1
|
Halalsheh M, Shatanawi K, Shawabkeh R, Kassab G, Mohammad H, Adawi M, Ababneh S, Abdullah A, Ghantous N, Balah N, Almomani S. Impact of temperature and residence time on sewage sludge pyrolysis for combined carbon sequestration and energy production. Heliyon 2024; 10:e28030. [PMID: 38596039 PMCID: PMC11002555 DOI: 10.1016/j.heliyon.2024.e28030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Environmental challenges related to sewage sludge call for urgent sustainable management of this resource. Sludge pyrolysis might be considered as a sustainable technology and is anticipated to support measures for mitigating climate change through carbon sequestration. The end products of the process have various applications, including the agricultural utilization of biochar, as well as the energy exploitation of bio-oil and syngas. In this research, sewage sludge was pyrolyzed at 500 °C, 600 °C, 750 °C, and 850 °C. At each temperature, pyrolysis was explored at 1hr, 2hrs, and 3hrs residence times. The ratio (H/Corg)at was tapped to imply organic carbon stability and carbon sequestration potential. Optimum operating conditions were achieved at 750 °C and 2hrs residence time. Produced biochar had (H/Corg)at ratio of 0.54, while nutrients' contents based on dry weight were 3.99%, 3.2%, and 0.6% for total nitrogen (TN), total phosphorus (TP), and total potassium (TK), respectively. Electrical conductivity of biochar was lesser than the feed sludge. Heavy metals in biochar aligned with the recommended values of the International Biochar Initiative. Heat content of condensable and non-condensable volatiles was sufficient to maintain the temperature of the furnace provided that PYREG process is considered. However, additional energy source is demanded for sludge drying.
Collapse
Affiliation(s)
- M. Halalsheh
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - K. Shatanawi
- Civil Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| | - R. Shawabkeh
- Department of Chemical Engineering, School of Engineering, The University of Jordan, Amman, Jordan
| | - G. Kassab
- Civil Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| | - H. Mohammad
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - M. Adawi
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - S. Ababneh
- German Development Cooperation, Amman, Jordan
| | - A. Abdullah
- German Development Cooperation, Amman, Jordan
| | - N. Ghantous
- German Development Cooperation, Amman, Jordan
| | - N. Balah
- German Development Cooperation, Amman, Jordan
| | - S. Almomani
- German Development Cooperation, Amman, Jordan
| |
Collapse
|
2
|
Mitzia A, Böserle Hudcová B, Vítková M, Kunteová B, Casadiego Hernandez D, Moško J, Pohořelý M, Grasserová A, Cajthaml T, Komárek M. Pyrolysed sewage sludge for metal(loid) removal and immobilisation in contrasting soils: Exploring variety of risk elements across contamination levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170572. [PMID: 38309337 DOI: 10.1016/j.scitotenv.2024.170572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Efficient treatment of sewage sludge may transform waste into stable materials with minimised hazardous properties ready for secondary use. Pyrolysed sewage sludge, sludgechar, has multiple environmental benefits including contaminant sorption capacity and nutrient recycling. The properties of five sludgechars were tested firstly for adsorption efficiency in laboratory solutions before prospective application to soils. A wide variety of metal(loid)s (As, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn) was involved. Secondly, the sludgechars (3 % v/v) were incubated in five soils differing in (multi)-metal(loid) presence and the level of contamination. The main aim was to evaluate the metal(loid) immobilisation potential of the sludgechars for soil remediation. Moreover, nutrient supply was investigated to comprehensively assess the material's benefits for soils. All sludgechars were efficient (up to 100 %) for the removal of metal cations while their efficiency for metal(loid) anions was limited in aqueous solutions. Phosphates and sulphates were identified crucial for metal(loid) capture, based on SEM/EDS, XRD and MINTEQ findings. In soils, important fluctuations were observed for Zn, being partially immobilised by the sludgechars in high-Zntot soils, while partially solubilised in moderate to low-Zntot soils. Moreover, pH showed to be crucial for material stability, metal(loid) adsorption ability and their immobilisation in soils. Although metal(loid) retention was generally low in soils, nutrient enrichment was significant after sludgechar application. Long-term evaluation of the material sorption efficiency, nutrient supply, and ageing in soil environments will be necessary in future studies.
