1
|
Wang N, He Y, Zhao K, Lin X, He X, Chen A, Wu G, Zhang J, Yan B, Luo L, Xu D. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120337. [PMID: 38417357 DOI: 10.1016/j.jenvman.2024.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xi He
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China.
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Daojun Xu
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Veterinary Medicine, Hunan Agricultural University, 410128, China.
| |
Collapse
|
2
|
Aguirre-Villegas HA, Besson C, Larson RA. Modeling ammonia emissions from manure in conventional, organic, and grazing dairy systems and practices to mitigate emissions. J Dairy Sci 2024; 107:359-382. [PMID: 37690730 DOI: 10.3168/jds.2023-23782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Almost 60% of all ammonia (NH3) emissions are from livestock manure. Understanding the sources and magnitude of NH3 emissions from manure systems is critical to implement mitigation strategies. This study models 13 archetypical conventional (5 farms), organic (5 farms), and grazing (3 farms) dairy farms to estimate NH3 emissions from manure at the barn, storage, and after land application. Mitigation practices related to management of the herd, crop production, and manure are subsequently modeled to quantify the change in NH3 emissions from manure by comparing archetypical practices with these alternative practices. A mass balance of nutrients is also conducted. Emissions per tonne of excreted manure for the manure system (barn, storage, and land application) range from 3.0 to 4.4 g of NH3 for conventional farms, 3.5 to 4.4 g of NH3 for organic farms, and 3.4 to 3.9 g of NH3 for grazing farms. For all farm types, storage and land application are the main sources of NH3 emissions from manure. In general, solid manures have higher emission intensities due to higher pH during storage (pH = 7.4 for liquid, 7.8 for slurry, and 8.5 for solid manure) and lower infiltration rates after land application when compared with slurry and liquid manures. The most effective management practices to reduce NH3 emissions from manure systems are combining solid-liquid separation with manure injection (up to 49% reduction in NH3 emissions), followed by injection alone, and reducing crude protein in the dairy ration, especially in organic and grazing farms that have grazing and forages as the main component of the dairy ration. This study also shows that the intensity of NH3 emissions from manure depends significantly on the functional unit and presents results per manure excreted, total solids in excreted manure, animal units, and fat- and protein-corrected milk.
Collapse
Affiliation(s)
| | - Caleb Besson
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Rebecca A Larson
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
3
|
Moreira SG, Hoogenboom G, Nunes MR, Martin-Ryals AD, Sanchez PA. Circular agriculture increases food production and can reduce N fertilizer use of commercial farms for tropical environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163031. [PMID: 36972885 DOI: 10.1016/j.scitotenv.2023.163031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
World food production must increase in the coming years with minimal environmental impact for food and nutrition security. Circular Agriculture has emerged as an approach to minimize non-renewable resource depletion and encourage by-product reuse. The goal of this study was to evaluate Circular Agriculture as a tool to increase food production and N recovery. The assessment was conducted for two Brazilian farms (Farm 1; Farm 2) with Oxisols under no-till and a diversified cropping system, including five species of grain, three cover crop species, and sweet potato. Both farms implemented an annual two-crop rotation and an integrated crop-livestock system with beef cattle confined for 2-years. Grain and forage from the fields, leftovers from silos, and crop residues were used as cattle feed. Grain yield was 4.8 and 4.5 t ha-1 for soybean, 12.5 and 12.1 t ha-1 for maize, and 2.6 and 2.4 t ha-1 for common bean, for Farm 1 and Farm 2, respectively, which is higher than the national average. The animals gained 1.2 kg day-1 of live weight. Farm 1 exported 246 kg ha-1 year-1 of N in grains, tubers, and animals, while 216 kg ha-1 year-1 was added as fertilizer and N to cattle. Farm 2 exported 224 kg ha-1 year-1 in grain and animals, while 215 kg ha-1 year-1 was added as fertilizer and N to cattle. Circular practices, i.e., no-till, crop rotation, year-round soil covered, maize intercropped with brachiaria ruziziensis, biological N fixation, and crop-livestock integration, increased crop yield and decreased N application by 14.7 % (Farm 1) and 4.3 % (Farm 2). 85 % of the N consumed by the confined animals was excreted and converted into organic compost. Overall, circular practices associated with adequate crop management allowed recovering high rate of applied N, reducing environmental impacts, and increasing food production with lower production costs.
