean olfactory glomeruli the connectivity within which as yet is completely unclear. Because the glomeruli of C. clypeatus display a distinct pattern of regionalization, their olfactory systems form an ideal model to explore the functional relevance of glomerular compartments and diversity of local olfactory interneurons for olfactory processing in crustaceans.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
17
|
Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry. J Proteomics 2012; 75:5014-5026. [PMID: 22465716 DOI: 10.1016/j.jprot.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
Abstract
Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.
Collapse
|
18
|
Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S. Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs. Cell Tissue Res 2012; 348:47-69. [DOI: 10.1007/s00441-012-1353-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
|
19
|
Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, Hauser F, Stafflinger E, Schneider M, Pauwels K, Schoofs L, Grimmelikhuijzen CJP. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. J Proteome Res 2011; 10:4478-504. [PMID: 21830762 DOI: 10.1021/pr200284e] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic hormone, allatostatin-A, allatostatin-B, allatotropin, Ala(7)-CCAP, CCHamide, Arg(7)-corazonin, DENamides, CRF-like (DH52) and calcitonin-like (DH31) diuretic hormones, two ecdysis-triggering hormones, two FIRFamides, one insulin, two alternative splice forms of ion transport peptide (ITP), myosuppressin, neuroparsin, two neuropeptide-F splice forms, three periviscerokinins (but no pyrokinins), pigment dispersing hormone, proctolin, Met(4)-proctolin, short neuropeptide-F, three RYamides, SIFamide, two sulfakinins, and three tachykinins. There are two genes for a preprohormone containing orcomyotropin-like peptides and orcokinins, two genes for N-terminally elongated ITPs, two genes (clustered) for eclosion hormones, two genes (clustered) for bursicons alpha, beta, and two genes (clustered) for glycoproteins GPA2, GPB5, three genes for different allatostatins-C (two of them clustered) and three genes for IGF-related peptides. Detailed comparisons of genes or their products with those from insects and decapod crustaceans revealed that the D. pulex peptides are often closer related to their insect than to their decapod crustacean homologues, confirming that branchiopods, to which Daphnia belongs, are the ancestor group of insects.
Collapse
|
20
|
Missbach C, Harzsch S, Hansson BS. New insights into an ancient insect nose: the olfactory pathway of Lepismachilis y-signata (Archaeognatha: Machilidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:317-333. [PMID: 21665539 DOI: 10.1016/j.asd.2011.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/07/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Hexapods most likely derived from an aquatic ancestor, which they shared with crustaceans. During the transition from water to land, their sensory systems had to face the new physiological demands that terrestrial conditions impose. This process also concerns the sense of smell and, more specifically, detection of volatile, air-borne chemicals. In insects, olfaction plays an important role in orientation, mating choice, and food and host finding behavior. The first integration center of odor information in the insect brain is the antennal lobe, which is targeted by the afferents from olfactory sensory neurons on the antennae. Within the antennal lobe of most pterygote insects, spherical substructures called olfactory glomeruli are present. In order to gain insights into the evolution of the structure of the central olfactory pathway in insects, we analyzed a representative of the wingless Archaeognatha or jumping bristletails, using immunocytochemistry, antennal backfills and histological section series combined with 3D reconstruction. In the deutocerebrum of Lepismachilis y-signata, we found three different neuropil regions. Two of them show a glomerular organization, but these glomeruli differ in their shape from those in all other insect groups. The connection of the glomerular neuropils to higher brain centers remains unclear and mushroom bodies are absent as reported from other archaeognathan species. We discuss the evolutionary implications of these findings.
Collapse
Affiliation(s)
- Christine Missbach
- Max-Planck-Institute for Chemical Ecology, Department of Neuroethology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
21
|
Harzsch S, Rieger V, Krieger J, Seefluth F, Strausfeld NJ, Hansson BS. Transition from marine to terrestrial ecologies: changes in olfactory and tritocerebral neuropils in land-living isopods. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:244-257. [PMID: 21641866 DOI: 10.1016/j.asd.2011.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
In addition to the ancestors of insects, representatives of five lineages of crustaceans have colonized land. Whereas insects have evolved sensilla that are specialized to allow the detection of airborne odors and have evolved olfactory sensory neurons that recognize specific airborne ligands, there is so far little evidence for aerial olfaction in terrestrial crustaceans. Here we ask the question whether terrestrial Isopoda have evolved the neuronal substrate for the problem of detecting far-field airborne chemicals. We show that conquest of land of Isopoda has been accompanied by a radical diminution of their first antennae and a concomitant loss of their deutocerebral olfactory lobes and olfactory computational networks. In terrestrial isopods, but not their marine cousins, tritocerebral neuropils serving the second antenna have evolved radical modifications. These include a complete loss of the malacostracan pattern of somatotopic representation, the evolution in some species of amorphous lobes and in others lobes equipped with microglomeruli, and yet in others the evolution of partitioned neuropils that suggest modality-specific segregation of second antenna inputs. Evidence suggests that Isopoda have evolved, and are in the process of evolving, several novel solutions to chemical perception on land and in air.
