1
|
Koga D, Kusumi S, Yagi H, Kato K. Three-dimensional analysis of the intracellular architecture by scanning electron microscopy. Microscopy (Oxf) 2024; 73:215-225. [PMID: 37930813 DOI: 10.1093/jmicro/dfad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
The two-dimensional observation of ultrathin sections from resin-embedded specimens provides an insufficient understanding of the three-dimensional (3D) morphological information of membranous organelles. The osmium maceration method, developed by Professor Tanaka's group >40 years ago, is the only technique that allows direct observation of the 3D ultrastructure of membrane systems using scanning electron microscopy (SEM), without the need for any reconstruction process. With this method, the soluble cytoplasmic proteins are removed from the freeze-cracked surface of cells while preserving the integrity of membranous organelles, achieved by immersing tissues in a diluted osmium solution for several days. By employing the maceration method, researchers using SEM have revealed the 3D ultrastructure of organelles such as the Golgi apparatus, mitochondria and endoplasmic reticulum in various cell types. Recently, we have developed new SEM techniques based on the maceration method to explore further possibilities of this method. These include: (i) a rapid osmium maceration method that reduces the reaction duration of the procedure, (ii) a combination method that combines agarose embedding with osmium maceration to elucidate the 3D ultrastructure of organelles in free and cultured cells and (iii) a correlative immunofluorescence and SEM technique that combines cryosectioning with the osmium maceration method, enabling the correlation of the immunocytochemical localization of molecules with the 3D ultrastructure of organelles. In this paper, we review the novel osmium maceration methods described earlier and discuss their potential and future directions in the field of biology and biomedical research.
Collapse
Affiliation(s)
- Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
2
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
4
|
Panusatid C, Thangsiriskul N, Peerapittayamongkol C. Methods for mitochondrial health assessment by High Content Imaging System. MethodsX 2022; 9:101685. [PMID: 35464807 PMCID: PMC9026914 DOI: 10.1016/j.mex.2022.101685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 10/31/2022] Open
Abstract
Mitochondria are important organelles responsible for energy production. Mitochondrial dysfunction relates to various pathological diseases. The investigation of mitochondrial heath is critical to evaluate the cellular status. Herein, we demonstrated an approach for determining the status of mitochondrial health by observing mitochondrial H2O2 (one type of ROS), membrane potential, and morphology (fragmentation and length) in live primary fibroblast cells. The cells were co-stained with fluorescent dyes (Hoechst 33342 and MITO-ID® Red/MitoPY1/JC-10) and continuously processed by the High Content Imaging System. We employed the Operetta CLSTM to take fluorescent images with its given quickness and high resolution. The CellProfiler image analysis software was further used to identify cell and mitochondrial phenotypes in the thousand fluorescent images.We could quantitatively analyze fluorescent images with high-throughput and high-speed detection to track the alteration of mitochondrial status. The MMP assay is sensitive to FCCP even at the concentration of 0.01 µM. The fibroblast cells treated with stress inducers (H2O2, FCCP, and phenanthroline) revealed a significant change in mitochondrial health parameters, with more ROS accumulation, depolarized MMP, increased fragmentation, and reduced length of mitochondria.
Collapse
|
5
|
Koga D, Kusumi S, Shibata M, Watanabe T. Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure. Front Neuroanat 2021; 15:759804. [PMID: 34955763 PMCID: PMC8693767 DOI: 10.3389/fnana.2021.759804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Scanning electron microscopy (SEM) has contributed to elucidating the ultrastructure of bio-specimens in three dimensions. SEM imagery detects several kinds of signals, of which secondary electrons (SEs) and backscattered electrons (BSEs) are the main electrons used in biological and biomedical research. SE and BSE signals provide a three-dimensional (3D) surface topography and information on the composition of specimens, respectively. Among the various sample preparation techniques for SE-mode SEM, the osmium maceration method is the only approach for examining the subcellular structure that does not require any reconstruction processes. The 3D ultrastructure of organelles, such as the Golgi apparatus, mitochondria, and endoplasmic reticulum has been uncovered using high-resolution SEM of osmium-macerated tissues. Recent instrumental advances in scanning electron microscopes have broadened the applications of SEM for examining bio-specimens and enabled imaging of resin-embedded tissue blocks and sections using BSE-mode SEM under low-accelerating voltages; such techniques are fundamental to the 3D-SEM methods that are now known as focused ion-beam SEM, serial block-face SEM, and array tomography (i.e., serial section SEM). This technical breakthrough has allowed us to establish an innovative BSE imaging technique called section-face imaging to acquire ultrathin information from resin-embedded tissue sections. In contrast, serial section SEM is a modern 3D imaging technique for creating 3D surface rendering models of cells and organelles from tomographic BSE images of consecutive ultrathin sections embedded in resin. In this article, we introduce our related SEM techniques that use SE and BSE signals, such as the osmium maceration method, semithin section SEM (section-face imaging of resin-embedded semithin sections), section-face imaging for correlative light and SEM, and serial section SEM, to summarize their applications to neural structure and discuss the future possibilities and directions for these methods.