Collapse
Affiliation(s)
- Silvino G Moreira
- Departamento de Agricultura, Universidade Federal de Lavras, Av. Doutor Silvio Menicucci 1001, CEP 37200-000 Lavras, Minas Gerais, Brazil; University of Florida, Global Food Systems Institute, Gainesville, FL 32611, USA.
| | - Gerrit Hoogenboom
- University of Florida, Global Food Systems Institute, Gainesville, FL 32611, USA; University of Florida, Department of Agricultural and Biological Engineering, Gainesville, FL 32611, USA
| | - Marcio R Nunes
- University of Florida, Global Food Systems Institute, Gainesville, FL 32611, USA; University of Florida, Department of Soil, Water and Ecosystem Sciences, Gainesville, FL 32611, USA
| | - Ana D Martin-Ryals
- University of Florida, Department of Agricultural and Biological Engineering, Gainesville, FL 32611, USA
| | - Pedro A Sanchez
- University of Florida, Global Food Systems Institute, Gainesville, FL 32611, USA; University of Florida, Department of Soil, Water and Ecosystem Sciences, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Bai M, Wang Z, Lloyd J, Seneviratne D, Flesch T, Yuan Z, Chen D. Long-term onsite monitoring of a sewage sludge drying pan finds methane emissions consistent with IPCC default emission factor. WATER RESEARCH X 2023; 19:100184. [PMID: 37274752 PMCID: PMC10236450 DOI: 10.1016/j.wroa.2023.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
As the wastewater sector moves towards achieving net zero greenhouse gas (GHG) emissions, quantifying and understanding fugitive emissions from various sewage treatment steps is crucial for developing effective GHG abatement strategies. Methane (CH4) emissions from a sludge drying pan (SDP) were measured at a wastewater treatment plant in Australia for more than a year, using a micrometeorological technique paired with open-path lasers. The emission rate was tightly associated with sludge additions, climatology, and operational processes. The mean emission rate during the 90 weeks after initial sludge addition was 2.3 (± 0.8) g m-2 d-1, with cumulative emissions of approximately 32 t of CH4. A dynamic temporal pattern of emissions was observed, highlighting the importance of continuous (or near-continuous) measurements for quantifying SDP emissions. A Methane Correction Factor (MCF) expressed as a fraction of the measured chemical oxygen demand of the sludge, was determined to be 0.17 after 63 weeks (the median operational cycle duration at the facility). This is broadly consistent with, albeit slightly less than, the IPCC default value of 0.2 for shallow anaerobic lagoons. These emission measurements will support wastewater utilities that employ open air sludge drying processes to develop effective GHG abatement strategies.
Collapse
Affiliation(s)
- Mei Bai
- School of Agriculture and Food Science, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, Queensland 4067, Australia
| | - James Lloyd
- Sewerage Planning – Service Futures, Melbourne Water, Dockland, Victoria 3008, Australia
| | - Dilini Seneviratne
- Sewerage Planning – Service Futures, Melbourne Water, Dockland, Victoria 3008, Australia
| | - Thomas Flesch
- School of Agriculture and Food Science, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Deli Chen
- School of Agriculture and Food Science, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Wang Y, Zhang Y, Li J, Lin JG, Zhang N, Cao W. Biogas energy generated from livestock manure in China: Current situation and future trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113324. [PMID: 34298348 DOI: 10.1016/j.jenvman.2021.113324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This article investigates the current status of the livestock industry (cattle, pigs, sheep, and poultry) in China and assesses the potential for biogas production from anaerobically digested livestock manure. According to calculation results based on the latest data of livestock released by the National Bureau of Statistics of China in 2018, China produced 2 × 1012 kg of manure pollution in 2017, with pig waste representing the largest single manure source. Biogas that can be converted from high organic containing manure is a kind of clean bioenergy with low carbon footprint. In 2017, the energy potential from manure-produced biogas was about 5.74 × 1012-6.73 × 1012 MJ, which corresponds to 4-5% of China's total energy demand. Correlation analysis between biogas production and the livestock industry showed that crop production had significant effects on manure-generated biogas production. However, it is necessary to address the challenges when applying AD technology. Bioenergy potential from manure will be lost during material collection and transportation. Although large-scale livestock farming remains controversial, this type of farming can improve the energy recovery rate of livestock manure. How to gain benefits and maintain sustainable development is also a bottleneck for AD promotion. Reducing energy input in AD projects as well as enhancing the efficiency of methanogenesis of livestock manure are key factors for achieving a high net output of biogas projects. More inclusive strategies and a broader vision should be adopted to allow stakeholders to benefit from manure-generated biogas projects.