Collapse
Affiliation(s)
- S Harzsch
- Universität Greifswald, Fachbereich Biologie, Abteilung Cytologie und Evolutionsbiologie, J.-S.-Bach Strasse 11/12, D-17498 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res 2011; 343:559-77. [PMID: 21229364 PMCID: PMC3046342 DOI: 10.1007/s00441-010-1091-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/04/2010] [Indexed: 12/27/2022]
Abstract
Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day.
Collapse
|
23
|
Ukena K, Tachibana T, Iwakoshi-Ukena E, Saito Y, Minakata H, Kawaguchi R, Osugi T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization, and function of a novel avian hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-coupled receptor-103. Endocrinology 2010; 151:2255-64. [PMID: 20308530 DOI: 10.1210/en.2009-1478] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several neuropeptides with the C-terminal RFamide sequence have been identified in the hypothalamus of a variety of vertebrates. Among the RFamide peptide groups, however, only LPXRFamide peptides, including gonadotropin-inhibitory hormone, have been characterized in the avian brain. In the present study, we sought for the presence of other RFamide peptides in the avian hypothalamus. We identified a cDNA encoding an RFamide peptide orthologous to 26RFa (also referred to as QRFP) in the hypothalamus of the Japanese quail. The deduced quail 26RFa precursor consisted of 120-amino-acid residues, encoding one RFamide peptide with 27 amino acids. This RFamide peptide was flanked at the N terminus by a dibasic amino acid cleavage site and at the C terminus by a glycine amidation signal. Quantitative RT-PCR analysis demonstrated specific expression of quail 26RFa mRNA in the diencephalon including the hypothalamus. Furthermore, mass spectrometry analysis revealed the presence of a peptide exhibiting the mass of mature 26RFa, indicating that the peptide is actually produced from the precursor in the diencephalon. 26RFa-producing cell bodies were localized in the anterior hypothalamic nucleus in the brain. Synthetic 26RFa increased intracellular Ca(2+) concentration in HEK293T cells transfected with the chicken G protein-coupled receptor GPR103. Intracerebroventricular injection of 26RFa in broiler chicks stimulated feeding behavior. These data provide the first evidence for the occurrence of the peptide 26RFa in the avian hypothalamus and indicate that this peptide exerts orexigenic activity.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen R, Li L. Mass spectral imaging and profiling of neuropeptides at the organ and cellular domains. Anal Bioanal Chem 2010; 397:3185-93. [PMID: 20419488 DOI: 10.1007/s00216-010-3723-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/01/2010] [Accepted: 04/03/2010] [Indexed: 12/16/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a rapid and sensitive analytical method that is well suited for determining molecular weights of peptides and proteins from complex samples. MALDI-MS can be used to profile the peptides and proteins from single-cell and small tissue samples without the need for extensive sample preparation. Furthermore, the recently developed MALDI imaging technique enables mapping of the spatial distribution of signaling molecules in tissue samples. Several examples of signaling molecule analysis at the single-cell and single-organ levels using MALDI-MS technology are highlighted followed by an outlook of future directions.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Chemistry & School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | |
Collapse
|
25
|
Chen R, Hui L, Cape SS, Wang J, Li L. Comparative Neuropeptidomic Analysis of Food Intake via a Multi-faceted Mass Spectrometric Approach. ACS Chem Neurosci 2010; 1:204-214. [PMID: 20368756 DOI: 10.1021/cn900028s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Feeding behavior is a fundamental aspect of energy homeostasis and is crucial for animal survival. This process is regulated by a multitude of neurotransmitters including neuropeptides within a complex neuroendocrine system. Given the high chemical complexity and wide distribution of neuropeptides, the precise molecular mechanisms at the cellular and network levels remain elusive. Here we report comparative neuropeptidomic analysis of brain and major neuroendocrine organ in a crustacean model organism in response to feeding. A multi-faceted approach employing direct tissue matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), stable isotopic labeling of neuropeptide extracts for quantitation, and mass spectrometric imaging (MSI) has been employed to obtain complementary information on the expression changes of a large array of neuropeptides in the brain and the pericardial organ (PO) in the crab Cancer borealis. Multiple neuropeptides exhibited changes in abundance after feeding, including RFamides, Cancer borealis tachykinin related peptides (CabTRPs), RYamides, and pyrokinins. By combining quantitative analysis of neuropeptide changes via isotopic labeling of brain extract and MSI mapping of neuropeptides of brain slices, we identified the boundary of olfactory lobe (ON) and median protocerebrum (MPC) area as two potential feeding centers in the crab brain.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Limei Hui