Collapse
Affiliation(s)
- Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Satoshi Kusumi
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Shibata
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
6
|
The Artemisinin-Derived Autofluorescent Compound BG95 Exerts Strong Anticytomegaloviral Activity Based on a Mitochondrial Targeting Mechanism. Int J Mol Sci 2020; 21:ijms21155578. [PMID: 32759737 PMCID: PMC7432203 DOI: 10.3390/ijms21155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.
Collapse
|
7
|
Siegmund SE, Grassucci R, Carter SD, Barca E, Farino ZJ, Juanola-Falgarona M, Zhang P, Tanji K, Hirano M, Schon EA, Frank J, Freyberg Z. Three-Dimensional Analysis of Mitochondrial Crista Ultrastructure in a Patient with Leigh Syndrome by In Situ Cryoelectron Tomography. iScience 2018; 6:83-91. [PMID: 30240627 PMCID: PMC6137323 DOI: 10.1016/j.isci.2018.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial diseases produce profound neurological dysfunction via mutations affecting mitochondrial energy production, including the relatively common Leigh syndrome (LS). We recently described an LS case caused by a pathogenic mutation in USMG5, encoding a small supernumerary subunit of mitochondrial ATP synthase. This protein is integral for ATP synthase dimerization, and patient fibroblasts revealed an almost total loss of ATP synthase dimers. Here, we utilize in situ cryoelectron tomography (cryo-ET) in a clinical case-control study of mitochondrial disease to directly study mitochondria within cultured fibroblasts from a patient with LS and a healthy human control subject. Through tomographic analysis of patient and control mitochondria, we find that loss of ATP synthase dimerization due to the pathogenic mutation causes profound disturbances of mitochondrial crista ultrastructure. Overall, this work supports the crucial role of ATP synthase in regulating crista architecture in the context of human disease.
Collapse
Affiliation(s)
- Stephanie E Siegmund
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Robert Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kurenai Tanji
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Koga D, Kusumi S, Watanabe T. Backscattered electron imaging of resin-embedded sections. Microscopy (Oxf) 2018; 67:5038522. [PMID: 29920601 DOI: 10.1093/jmicro/dfy028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 02/28/2024] Open
Abstract
Scanning electron microscopes have longer focal depths than transmission electron microscopes and enable visualization of the three-dimensional (3D) surface structures of specimens. While scanning electron microscopy (SEM) in biological research was generally used for the analysis of bulk specimens until around the year 2000, more recent instrumental advances have broadened the application of SEM; for example, backscattered electron (BSE) signals under low accelerating voltages allow block-face and section-face images of tissues embedded in resin to be acquired. This technical breakthrough has led to the development of novel 3D imaging techniques including focused ion beam SEM, serial-block face SEM and serial section SEM. Using these new techniques, the 3D shapes of cells and cell organelles have been revealed clearly through reconstruction of serial tomographic images. In this review, we address two modern SEM techniques: section-face imaging of resin-embedded tissue samples based on BSE observations, and serial section SEM for reconstruction of the 3D structures of cells and organelles from BSE-mode SEM images of consecutive ultrathin sections on solid substrates.
Collapse
Affiliation(s)
- Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
9
|
Angelova MI, Bitbol AF, Seigneuret M, Staneva G, Kodama A, Sakuma Y, Kawakatsu T, Imai M, Puff N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2042-2063. [PMID: 29501601 DOI: 10.1016/j.bbamem.2018.02.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 01/27/2023]
Abstract
Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Miglena I Angelova
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France.
| | - Anne-Florence Bitbol
- Sorbonne University, Faculty of Science and Engineering, Laboratory Jean Perrin, UMR 8237 CNRS, Paris F-75005, France
| | - Michel Seigneuret
- University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atsuji Kodama
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Nicolas Puff
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| |
Collapse
|
10
|
Boyd KJ, Alder NN, May ER. Buckling Under Pressure: Curvature-Based Lipid Segregation and Stability Modulation in Cardiolipin-Containing Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6937-6946. [PMID: 28628337 PMCID: PMC5654595 DOI: 10.1021/acs.langmuir.7b01185] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitochondrial metabolic function is affected by the morphology and protein organization of the mitochondrial inner membrane. Cardiolipin (CL) is a unique tetra-acyl lipid that is involved in the maintenance of the highly curved shape of the mitochondrial inner membrane as well as spatial organization of the proteins necessary for respiration and oxidative phosphorylation. Cardiolipin has been suggested to self-organize into lipid domains due to its inverted conical molecular geometry, though the driving forces for this organization are not fully understood. In this work, we use coarse-grained molecular dynamics simulations to study the mechanical properties and lipid dynamics in heterogeneous bilayers both with and without CL, as a function of membrane curvature. We find that incorporation of CL increases bilayer deformability and that CL becomes highly enriched in regions of high negative curvature. We further show that another mitochondrial inverted conical lipid, phosphatidylethanolamine (PE), does not partition or increase the deformability of the membrane in a significant manner. Therefore, CL appears to possess some unique characteristics that cannot be inferred simply from molecular geometry considerations.