Collapse
Affiliation(s)
- Yuzheng Wang
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Junxin Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; Construction & Development Co., Ltd. of China Construction Fourth Bureau, Xiamen, Fujian, 361000, China
| | - Jih-Gaw Lin
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Ning Zhang
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenzhi Cao
- State Key Laboratory of Marine Environmental Science, College of Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
6
|
Varma VS, Parajuli R, Scott E, Canter T, Lim TT, Popp J, Thoma G. Dairy and swine manure management - Challenges and perspectives for sustainable treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146319. [PMID: 33721638 DOI: 10.1016/j.scitotenv.2021.146319] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Global dairy and swine production growth has increased significantly over the past decades, resulting in higher manure generation in certain areas and environmental concerns. Therefore, manure management is an essential focus for farmers and environmental regulators. Systematic selection of manure management practices can provide environmental benefits, but accounting for local constraints, economics and farming practices are significant challenges. All these factors drive the selection of appropriate manure management systems (MMSs). MMSs are highly varied for their design, partly due to individual farm settings, geography, and the end-use applications of manure. However, the benefits of technological advancements in MMSs provide higher manure treatment efficiency and co-production of value-added products such as recycled water, fiber, sand bedding, and nutrient-rich bio-solids, among others. To achieve higher environmental benefits, advanced manure treatment technologies have to be implemented, which comes with additional costs. So, there is a tradeoff between environmental benefits and cost. With the above prospects, this article reviews: 1) the different treatment technologies used in dairy and swine farms, 2) the life cycle assessment (LCA) method's importance in evaluating various treatment technologies for better environmental returns, and 3) decision support tools (DST) and their significance in MMSs prioritization. We found considerable heterogeneity in the available datasets, mainly on crucial parameters such as water consumption, types and amount of bedding materials, manure removal frequency, manure treatment technologies, and the extent of resource recovery. Thus, suitable environmental impact assessment inventory models are needed to evaluate a more comprehensive range of treatment technologies in MMSs, representing the spatial and farming system heterogeneities. There is also a need for user-friendly DST with adjustable inputs for the functional components of MMSs and evaluation criteria, which can rapidly evaluate the techno-economic feasibility of alternative systems.
Collapse
Affiliation(s)
- Vempalli Sudharsan Varma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Ranjan Parajuli
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erin Scott
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Tim Canter
- Food Systems and Bioengineering Division, University of Missouri, Columbia, MO 65211, USA
| | - Teng Teeh Lim
- Food Systems and Bioengineering Division, University of Missouri, Columbia, MO 65211, USA
| | - Jennie Popp
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Greg Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Lignite Improved the Quality of Composted Manure and Mitigated Emissions of Ammonia and Greenhouse Gases during Forced Aeration Composting. SUSTAINABILITY 2020. [DOI: 10.3390/su122410528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignite amendment of livestock manure is considered a viable ammonia (NH3) emission mitigation technique. However, its impact on the subsequent composting of the manure has not been well studied. This work compared changes in biochemical parameters (e.g., organic matter loss and nitrogen (N) transformation) and also the emissions of NH3 and greenhouse gases (GHGs) between lignite-amended and unamended cattle manure during forced aeration composting. Amending manure with lignite did not alter the time to compost stability despite delaying the onset of the thermophilic temperatures. Lignite treatments retained N in the manure by suppressing NH3 loss by 35–54%, resulting in lignite-amended manure composts having 10–19% more total N than the unamended compost. Relative to manure only, lignites reduced GHG emissions over the composting period: nitrous oxide (N2O) (58–72%), carbon dioxide (CO2) (12–23%) and methane (CH4) (52–59%). Low levels of CH4 and N2O emissions were observed and this was attributed to the continuous forced aeration system used in the composting. Lignite addition also improved the germination index of the final compost: 90–113% compared to 71% for manure only. These findings suggest that lignite amendment of manure has the potential to improve the quality of the final compost whilst mitigating the environmental release of NH3 and GHGs.