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Stephanie S. Cape
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Junhua Wang
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Lingjun Li
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| |
Collapse
|
26
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
27
|
Ma M, Sturm RM, Kutz-Naber KK, Fu Q, Li L. Immunoaffinity-based mass spectrometric characterization of the FMRFamide-related peptide family in the pericardial organ of Cancer borealis. Biochem Biophys Res Commun 2009; 390:325-30. [PMID: 19800311 PMCID: PMC2767467 DOI: 10.1016/j.bbrc.2009.09.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
Abstract
The tetrapeptide, FMRFamide, was first discovered in 1977 in the molluscan nervous system and was found to affect the contractile force of molluscan cardiac muscle and other muscles. Since then, numerous FMRFamide-related peptides (FaRPs) have been reported in both invertebrate and vertebrate species. We have previously reported the detection and identification of numerous FaRPs in Cancer borealis pericardial organs (POs), one of the major neurosecretory structures in the crustaceans. Here, we have developed two immunoaffinity-based methods, immunoprecipitation (IP) and immuno-dot blot screening assay, for the enrichment of FaRPs in C. borealis POs. A combined mass spectrometry (MS)-based approach involving both matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-QTOF MS/MS) is used for a more comprehensive characterization of the FaRP family by utilizing high mass accuracy measurement and efficient peptide sequencing. Overall, 17 FMRFamide-related peptides were identified using these two complementary immuno-based approaches. Among them, three novel peptides were reported for the first time in this study.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Robert M. Sturm
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Kimberly K. Kutz-Naber
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Qiang Fu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
28
|
Gallus L, Ferrando S, Bottaro M, Diaspro A, Girosi L, Faimali M, Ramoino P, Tagliafierro G. Presence and distribution of FMRFamide-like immunoreactivity in the cyprid of the barnacle Balanus amphitrite (Cirripedia, Crustacea). Microsc Res Tech 2009; 72:101-9. [PMID: 18937250 DOI: 10.1002/jemt.20649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The presence and distribution of FMRFamide-like peptides (FLPs) in the cyprid larvae of the barnacle Balanus amphitrite were investigated using immunohistochemical methods. Barnacles are considered to be one of the most important constituents of animal fouling communities, and the cyprid stage is specialized for settlement and metamorphosis in to the sessile adult condition. FLPs immunoreactive (IR) neuronal cell bodies were detected in both the central and the peripheral nervous system. One bilateral group of neurons somata was immunodetected in the brain, and IR nerve fibers were observed in the neuropil area and optic lobes. Intense immunostaining was also observed in the frontal filament complex: frontal filament tracts leaving the optic lobes and projecting towards the compound eyes, swollen nerve endings in the frontal filament vesicles, and thin nerve endings in the external frontal filament. Thin IR nerve fibers were also present in the cement glands. Two pairs of neuronal cell bodies were immunodetected in the posterior ganglion; some of their axons appear to project to the cirri. FLPs IR neuronal cell bodies were also localized in the wall of the dilated midgut and in the narrow hindgut; their processes surround the gut wall and allow gut neurons to synapse with one another. Our data demonstrated the presence of FLPs IR substances in the barnacle cyprid. We hypothesize that these peptides act as integrators in the central nervous system, perform neuromuscular functions for thoracic limbs, trigger intestinal movements and, at the level of the frontal filament, play a neurosecretory role.