Collapse
|
11
|
MacDonald JA, Fowle WH, Woods PhD DC. New insights on mitochondrial heterogeneity observed in prepared mitochondrial samples following a method for freeze-fracture and scanning electron microscopy. Micron 2017; 101:25-31. [PMID: 28609725 DOI: 10.1016/j.micron.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Mitochondria are dynamic intracellular organelles with diverse roles in tissue- and cell type-specific processes, extending beyond bioenergetics. In keeping with this array of functions, mitochondria are described as heterogeneous both between and within tissue types based on multiple parameters, including a broad spectrum of morphological features, and new research points toward a need for the evaluation of mitochondria as isolated organelles. Although transmission electron microscopy (TEM) is commonly used for the evaluation of mitochondria in tissues and renders mitochondrial structures in ultra-thin sections in two-dimensions, additional information regarding complex features within these organelles can be ascertained using scanning electron microscopy (SEM), which allows for analysis of phenotypic differences in three-dimensions. One challenge in producing mitochondrial images for evaluation of ultrastructure using SEM has been the ability to reliably visualize important intramitochondrial features, the inner membrane and cristae structures, on a large-scale (e.g. multiple mitochondria) within a sample preparation, as mitochondria are enclosed within a double membrane. This can be overcome using a 'freeze-fracture' technique in which mitochondrial preparations are snap-frozen followed by application of intense pressure to break open the organelles, revealing the intact components within. Previously published reports using freeze-fracture strategies for mitochondrial SEM have demonstrated feasibility in whole tissue specimens, but a detailed methodology for SEM analysis on isolated mitochondrial fractions has not been reported. By combining previously reported tissue freeze-fracture strategies, along with utilizing the depth of field created by SEM, herein we present a complete method reliant on the freeze-fracture of mitochondrial fractions prepared by differential centrifugation to produce a comprehensive and direct evaluation of three-dimensional mitochondrial ultrastructure by SEM. Image analysis of internal mitochondrial features demonstrates heterogeneity in mitochondrial ultrastructure from a single sample preparation.
Collapse
Affiliation(s)
- Julie A MacDonald
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - William H Fowle
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dori C Woods PhD
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Fujioka H, Tandler B, Consolo MC, Karnik P. Division of mitochondria in cultured human fibroblasts. Microsc Res Tech 2013; 76:1213-6. [PMID: 24009193 DOI: 10.1002/jemt.22287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 01/12/2023]
Abstract
Ovate mitochondria in cultured human fibroblasts divide by pinching. In the process, as observed by transmission electron microscopy, a deep incisure of the surface membranes separates the organelle into two lobes connected by a slender isthmus. A single element of smooth endoplasmic reticulum (SER) invariably accompanies each incisure, extending deep into the cleft. When the ingrowing membranes meet and fuse with the antipodal membranes, fission occurs. Elongated mitochondria that give no indication of division often are cloaked by a single, continuous cistern of SER.
Collapse
Affiliation(s)
- Hisashi Fujioka
- Electron Microscopy Facility and Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | | | | |
Collapse
|
13
|
Vannuvel K, Renard P, Raes M, Arnould T. Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013; 228:1802-18. [PMID: 23629871 DOI: 10.1002/jcp.24360] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimer's disease will also be considered.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cellular Biology, URBC-NARILIS, University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
14
|
Yamamoto A, Ichikawa M. Direct measurement of single soft lipid nanotubes: nanoscale information extracted in a noninvasive manner. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061905. [PMID: 23367974 DOI: 10.1103/physreve.86.061905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 09/07/2012] [Indexed: 06/01/2023]
Abstract
We investigated the dynamics of single soft nanotubes of phospholipids to extract nanoscale information such as the size of the tube, which were several tens to hundreds of nanometers thick. The dynamic properties of the tubes obtained from direct observation by fluorescent microscopy, such as their persistence length, enable us to access the nanoscale characteristics through a simple elastic model of the membrane. The present methodology should be applicable to the nanosized membrane structure in living cells.