Collapse
|
8
|
Bai M, Impraim R, Coates T, Flesch T, Trouvé R, van Grinsven H, Cao Y, Hill J, Chen D. Lignite effects on NH 3, N 2O, CO 2 and CH 4 emissions during composting of manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110960. [PMID: 32579521 DOI: 10.1016/j.jenvman.2020.110960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Production of compost from cattle manure results in ammonia (NH3) and greenhouse gas emissions, causing the loss of valuable nitrogen (N) and having negative environmental impacts. Lignite addition to cattle pens has been reported to reduce NH3 emissions from manure by approximately 60%. However, the effect of lignite additions during the manure composting process, in terms of gaseous emissions of NH3, nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) is not clear. This composting study was conducted at a commercial cattle feedlot in Victoria, Australia. Prior to cattle entering the feedlot, we applied 4.5 kg m-2 of dry lignite to a treatment pen, and no lignite to a control pen. After 90 days of occupancy, the cattle were removed and the accumulated manure from each pen was used to form two separate compost windrows (control and treatment). During composting we collected manure samples regularly and quantified gaseous emissions of NH3, N2O, CO2, and CH4 from both windrows with an inverse-dispersion technique using open-path Fourier transform infrared spectroscopy (OP-FTIR). Over the 87-day measurement period, the cumulative gas fluxes of NH3, N2O, CO2, and CH4 were 3.4 (± 0.6, standard error), 0.4 (± 0.1), 932 (± 99), and 1.2 (± 0.3) g kg-1 (initial dry matter (DM)), respectively for the lignite amended windrow, and 7.2 (± 1.3), 0.1 (± 0.03), 579 (± 50) and -0.5 (± 0.1) g kg-1 DM, respectively for the non-lignite windrow. The addition of lignite reduced NH3 emissions by 54% during composting, but increased total greenhouse gas (GHG) emissions by 2.6 times. Total N losses as NH3-N and N2O-N were approximately 11 and 25% of initial N for the lignite and non-lignite windrows, respectively. The effectiveness of retaining N was obvious in the first three weeks after windrow formation. A cost-benefit analysis indicated that the benefit of lignite addition to cattle pens by reduced NH3 emission could justify the trade-off of increased GHG emissions.
Collapse
Affiliation(s)
- Mei Bai
- School of Agriculture and Food Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Robert Impraim
- School of Agriculture and Food Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Trevor Coates
- School of Agriculture and Food Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas Flesch
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Raphaël Trouvé
- School of Ecosystem and Forest Sciences, Faculty of Science, The University of Melbourne, Richmond, Victoria, 3121, Australia
| | - Hans van Grinsven
- PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands
| | - Yun Cao
- Circular Agriculture Research Centre, Jiangsu Academy of Agricultural Sciences, NanJing, 210014, China
| | - Julian Hill
- Ternes Agricultural consulting Pty Ltd, Upwey, Victoria, 3158, Australia
| | - Deli Chen
- School of Agriculture and Food Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
9
|
Monitoring of Biochemical Parameters and GHG Emissions in Bioaugmented Manure Composting. Processes (Basel) 2020. [DOI: 10.3390/pr8060681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Composting is a sustainable alternative for the management of manure. In this study, the effects of bioaugmentation on cattle manure composting was investigated. In this study, two windrow piles were placed at 1.7 m in height, 2.1 m in bottom width, 0.6 m in top width, and 54 m in length. Microbial inoculum was added to pile 1, whereas the second pile was used as the control. After 17 days, the C:N ratio was reduced from 25.6 to 13.6 and the total nitrogen was increased from 1.89% to 3.36% in pile 1. The dominant bacteria identified in the compost samples belonged to the genera Clostridium, Bacillus, and Flavobacterium. Quantitative polymerase chain reaction indicated that the most commonly known pathogenic bacteria, Escherichia coli, Shigella, and Salmonella, were not detected in the finished material, indicating that the pathogenic microorganisms were inactivated by the composting process. Agronomic testing for cured compost indicated a C:N ratio of less than 15 and NH+4-N:NO3−-N ratio of less than 1. The whole process of windrow composting resulted in net greenhouse gas (GHG) emissions of 157.94 tCO2-e and a global warming factor (GWF) of 1.04 tCO2-e·t−1 manure composted. This study showed that although bioaugmentation is a feasible treatment method for manure, GHG emissions need to be monitored.
Collapse
|