Collapse
Affiliation(s)
- Lorenzo Gallus
- LIBiOM, DIBIO, Università di Genova, Viale Benedetto XV 5, I-16132 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Forest DL, Lindsay SM. Observations of serotonin and FMRFamide-like immunoreactivity in palp sensory structures and the anterior nervous system of spionid polychaetes. J Morphol 2008; 269:544-51. [PMID: 18157865 DOI: 10.1002/jmor.10605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated alphatubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps.
Collapse
Affiliation(s)
- David L Forest
- School of Marine Sciences, University of Maine, Orono, Maine 04669, USA
| | | |
Collapse
|
30
|
Clark J, Milakovic M, Cull A, Klose MK, Mercier AJ. Evidence for postsynaptic modulation of muscle contraction by a Drosophila neuropeptide. Peptides 2008; 29:1140-9. [PMID: 18394755 DOI: 10.1016/j.peptides.2008.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
DPKQDFMRFamide, the most abundant FMRFamide-like peptide in Drosophila melanogaster, has been shown previously to enhance contractions of larval body wall muscles elicited by nerve stimulation and to increase excitatory junction potentials (EJPs). The present work investigated the possibility that this peptide can also stimulate muscle contraction by a direct action on muscle fibers. DPKQDFMRFamide induced slow contractions and increased tonus in body wall muscles of Drosophila larvae from which the central nervous system had been removed. The threshold for this effect was approximately 10(-8)M. The increase in tonus persisted in the presence of 7x10(-3)M glutamate, which desensitized postsynaptic glutamate receptors. Thus, the effect on tonus could not be explained by enhanced release of glutamate from synaptic terminals and, thus, may represent a postsynaptic effect. The effect on tonus was abolished in calcium-free saline and by treatment with L-type calcium channel blockers, nifedipine and nicardipine, but not by T-type blockers, amiloride and flunarizine. The present results provide evidence that this Drosophila peptide can act postsynaptically in addition to its apparent presynaptic effects, and that the postsynaptic effect requires influx through L-type calcium channels.
Collapse
Affiliation(s)
- Julie Clark
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | | | | | | | | |
Collapse
|
31
|
Harzsch S, Hansson BS. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 2008; 9:58. [PMID: 18590553 PMCID: PMC2459186 DOI: 10.1186/1471-2202-9-58] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of Coenobita clypeatus (Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase. Results The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that C. clypeatus has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusion In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of C. clypeatus. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.
Collapse
Affiliation(s)
- Steffen Harzsch
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Beutenberg Campus, Hans-Knöll-Str, 8, D-07745 Jena, Germany.
| | | |
Collapse
|
32
|
Fort TJ, Brezina V, Miller MW. Regulation of the crab heartbeat by FMRFamide-like peptides: multiple interacting effects on center and periphery. J Neurophysiol 2007; 98:2887-902. [PMID: 17804580 DOI: 10.1152/jn.00558.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We are studying the functional "logic" of neuromodulatory actions in a simple central pattern generator (CPG)-effector system, the heart of the blue crab Callinectes sapidus. The rhythmic contractions of this heart are neurogenic, driven by rhythmic motor patterns generated by the cardiac ganglion (CG). Here we used anatomical and physiological methods to examine the sources and actions on the system of the FMRFamide-like peptides (FLPs) TNRNFLRFamide (F(1)), SDRNFLRFamide (F(2)), and GYNRSFLRFamide, an authentic Callinectes FLP. Immunohistochemical localization revealed a plexus of FLP-immunoreactive fibers in the pericardial organs (POs), from which modulators are released to reach the heart as circulating neurohormones. Combined backfill and immunohistochemical experiments indicated that the FLPs in the POs originated in the CNS, from large neurosecretory cells in the B cluster of the first thoracic neuromere. In physiological experiments, we examined the actions of the FLPs on the intact working heart, on the semi-intact heart in which we could record the motor patterns as well as the muscle contractions, on the isolated CG, and in a preparation developed to assess direct actions on the muscle with controlled patterns of motor neuron spikes. The FLPs had strong positive chronotropic and inotropic effects. Dissection of these effects suggested that they were produced through at least two primary actions of the FLPs exerted both on the heart muscle and on the CG. These primary actions elicited numerous secondary consequences mediated by the feedforward and feedback interactions that integrate the activity of the complete, coupled CPG-effector system.