Collapse
Affiliation(s)
- Akihisa Yamamoto
- Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
15
|
Fujioka H, Tandler B, Haldar SM, Jain MK, Hoppel CL. String mitochondria in mouse soleus muscle. Microsc Res Tech 2012; 76:237-41. [PMID: 23174930 DOI: 10.1002/jemt.22158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022]
Abstract
Red myofibers in mouse soleus muscle have two spatially distinct populations of mitochondria: one where these organelles are disposed in large clusters just inside the sarcolemma and the other situated between the myofibrils. In most cases, the interfibrillar mitochondria (IFM), which are much smaller than the subsarcolemmal ones (SSM), are arranged as pairs, with each member on opposite sides of the Z-line. In some myofibers, the IFM have fused end-to-end to form greatly elongated organelles, which we call "string mitochondria." Although narrow, these can be many sarcomeres in length. The SSM do not form string mitochondria. Most of the string mitochondria exhibit many instances of "pinching," a process involved in mitochondrial division. Elements of sarcoplasmic reticulum are intimately involved with each mitochondrial membrane invagination. It appears as if the fusion:fission balance of IFM in the soleus muscle is slightly out of kilter, with end-to-end fusion predominating over fission.
Collapse
Affiliation(s)
- Hisashi Fujioka
- Electron Microscopy Facility, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
16
|
Ohta K, Sadayama S, Togo A, Higashi R, Tanoue R, Nakamura KI. Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron 2012; 43:612-20. [DOI: 10.1016/j.micron.2011.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
17
|
Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 2011; 31:1309-28. [PMID: 21245373 PMCID: PMC3067905 DOI: 10.1128/mcb.00911-10] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022] Open
Abstract
Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte mitochondria lacking Mfn-2 are pleiomorphic and have the propensity to become enlarged. Consistent with an underlying mild mitochondrial dysfunction, Mfn-2-deficient mice display modest cardiac hypertrophy accompanied by slight functional deterioration. The absence of Mfn-2 is associated with a marked delay in mitochondrial permeability transition downstream of Ca(2+) stimulation or due to local generation of reactive oxygen species (ROS). Consequently, Mfn-2-deficient adult cardiomyocytes are protected from a number of cell death-inducing stimuli and Mfn-2 knockout hearts display better recovery following reperfusion injury. We conclude that in cardiac myocytes, Mfn-2 controls mitochondrial morphogenesis and serves to predispose cells to mitochondrial permeability transition and to trigger cell death.
Collapse
Affiliation(s)
- Kyriakos N. Papanicolaou
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Ramzi J. Khairallah
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Gladys A. Ngoh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Aristide Chikando
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Ivan Luptak
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Karen M. O'Shea
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Dushon D. Riley
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Jesse J. Lugus
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Wilson S. Colucci
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - W. Jonathan Lederer
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - William C. Stanley
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| |
Collapse
|
18
|
Brantová O, Tesarová M, Hansíková H, Elleder M, Zeman J, Sládková J. Ultrastructural Changes of Mitochondria in the Cultivated Skin Fibroblasts of Patients with Point Mutations in Mitochondrial DNA. Ultrastruct Pathol 2009; 30:239-45. [PMID: 16971348 DOI: 10.1080/01913120600820112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders represent a heterogeneous group of multisystem diseases with extreme variability in clinical phenotype. The diagnosis of mitochondrial disorders relies heavily on extensive biochemical and molecular analyses combined with morphological studies including electron microscopy. Although muscle is the tissue of choice for electron microscopic studies, the authors investigated cultivated human skin fibroblasts (HSF) harboring 3 different pathologic mtDNA mutations: 3243A > G, 8344A > G, 8993T > G. They addressed to the possibility of whether mtDNA mutations influence mitochondrial morphology in HSF and if ultrastructural changes of mitochondria may be used for differential diagnostics of mitochondrial disorders caused by mtDNA mutations. Ultrastructural analysis of patients' HSF revealed a heterogeneous mixture of mainly abnormal, partially swelling mitochondria with unusual and sparse cristae. The most characteristic cristal abnormalities were heterogeneity in size and shapes or their absence. Typical filamentous and branched mitochondria with numerous cristae as appeared in control HSF were almost not observed. In all lines of cultured HSF with various mtDNA mutations, similar ultrastructural abnormalities and severely changed mitochondrial interior were found, although no alterations in function and amount of OXPHOS were detected by routinely used biochemical methods in two lines of cultured HSF. This highlights the importance of morphological analysis, even in cultured fibroblasts, in diagnostics of mitochondrial disorders.