Collapse
Affiliation(s)
- Aikaterini Mitzia
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Barbora Böserle Hudcová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
| | - Barbora Kunteová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Daniela Casadiego Hernandez
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Jaroslav Moško
- Institute of Chemical Process Fundamentals, The Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals, The Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4 - Krč, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4 - Krč, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| |
Collapse
|
3
|
Namdari M, Soleimani M, Mirghaffari N, Kharrazi SM. Effect of biological sewage sludge and its derived biochar on accumulation of potentially toxic elements by corn (Zea mays L.). Sci Rep 2024; 14:5985. [PMID: 38472316 PMCID: PMC10933428 DOI: 10.1038/s41598-024-56652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The land application of sewage sludge can cause different environmental problems due to the high content of potentially toxic elements (PTEs). The objective of this study was to compare the effect of urban biological sewage sludge (i.e. the waste of activated sludge process) and its derived biochar as the soil amendments on the bioavailability of PTEs and their bioaccumulation by corn (Zea mays L.) under two months of greenhouse conditions. The soil was treated by adding biochar samples at 0 (control), 1, 3, 5% w/w. The diethylenetriamine pentaacetic acid (DTPA)-extractable concentrations of PTEs including Zn, Pb, Cd, Cr, Ni, Fe, and Cu in soil and their accumulation by plant shoot and root were measured. Conversion of the biological sewage sludge into the biochar led to decrease the PTEs bioavailability and consequently decreased their contents in plant tissues. The DTPA extractable metal concentrations of produced biochar in comparison to the biological sewage sludge reduced 75% (Cd), 65% (Cr), 79% (Ni and Pb), 76% (Zn), 91% (Cu) and 88% (Fe). Therefore, the content of Ni, Fe, Zn and Cd in corn shoot was decreased 61, 32, 18 and 17% respectively in application of 5% biochar than of raw sewage sludge. Furthermore, the application of 5% biochar enhanced the physiological parameters of the plants including shoot dry weight (twice) and wet weight (2.25 times), stem diameter (1.70 times), chlorophyll content (1.03 times) in comparison to using 5% raw sewage sludge. The results of the study highlight that application of the biochar derived from urban biological sewage sludge in soil could decrease the risk of PTEs to the plant.
Collapse
Affiliation(s)
- Maryam Namdari
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Nourollah Mirghaffari
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | |
Collapse
|
4
|
Kumar V, Radziemska M. Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3725-3742. [PMID: 34811628 DOI: 10.1007/s10653-021-01157-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The pollution of toxic elements (TEs) in the ecosystem exhibits detrimental effects on the human health. In this paper, we debated remediation approaches for TEs polluted soils via immobilization methods employing numerous amendments with reverence to type of soil and metals, and amendment, immobilization competence, fundamental processes and field applicability. We argued the influence of pH, soil organic matter, textural properties, microbes, speciation and biochar on the bioavailability of TEs. All these properties of soil, microbes and biochar are imperative for effective and safe application of these methods in remediation of TEs contamination in the ecosystem. Further, the application of physiochemical properties, microbes and biochar as amendments has significant synergistic impacts not only on absorption of elements but also on diminution of toxic elements.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
5
|
Ebrahimi M, Friedl J, Vahidi M, Rowlings DW, Bai Z, Dunn K, O'Hara IM, Zhang Z. Effects of hydrochar derived from hydrothermal treatment of sludge and lignocellulose mixtures on soil properties, nitrogen transformation, and greenhouse gases emissions. CHEMOSPHERE 2022; 307:135792. [PMID: 35872065 DOI: 10.1016/j.chemosphere.2022.135792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, hydrochar samples derived from hydrothermal treatment (HTT) of sludge and sludge-biomass mixtures were applied to a sandy soil and their effects on soil properties, soil nutrients, greenhouse gas (GHG) emissions, and soluble heavy metals were investigated. The application of untreated sludge and hydrochar derived from HTT of sludge at 180 °C led to the highest soluble nitrate, CO2 and N2O emissions, followed by the application of hydrochar samples derived from HTT of sludge-biomass mixtures at 180 °C. Although the application of hydrochar samples derived from HTT of sludge alone and sludge-biomass mixtures at 240 °C in sandy soil led to the lowest emissions of CO2 and N2O, it resulted in lower levels of soil electrical conductivity (EC), cation exchange capacity (CEC) and soluble phosphorus. The application of hydrochar samples derived from HTT at 240 °C led to the production of CH4 and lower nitrate-N contents than hydrochar samples derived from HTT at 180 °C. These results indicated that the soils containing hydrochar samples from HTT at 240 °C were anaerobic, which might inhibit the growth of plants. The application of hydrochar samples derived from HTT of sludge-biomass at 180 °C led to significantly improved contents of soil soluble phosphorus (2.56 and 2.84 g kg-1 soil) and soil nitrate-N (160.2 and 263.2 mg kg-1 soil) at the end of 60 days of incubation. However, these contents were lower than the contents of soluble phosphorus (3.71 and 4.45 g kg-1 soil) and nitrate-N (528.3 and 583.2 mg kg-1 soil) with the application of untreated sludge and sludge derived from HTT of sludge alone at 180 °C. Although more studies are needed to understand the mechanisms and effects on different soils, this study provides useful insights into the application of hydrochar derived from sludge-biomass mixture in soil.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Johannes Friedl