Collapse
Affiliation(s)
- Timothy J Fort
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901, USA
| | | | | |
Collapse
|
33
|
Hill SR, Orchard I. Isolation and sequencing of two FMRFamide-related peptides from the gut of Locusta migratoria L. Peptides 2007; 28:1490-7. [PMID: 17707763 DOI: 10.1016/j.peptides.2007.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 06/02/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Two FMRFamide-related peptides (FaRPs) have been isolated and sequenced from the whole gut of Locusta migratoria L. Peptides were extracted from 500 locust whole guts and separated using reversed-phase high performance liquid chromatography (RP-HPLC). Fractions containing FMRFamide-like immunoreactive (FLI) material were identified using radioimmunoassay (RIA). Sequencing of fractions, using tandem mass spectrometry (MALDI-TOF MS/MS), revealed the myosuppressin previously isolated from the locust CNS, SchistoFLRFamide (PDVDHVFLRFamide), and a novel extended RFamide (LWENLRFamide). The isolation of SchistoFLRFamide from midgut tissue supports the hypothesis that this myosuppressin is released locally from FLI processes over the gut and/or from endocrine-like midgut cells to play a role in the regulation of digestion.
Collapse
Affiliation(s)
- Sharon R Hill
- Division of Chemical Ecology, Department of Crop Science, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden.
| | | |
Collapse
|
34
|
Gallus L, Bottaro M, Ferrando S, Girosi L, Ramoino P, Tagliafierro G. Distribution of FMRFamide-like immunoreactivity in the alimentary tract and hindgut ganglia of the barnacle Balanus amphitrite (Cirripedia, Crustacea). Microsc Res Tech 2006; 69:636-41. [PMID: 16770768 DOI: 10.1002/jemt.20333] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the presence and distribution of FMRFamide-like immunoreactivity in the alimentary tract of barnacle Balanus amphitrite were investigated. A net of nerve fibers strongly immunoreactive to FMRFamide-like molecules was localized in the posterior midgut and hindgut. Positive varicose nerve terminals were also localized close to the circular muscle cells and, in the hindgut, close to the radial muscular fibers. Besides this nerve fibers network, one pair of contralateral ganglia was localized in the hindgut, each of them constituted by two strongly FMRFamide-labeled neurons and one nonlabeled neuron. Their immunoreactive axons directed toward the hindgut and posterior midgut suggest an involvement of FMRFamide-like substances in adult B. amphitrite gut motility. The hindgut associated ganglia of barnacles seem to correspond to the terminal abdominal ganglia of the other crustaceans. Since they are the only residual gut ganglia in the barnacle's reduced nervous system, we can hypothesize that gut motility needs a nervous system regulation partially independent of the central nervous system.
Collapse
Affiliation(s)
- Lorenzo Gallus
- Dipartimento per lo studio del Territorio e delle sue Risorse (DIPTERIS), Università di Genova, Corso Europa 26, I-16132, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Dossey AT, Reale V, Chatwin H, Zachariah C, deBono M, Evans PD, Edison AS. NMR analysis of Caenorhabditis elegans FLP-18 neuropeptides: implications for NPR-1 activation. Biochemistry 2006; 45:7586-97. [PMID: 16768454 PMCID: PMC2517133 DOI: 10.1021/bi0603928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phe-Met-Arg-Phe-NH2 (FMRFamide)-like peptides (FLPs) are the largest neuropeptide family in animals, particularly invertebrates. FLPs are characterized by a C-N-terminal gradient of decreasing amino acid conservation. Neuropeptide receptor 1 (NPR-1) is a G-protein coupled receptor (GPCR), which has been shown to be a strong regulator of foraging behavior and aggregation responses in Caenorhabditis elegans. Recently, ligands for NPR-1 were identified as neuropeptides coded by the precursor genes flp-18 and flp-21 in C. elegans. The flp-18 gene encodes eight FLPs including DFDGAMPGVLRF-NH2 and EMPGVLRF-NH2. These peptides exhibit considerably different activities on NPR-1, with the longer one showing a lower potency. We have used nuclear magnetic resonance and biological activity to investigate structural features that may explain these activity differences. Our data demonstrate that long-range electrostatic interactions exist between N-terminal aspartates and the C-terminal penultimate arginine as well as N-terminal hydrogen-bonding interactions that form transient loops within DFDGAMPGVLRF-NH2. We hypothesize that these loops, along with peptide charge, diminish the activity of this peptide on NPR-1 relative to that of EMPGVLRF-NH2. These results provide some insight into the large amino acid diversity in FLPs.