Collapse
Affiliation(s)
- Olga Brantová
- Department of Paediatrics, Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
19
|
Motoyama AA, Watanabe IS, Iyomasa MM, Silva MC, Sosthines MC, Lopes MGO, Guimarães J, Kfoury JR. Ultrastructure of motor nerve terminals in the anterior third of wistar rat tongue. Microsc Res Tech 2009; 72:464-70. [DOI: 10.1002/jemt.20692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Abstract
Mitochondria are cell substructures (organelles) critical for cell life, because biological fuel production, the ATP synthesis by oxidative phosphorylation, occurs in them driven by acidity (pH) gradients. Mitochondria play a key role as well in the cell death and in various fatigue and exercise intolerance syndromes. It is clear now that mitochondria present an astonishing variety of inner membrane morphologies, dynamically correlated with their functional state, coupled with the rate of the ATP synthesis, and characteristic for normal as well as for pathological cases. Our work offers some original insights into the factors that determine the dynamical tubular structures of the inner membrane cristae. We show the possibility to induce, by localized proton flow, a macroscopic cristae-like shape remodeling of an only-lipid membrane. We designed a minimal membrane system (GUV) and experimentally showed that the directional modulation of local pH gradient at membrane level of cardiolipin-containing vesicles induces dynamic cristae-like membrane invaginations. We propose a mechanism and theoretical model to explain the observed tubular membrane morphology and suggest the underlying role of cardiolipin. Our results support the hypothesis of localized bioenergetic transduction and contribute to showing the inherent capacity of cristae morphology to become self-maintaining and to optimize the ATP synthesis.
Collapse
|
21
|
Mannella CA. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2006; 1762:140-7. [PMID: 16054341 DOI: 10.1016/j.bbadis.2005.07.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/20/2005] [Accepted: 07/04/2005] [Indexed: 11/29/2022]
Abstract
This review summarizes recent findings from electron tomography about the three-dimensional shape of mitochondrial membranes and its possible influence on a range of mitochondrial functions. The inner membrane invaginations called cristae are pleomorphic, typically connected by narrow tubular junctions of variable length to the inner boundary membrane. This design may restrict intra-mitochondrial diffusion of metabolites such as ADP, and of soluble proteins such as cytochrome c. Tomographic images of a variety of mitochondria suggest that inner membrane topology reflects a balance between membrane fusion and fission. Proteins that can affect cristae morphology include tBid, which triggers cytochrome c release in apoptosis, and the dynamin-like protein Mgm1, involved in inter-mitochondrial membrane fusion. In frozen-hydrated rat-liver mitochondria, the space between the inner and outer membranes contains 10-15 nm particles that may represent macromolecular complexes involved in activities that span the two membranes.
Collapse
Affiliation(s)
- Carmen A Mannella
- Resource for Visualization of Biological Complexity, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
22
|
Kiefel BR, Gilson PR, Beech PL. Cell biology of mitochondrial dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:151-213. [PMID: 17147999 DOI: 10.1016/s0074-7696(06)54004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria are the product of an ancient endosymbiotic event between an alpha-proteobacterium and an archael host. An early barrier to overcome in this relationship was the control of the bacterium's proliferation within the host. Undoubtedly, the bacterium (or protomitochondrion) would have used its own cell division apparatus to divide at first and, today a remnant of this system remains in some "ancient" and diverse eukaryotes such as algae and amoebae, the most conserved and widespread of all bacterial division proteins, FtsZ. In many of the eukaryotes that still use FtsZ to constrict the mitochondria from the inside, the mitochondria still resemble bacteria in shape and size. Eukaryotes, however, have a mitochondrial morphology that is often highly fluid, and in their tubular networks of mitochondria, division is clearly complemented by mitochondrial fusion. FtsZ is no longer used by these complex eukaryotes, and may have been replaced by other proteins better suited to sustaining complex mitochondrial networks. Although proteins that divide mitochondria from the inside are just beginning to be characterized in higher eukaryotes, many division proteins are known to act on the outside of the organelle. The most widespread of these are the dynamin-like proteins, which appear to have been recruited very early in the evolution of mitochondria. The essential nature of mitochondria dictates that their loss is intolerable to human cells, and that mutations disrupting mitochondrial division are more likely to be fatal than result in disease. To date, only one disease (Charcot-Marie-Tooth disease 2A) has been mapped to a gene that is required for mitochondrial division, whereas two other diseases can be attributed to mutations in mitochondrial fusion genes. Apart from playing a role in regulating the morphology, which might be important for efficient ATP production, research has indicated that the mitochondrial division and fusion proteins can also be important during apoptosis; mitochondrial fragmentation is an early triggering (and under many stimuli, essential) step in the pathway to cell suicide.