Collapse
Affiliation(s)
- Aaron T Dossey
- McKnight Brain Institute, University of Florida, 100 South Newell Drive, Building 59, Room LG-150, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tsutsui K, Ukena K. Hypothalamic LPXRF-amide peptides in vertebrates: identification, localization and hypophysiotropic activity. Peptides 2006; 27:1121-9. [PMID: 16517011 DOI: 10.1016/j.peptides.2005.06.036] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
Probing undiscovered neuropeptides that play important roles in the regulation of pituitary function in vertebrates is essential for the progress of neuroendocrinology. Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to be located in the hypothalamo-hypophysial system and to decrease gonadotropin release from cultured anterior pituitary. We, therefore, designated this novel neuropeptide as gonadotropin-inhibitory hormone (GnIH). We further identified novel hypothalamic neuropeptides closely related to GnIH in the brains of other vertebrates, such as mammals, amphibians, and fish. The identified neuropeptides possessed a LPXRF-amide (X = L or Q) motif at their C-termini. These LPXRF-amide peptides also were localized in the hypothalamus and other brainstem areas and regulated pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and hypophysiotropic activity of these newly identified hypothalamic LPXRF-amide peptides in vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | |
Collapse
|
37
|
Roszer T, Kiss-Tóth E, Petkó M, Szentmiklósi AJ, Bánfalvi G. Phe-met-arg-phe (FMRF)-amide is a substrate source of NO synthase in the gastropod nervous system. Cell Tissue Res 2006; 325:567-75. [PMID: 16612629 DOI: 10.1007/s00441-006-0185-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 02/01/2006] [Indexed: 12/18/2022]
Abstract
The possible involvement of the L-arginine-containing Phe-met-arg-phe (FMRF)-amide (FMRFa) in neuronal nitric oxide (NO) biosynthesis was studied in a gastropod species. We found NADPH-diaphorase-positive neurons and FMRFa-containing fibers in close proximity in the enteric nervous system. Administration of L-arginine and FMRFa induced quantitatively similar nitrite production in both intact intestinal tissues and tissue homogenates. These changes could be prevented by the presence of NOARG (an NO synthase inhibitor). Neither chemically modified FMRFa (D-arginine instead of L-arginine) nor amino acid constituents of FMRFa (methionine, phenylalanine) affected basal nitrite production. FMRFa-induced alterations were reduced in the presence of Na+ channel blockers (tetrodotoxin, amiloride, lidocaine), the Na+/K+ATPase inhibitor ouabain, or protease inhibitors (leupeptine, pepstatine-a). FMRFa and its amino acid constituents were analyzed by paper chromatography. When FMRFa was added to tissue homogenates, the peptide was eliminated within 1-2 min, whereas methionine, phenylalanine, arginine, and citrulline levels were elevated simultaneously. We tested the effects of FMRFa, L-arginine, and NOARG on intestinal contractile activity. FMRFa relaxed the intestine for 1-2 min and then induced contractions for 20-40 min. In the presence of NOARG, no relaxant effect of FMRFa was recorded. As administration of L-arginine strongly inhibits the mechanical activity of the intestinal muscle, NO production presumably plays a substantial role in the action of FMRFa, at least in the initial phase. Our biochemical data indicate a direct involvement of FMRFa in NO biosynthesis. FMRFa might be hydrolyzed by extracellular peptidases and then the locally released arginine might be transported into the cells and broken-down to produce NO. Depolarization-induced NO production attributable to the activation of amiloride-sensitive Na+ channels might also be involved.
Collapse
Affiliation(s)
- Tamás Roszer
- Department of Animal Anatomy & Physiology, Faculty of Science, Debrecen University, P.O. Box 15, H-4010 Debrecen, Hungary
| | | | | | | | | |
Collapse
|
38
|
Wilkens JL, Young RE. Regulation of blood pressure in the land crab Cardisoma guanhumi. Physiol Biochem Zool 2005; 79:178-87. [PMID: 16380939 DOI: 10.1086/498189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2005] [Indexed: 11/03/2022]
Abstract
We examined the cardiovascular responses to acute and chronic changes in blood volume (BV) in the land crab Cardisoma guanhumi. Acute reduction in BV caused an increase in activity in the dorsoventral muscles (DVMs) and to a lesser extent in the epimeral attractor muscles (EAMs). Contraction of the DVMs and EAMs will decrease the volume of the dorsal sinus and the thorax as a whole, respectively. BV reduction also caused bradycardia with frequent periods of cardiac arrest. There was a small drop in hemolymph pressure. BV expansion had the reciprocal effect on DVM and EAM activity but had no effect on heart rate (fH). After the cardioregulatory nerves were cut, acute hypovolemia had no effect on fH but still caused a moderate increase in DVM activity. After dehydration-induced BV reduction, DVM activity increased, whereas hemolymph pressure, fH, and EAM activity were maintained close to control levels.