Collapse
Affiliation(s)
- Ben R Kiefel
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | | | | |
Collapse
|
23
|
Caldwell SH, Chang CY, Nakamoto RK, Krugner-Higby L. Mitochondria in nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8:595-617, x. [PMID: 15331066 DOI: 10.1016/j.cld.2004.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver (NAFL) is associated with fundamental issues of fat metabolism and insulin resistance. These abnormalities have been linked to impairment of ATP homeostasis, and a growing body of literature has reported mitochondrial abnormalities in various forms of hepatic steatosis. The changes are evident as structural abnormalities, including greatly increased size and the development of crystalline inclusions, and are usually regarded as pathologic, reflecting either a protective or degenerative response to injury. Although the relationships between structural changes,decreased mitochondrial function, and disease states are becoming clearer, the molecular basis for the perturbations is not well understood. Oxidative damage is the most likely causative process and may result in alterations of mitochondrial DNA (mtDNA), stimulated apoptotic pathways, and increased propensity for necrosis.Overall mitochondrial health likely depends on multiple factors including the integrity of the mtDNA, the composition of cellular lipids, lipoprotein trafficking, the balance of pro- and antioxidant factors, and the metabolic demands placed on the liver. Mitochondrial dysfunction may play a role in numerous clinical conditions associated with NAFL, such as hepatocellular carcinoma, lipodystrophy,age-related insulin resistance, gut dysmotility, cryptogenic cirrhosis, a mild form of gaze palsy, and possibly other more severe neurodegenerative diseases. The prominent role of mitochondrial dysfunction in NAFL provides a new and exciting paradigm in which to view this disorder, its complications, and potential dietary and pharmacologic intervention.
Collapse
Affiliation(s)
- Stephen H Caldwell
- Division of Gastroenterology and Hepatology, University of Virginia Health System, PO Box 800708, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
24
|
Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E. Intracellular energetic units in red muscle cells. Biochem J 2001; 356:643-57. [PMID: 11368796 PMCID: PMC1221880 DOI: 10.1042/0264-6021:3560643] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The kinetics of regulation of mitochondrial respiration by endogenous and exogenous ADP in muscle cells in situ was studied in skinned cardiac and skeletal muscle fibres. Endogenous ADP production was initiated by addition of MgATP; under these conditions the respiration rate and ADP concentration in the medium were dependent on the calcium concentration, and 70-80% of maximal rate of respiration was achieved at ADP concentration below 20 microM in the medium. In contrast, when exogenous ADP was added, maximal respiration rate was observed only at millimolar concentrations. An exogenous ADP-consuming system consisting of pyruvate kinase (PK; 20-40 units/ml) and phosphoenolpyruvate (PEP; 5 mM), totally suppressed respiration activated by exogenous ADP, but the respiration maintained by endogenous ADP was not suppressed by more than 20-40%. Creatine (20 mM) further activated respiration in the presence of ATP and PK+PEP. Short treatment with trypsin (50-500 nM for 5 min) decreased the apparent K(m) for exogenous ADP from 300-350 microM to 50-60 microM, increased inhibition of respiration by PK+PEP system up to 70-80%, with no changes in MgATPase activity and maximal respiration rates. Electron-microscopic observations showed detachment of mitochondria and disordering of the regular structure of the sarcomere after trypsin treatment. Two-dimensional electrophoresis revealed a group of at least seven low-molecular-mass proteins in cardiac skinned fibres which were very sensitive to trypsin and not present in glycolytic fibres, which have low apparent K(m) for exogenous ADP. It is concluded that, in oxidative muscle cells, mitochondria are incorporated into functional complexes ('intracellular energetic units') with adjacent ADP-producing systems in myofibrils and in sarcoplasmic reticulum, probably due to specific interaction with cytoskeletal elements responsible for mitochondrial distribution in the cell. It is suggested that these complexes represent the basic pattern of organization of muscle-cell energy metabolism.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Diphosphate/pharmacology
- Animals
- Creatine/metabolism
- Energy Metabolism/drug effects
- Heart/drug effects
- In Vitro Techniques
- Kinetics
- Male
- Microscopy, Electron
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Models, Biological
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myocardium/metabolism
- Myocardium/ultrastructure
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- V A Saks
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Kay L, Appaix F, Braun U, Eimre M, Saks VA. Functional complexes of mitochondria with Ca,MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:379-95. [PMID: 11245802 DOI: 10.1016/s0005-2728(00)00269-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Regulation of mitochondrial respiration in situ in the muscle cells was studied by using fully permeabilized muscle fibers and cardiomyocytes. The results show that the kinetics of regulation of mitochondrial respiration in situ by exogenous ADP are very different from the kinetics of its regulation by endogenous ADP. In cardiac and m. soleus fibers apparent K(m) for exogenous ADP in regulation of respiration was equal to 300-400 microM. However, when ADP production was initiated by intracellular ATPase reactions, the ADP concentration in the medium leveled off at about 40 microM when about 70% of maximal rate of respiration was achieved. Respiration rate maintained by intracellular ATPases was suppressed about 20-30% during exogenous trapping of ADP with excess pyruvate kinase (PK, 20 IU/ml) and phosphoenolpyruvate (PEP, 5 mM). ADP flux via the external PK+PEP system was decreased by half by activation of mitochondrial oxidative phosphorylation. Creatine (20 mM) further activated the respiration in the presence of PK+PEP. It is concluded that in oxidative muscle cells mitochondria behave as if they were incorporated into functional complexes with adjacent ADP producing systems - with the MgATPases in myofibrils and Ca,MgATPases of sarcoplasmic reticulum.
Collapse
Affiliation(s)
- E K Seppet
- Department of Pathophysiology, University of Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Novel applications of microscopy have recently provided new insights into mitochondrial structures. Diverse techniques such as high resolution scanning electron microscopy, transmission electron microscopy, electron microscope tomography and light microscopy have contributed a better understanding of mitochondrial compartmentalization, dynamic networks of mitochondria, intermembrane bridges, segregation of mitochondrial DNA and contacts with the endoplasmic reticulum among other aspects. This review focuses on advances reported in the last five years concerning aspects of mitochondrial substructure or dynamics gained through new techniques, whether they be novel microscope methods or new ways to prepare or label specimens. Sometimes these advances have produced surprising results and more often than not, they have challenged current conceptions of how mitochondria work.
Collapse
Affiliation(s)
- G A Perkins
- Department of Biology, San Diego State University, CA 92182-4614, USA.
| | | |
Collapse
|
27
|
Prince FP. Mitochondrial cristae diversity in human Leydig cells: a revised look at cristae morphology in these steroid-producing cells. Anat Rec (Hoboken) 1999; 254:534-41. [PMID: 10203260 DOI: 10.1002/(sici)1097-0185(19990401)254:4<534::aid-ar8>3.0.co;2-#] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondria of steroid-producing cells are integrally involved with steroidogenesis. For decades, the mitochondrial morphology of Leydig cells, as with other steroid-producing cells, has been known to differ from typical mitochondria in that the cristae are predominately "tubular." In a few species, humans being one example, the cristae have often been further categorized as "tubular and/or lamellar," without further elaboration. In the present study, mitochondria of human Leydig cells were examined with the purpose of providing a more detailed description of "cristae" morphology in these steroid-producing cells. The cristae are found to be rather diverse in morphology, consisting of elements of anastomosing tubules in continuity with small cisternal regions as well as with stacked arrays of lamellae, referred to as "lamellar associations." The tubular elements are found to branch in a tripartite fashion and sometimes to expand into small cisternal elements at these junctures. The lamellar associations are a distinctive feature of cristae in human Leydig cells and consist of two to eight closely apposed lamellae with a consistent gap of approximately 4 nm between the membranes of apposing lamellae. Such a close association of cellular membranes is highly suggestive of an integral transmembrane linkage. Although the lamellar associations often appear isolated, evidence is present of a continuity of this compartment of the cristae with the tubular elements. The connections (termed "initial segments") of the various forms of the cristae to the inner mitochondrial membrane are typically via tubules. Mitochondria exhibiting a central region of matrix delineated by one or more cup-shaped lamellae are also present. The pleomorphic structure of mitochondrial cristae in human Leydig cells reemphasizes our present lack of knowledge of how subcellular structure relates to steroidogenesis.
Collapse
Affiliation(s)
- F P Prince
- Department of Natural Science, Plymouth State College, New Hampshire 03264, USA
| |
Collapse
|
28
|
Shepard TH, Muffley LA, Smith LT. Ultrastructural study of mitochondria and their cristae in embryonic rats and primate (N. nemistrina). Anat Rec (Hoboken) 1998; 252:383-92. [PMID: 9811216 DOI: 10.1002/(sici)1097-0185(199811)252:3<383::aid-ar6>3.0.co;2-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Information on the morphology of mitochondria during embryogenesis is scattered in the literature but there appears to be a developmental pattern characterized by vesiculation of the mitochondrial cristae. During early organogenesis, the embryo is in a relative state of hypoxia and this is associated with decrease of terminal electron transport system activity and a marked increase in glycolysis. Ultrastructural studies of a 14 somite monkey embryo, and day 10 and 12 rat embryos, along with a review of the literature led us to determine that this hypoxic stage is characterized by vesiculation of the mitochondrial cristae. Starting in the late morula stage and continuing during early postimplantation embryogenesis the cristae increase and appear tubular or vesicular. After the end of neurulation, and with onset of vascular perfusion, the cristae gradually become lamellated and by the limb bud stage appear more mature. We suggest that new cristae form from blebs of the inner mitochondrial membrane and that subsequently with maturation these blebs collapse giving them a lamelliform appearance. The delamellated state of the cristae may protect the embryo from toxic respiratory end-products of oxidative respiration which could accumulate in an embryo lacking vascular perfusion. In the heart of monkey and rat embryos, the mitochondria had diameters which were approximately twice those found in skin and neural tube.