Collapse
Affiliation(s)
- J L Wilkens
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | |
Collapse
|
39
|
Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. MASS SPECTROMETRY REVIEWS 2005; 24:469-486. [PMID: 15389843 DOI: 10.1002/mas.20031] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to inhibit gonadotropin release from the cultured anterior pituitary. This peptide is the first hypothalamic peptide that inhibited gonadotropin release reported in vertebrates. We, therefore, termed it gonadotropin-inhibitory hormone (GnIH). After this finding, we found that GnIH-related peptides were present in the brains of other vertebrates, such as mammals, amphibians, and fish. These GnIH-related peptides possessed a LPXRF-amide (X=L or Q) motif at their C-termini in all investigated animals. Mass spectrometric analyses combined with immunoaffinity chromatography were powerful techniques for the identification of mature endogenous LPXRF-amide peptides. The identified LPXRF-amide peptides were found to be localized in the hypothalamus and brainstem areas, and to regulate pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and function of a new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides in vertebrates. Recent studies on the receptors for LPXRF-amide peptides will also be reviewed.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | |
Collapse
|
40
|
Wilkens JL, Shinozaki T, Yazawa T, ter Keurs HEDJ. Sites and modes of action of proctolin and the FLP F2 on lobster cardiac muscle. J Exp Biol 2005; 208:737-47. [PMID: 15695765 DOI: 10.1242/jeb.01430] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAt the threshold concentration (1-10 pmol l-1), the neuropeptide hormones proctolin (PR) and the FLRFamide-like peptide (FLP) F2cause an increase in amplitude of electrically evoked contractions (each contraction is a brief tetanus) of lobster heart ostial muscle. At higher concentrations each peptide also induces an increase in tonus (contracture). The PR-induced contracture and augmentation of tetani are proportional to increases in [Ca2+]i. The rate of onset and recovery of peptide-induced effects on both tetani and contracture appeared to reduced by Ca2+ storage by the sarcoplasmic reticulum (SR). Enhanced tetani following a contracture may be due to enhanced voltage-gated Ca2+current and sarcoplasmic reticular (SR) Ca2+ loading. The SR Ca2+ loading appears to be specific for PR and F2, since glutamic-acid-induced contractures are not followed by increased tetani. The prolonged elevation of [Ca2+]i during contracture causes a right-ward shift in the force-pCa curve indicating a decrease in myofibrillar sensitivity to Ca2+. Blocking voltage-gated Ca2+ channels with Cd2+, nifedipine or verapamil, while reducing tetani, does not prevent peptide-induced contracture and enhanced tetani. Opening SR Ca2+ channels and depleting SR Ca2+with either caffeine or ryanodine blocked tetani but permitted accelerated peptide-induced contractures. We conclude that PR and F2 at low concentration enhance voltage-dependent Ca2+ induced Ca2+ release from the SR, while higher hormone levels directly gate Ca2+ entry across the sarcolemma.
Collapse
Affiliation(s)
- J L Wilkens
- Department of Biological Sciences, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
41
|
Dunn TW, Mercier AJ. Synaptic modulation by a Drosophila neuropeptide is motor neuron-specific and requires CaMKII activity. Peptides 2005; 26:269-76. [PMID: 15629538 DOI: 10.1016/j.peptides.2004.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/15/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
The Drosophila FMRFamide-related peptide, DPKQDFMRFamide modulates synaptic transmission at the larval neuromuscular junction. The amplitude of excitatory junctional potentials (EJPs) produced by the selective stimulation of motor neuron MN6/7-Ib increases following application of 1 microM DPKQDFMRFamide. EJPs elicited by stimulating motor neuron MNSNb/d-Is, however, exhibit no significant increase with the same concentration of neuropeptide. The mechanisms underlying the modulatory effects of DPKQDFMRFamide were examined using a combination of pharmacological and genetic methods. Three independent lines of evidence implicate CaMKII as an essential effector protein or part of the signal transduction pathway. The effect of the neuropeptide is suppressed by 1 microM KN-93 (CaMKII inhibitor) and by heat-shock induced expression of a CaMKII inhibitor. A heterozygous CaM kinase mutant responds poorly to the peptide.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ont., Canada L2S 3A1
| | | |
Collapse
|
42
|
Na SY, Sung DK, Kim KK, Kim KM, Kim JH, Park HH, Lee SM, Seong SI, Chang JS, Hwang JS, Kang SW, Kim HR, Lee BH. FMRFamide-Expressing Efferent Neurons in Eighth Abdominal Ganglion Innervate Hindgut in the Silkworm, Bombyx mori. Zoolog Sci 2004; 21:805-11. [PMID: 15333991 DOI: 10.2108/zsj.21.805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tetrapeptide FMRFamide is known to affect both neural function and gut contraction in a wide variety of invertebrates and vertebrates, including insect species. This study aimed to find a pattern of innervation of specific FMRFamide-labeled neurons from the abdominal ganglia to the hindgut of the silkworm Bombyx mori using the immunocytochemical method. In the 1st to the 7th abdominal ganglia, labeled efferent neurons that would innervate the hindgut could not be found. However, in the 8th abdominal ganglion, three pairs of labeled specific efferent neurons projected axons into the central neuropil to eventually innervate the hindgut. Both axons of two pairs of labeled cell bodies in the lateral rind and axons of one pair of labeled cell bodies in the posterior rind extended to the central neuropil and formed contralateral tracts of a labeled neural tract with a semi-circular shape. These labeled axons ran out to one pair of bilateral cercal nerves that extended out from the posterior end of the 8th abdominal ganglion and finally to the innervated hindgut. These results provide valuable information for detecting the novel function of FMRFamide-related peptides in metamorphic insect species.
Collapse
Affiliation(s)
- So Young Na
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huybrechts J, Nusbaum MP, Bosch LV, Baggerman G, De Loof A, Schoofs L. Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Commun 2003; 308:535-44. [PMID: 12914784 DOI: 10.1016/s0006-291x(03)01426-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometric methods were applied to determine the peptidome of the brain and thoracic ganglion of the Jonah crab (Cancer borealis). Fractions obtained by high performance liquid chromatography were characterized using MALDI-TOF MS and ESI-Q-TOF MS/MS. In total, 28 peptides were identified within the molecular mass range 750-3000Da. Comparison of the molecular masses obtained with MALDI-TOF MS with the calculated molecular masses of known crustacean peptides revealed the presence of at least nine allatostatins, three orcokinin precursor derived peptides, namely FDAFTTGFGHS, [Ala(13)]-orcokinin, and [Val(13)]-orcokinin, and two kinins, a tachykinin-related peptide and four FMRFamide-related peptides. Eight other peptides were de novo sequenced by collision induced dissociation on the Q-TOF system and yielded AYNRSFLRFamide, PELDHVFLRFamide or EPLDHVFLRFamide, APQRNFLRFamide, LNPFLRFamide, DVRTPALRLRFamide, and LRNLRFamide, which belong to the FMRFamide related peptide family, as well as NFDEIDRSGFA and NFDEIDRSSFGFV, which display high sequence similarity to peptide sequences within the orcokinin precursor of Orconectes limosus. Our paper is the first (neuro)peptidomic analysis of the crustacean nervous system.
Collapse
Affiliation(s)
- Jurgen Huybrechts
- Laboratory of Developmental Physiology and Molecular Biology, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Proctolin (Arg-Tyr-Leu-Pro-Thr-OH) and crayfish peptide "DF(2)" (Asp-Arg-Asn-Phe-Leu-Arg-Phe-NH(2)) enhance spontaneous contractions of isolated crayfish hindguts. Both peptides increase the frequency and amplitude of spontaneous, rapid contractions. Proctolin induces a slow contraction, which gives the appearance of an increase in overall tonus. DF(2) has no such effect. To determine whether the peptides affect both longitudinal and circular muscles, hindguts were cut into longitudinal strips and into rings, and contractions were recorded from each. The longitudinal strips generated only rapid contractions, and both peptides increased the frequency and amplitude of such contractions without significantly altering tonus. Rapid contractions were observed in only 1 of 14 preparations of rings. Proctolin induced slow contractions in the rings, and DF(2) had no such effect. The results indicate that neuropeptides have different effects on circular and longitudinal muscles of hindgut.
Collapse
Affiliation(s)
- A J Mercier
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ont., Canada L2S 3A1.
| | | |
Collapse
|