Collapse
Affiliation(s)
- T H Shepard
- School of Medicine, Department of Pediatrics, University of Washington, Seattle 98195-6320, USA.
| | | | | |
Collapse
|
29
|
Perkins GA, Song JY, Tarsa L, Deerinck TJ, Ellisman MH, Frey TG. Electron tomography of mitochondria from brown adipocytes reveals crista junctions. J Bioenerg Biomembr 1998; 30:431-42. [PMID: 9932646 DOI: 10.1023/a:1020586012561] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electron microscope tomography was used to examine the membrane topology of brown adipose tissue (BAT) mitochondria prepared by cryofixation or chemical fixation techniques. These mitochondria contain an uncoupling protein which results in the conversion of energy from electron transport into heat. The three-dimensional reconstructions of BAT mitochondria provided a view of the inner mitochondrial membrane different in important features from descriptions found in the literature. The work reported here provides new insight into BAT mitochondria architecture by identifying crista junctions, including multiple junctions connecting a crista to the same side of the inner boundary membrane, in a class of mitochondria that have no tubular cristae, but only lamellar cristae. Crista junctions were defined previously as the tubular membranes of relatively uniform diameter that connect a crista membrane with the inner boundary membrane. We have also found that the cristae architecture of cryofixed mitochondria, including crista junctions, is similar to that found in chemically fixed mitochondria, suggesting that this architecture is not a fixation artifact. The stacks of lamellar cristae extended through more of the BAT mitochondrial volume than did the cristae we observed in neuronal mitochondria. Hence, the inner membrane surface area was larger in the former. In chemically fixed mitochondria, contact sites were easily visualized because the outer and inner boundary membranes were separated by an 8 nm space. However, in cryofixed mitochondria almost all the outer membrane was observed to be in close contact with the inner boundary membrane.
Collapse
Affiliation(s)
- G A Perkins
- Biology Department, San Diego State University, California 92115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Denney RM. Relationship between monoamine oxidase (MAO) A specific activity and proportion of human skin fibroblasts which express the enzyme in culture. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 52:17-27. [PMID: 9564604 DOI: 10.1007/978-3-7091-6499-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Total deficiency of monoamine oxidase A (MAO-A) in affected males of a single, human kindred appears to be associated with mild mental retardation and significant behavioral anomalies. Though total MAO-A deficiency appears to be rare, the extent and significance of individual variation in monoamine oxidase A activity in human populations is unclear. Since MAO-A activity is undetectable in blood cells, most systematic surveys of individual variation MAO-A activity have compared enzyme activity in human fibroblasts cultured from skin biopsies. Surprisingly, MAO-A activity in skin fibroblast cultures from unrelated donors ranges over 100-fold. It has been suggested that this extreme variation in fibroblast MAO-A activity between donors reflects individual, genetic variation in the regulation of MAO-A in fibroblasts. I have found from studies with immunofluorescence microscopy and flow cytometry that the proportion of MAO-A+ cells in fibroblast cultures is (a) highly variable between cultures, (b) a reproducible characteristic of each culture and (c) the primary factor responsible for variation in MAO-A specific activity in whole cell, skin fibroblast homogenates. It has been shown previously that MAO-A activity of a skin fibroblast culture is relatively constant with continued passage prior to cellular senescence. Therefore, these new data raise the possibility that MAO-A expression is confined to a functionally distinct subset of human skin fibroblasts.
Collapse
Affiliation(s)
- R M Denney
- Graduate School of Biomedical Sciences, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
31
|
Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 1997; 119:260-72. [PMID: 9245766 DOI: 10.1006/jsbi.1997.3885] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structure of neuronal mitochondria from chick and rat was examined using electron microscope tomography of chemically fixed tissue embedded in plastic and sliced in approximately 500 nm-thick sections. Three-dimensional reconstructions of representative mitochondria were made from single-axis tilt series acquired with an intermediate voltage electron microscope (400 kV). The tilt increment was either 1 degree or 2 degrees ranging from -60 degrees to +60 degrees. The mitochondrial ultrastructure was similar across species and neuronal regions. The outer and inner membranes were each approximately 7 nm thick. The inner boundary membrane was found to lie close to the outer membrane, with a total thickness across both membranes of approximately 22 nm. We discovered that the inner membrane invaginates to form cristae only through narrow, tubular openings, which we call crista junctions. Sometimes the cristae remain tubular throughout their length, but often multiple tubular cristae merge to form lamellar compartments. Punctate regions, approximately 14 nm in diameter, were observed in which the inner and outer membranes appeared in contact (total thickness of both membranes approximately 14 nm). These contact sites are known to a play a key role in the transport of proteins into the mitochondrion. It has been hypothesized that contact sites may be proximal to crista junctions to facilitate transport of proteins destined for the cristae. However, our statistical analyses indicated that contact sites are randomly located with respect to these junctions. In addition, a close association was observed between endoplasmic reticulum membranes and the outer mitochondrial membrane, consistent with the reported mechanism of transport of certain lipids into the mitochondrion.
Collapse
Affiliation(s)
- G Perkins
- Biology Department, San Diego State University, California 92115, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- C A Mannella
- The Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|