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Mohammadjavad Vahidi
- Department of Soil Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - David W Rowlings
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kameron Dunn
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
6
|
Zhang M, Liu Y, Wei Q, Gu X, Liu L, Gou J. Biochar application ameliorated the nutrient content and fungal community structure in different yellow soil depths in the karst area of Southwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:1020832. [PMID: 36352867 PMCID: PMC9638009 DOI: 10.3389/fpls.2022.1020832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The influence of biochar on the change of nutrient content and fungal community structure is still not clear, especially in different yellow soil depths in karst areas. A soil column leaching simulation experiment was conducted to investigate the influence of biochar on soil content, enzymatic activity, and fungal community diversity and structural composition. Three biochar amounts were studied, namely, 0%(NB, no biochar), 1.0%(LB, low-application-rate biochar), and 4.0% (HB, high-application-rate biochar). The results showed that biochar increased the pH value and the contents of soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) but reduced the microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN). Furthermore, this effect was enhanced with increasing biochar amount. Biochar was conducive to improving the nutrient availability in topsoil (0-20 cm), especially TN, AK, and MBN. Meanwhile, biochar affected the enzymatic activity, especially the sucrase activity. Biochar affected the diversity and structure of the fungal community, of which HB treatment had the most obvious effect. Among these treatments, Aspergillus, unclassified_Chaetomiaceae, Mortierella, Spizellomyces, Penicillium, Fusarium, and unclassified_Chromista fungal genera were the highest. Moreover, biochar inhibited the growth of harmful pathogens and increased the abundance of beneficial fungi in soil, and the effect was enhanced with increasing biochar amount and soil depth. Redundancy analysis (RDA) showed that AK was an important factor in yellow soil, although the main environmental factors affecting the fungal community structure were different in different soil depths. Overall, biochar had a positive effect on improving the land productivity and micro-ecological environment of yellow soil in the karst area.
Collapse
|
7
|
Wang Z, Tian Q, Guo J, Wu R, Zhu H, Zhang H. Co-pyrolysis of sewage sludge/cotton stalks with K 2CO 3 for biochar production: Improved biochar porosity and reduced heavy metal leaching. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:199-207. [PMID: 34520992 DOI: 10.1016/j.wasman.2021.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The co-pyrolysis of sewage sludge and biomass is considered a promising technique for reducing the volume of sewage sludge, adding value, and decreasing the risk associated with this waste. In this study, sewage sludge and cotton stalks were pyrolyzed together with different amounts of K2CO3 to evaluate the potential of chemical activation using K2CO3 for improving the porosity of the biochar formed and immobilizing the heavy metals present in it. It was found that K2CO3 activation effectively improved the pore structure and increased the aromaticity of the biochar. Moreover, K2CO3 activation transformed the heavy metals (Cu, Zn, Pb, Ni, Cr, and Cd) into more stable forms (oxidizable and residual fractions). The activation effect became more pronounced with increasing amount of added K2CO3, eventually resulting in a significant reduction in the mobility and bioavailability of the heavy metals in the biochar. Further analysis revealed that, during the co-pyrolysis process, K2CO3 activation resulted in a reductive atmosphere, increased the alkalinity of the biochar, and led to the formation CaO, CaCO3, and aluminosilicates, which aided the immobilization of the heavy metals. K2CO3 activation also effectively reduced the leachability, and thus, the environmental risks of the heavy metals. Thus, K2CO3 activation can improve the porosity of the biochar derived from sewage sludge/cotton stalks and aid the immobilization of the heavy metals in it.
Collapse
Affiliation(s)
- Zhipu Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Qingmei Tian
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Jing Guo
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 10083, China
| | - Ruiqi Wu
- Xinjiang Academy of Environmental Protection Science, Urumqi 830011, China
| | - Henan Zhu
- Institute of Research of Iron and Steel, Shasteel, Suzhou 215000, China
| | - Hongzhen Zhang
- Chinese Academy of Environmental Planning, Beijing 100012, China.
| |
Collapse
|
8
|
Wang Z, Shen R, Ji S, Xie L, Zhang H. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126468. [PMID: 34186429 DOI: 10.1016/j.jhazmat.2021.126468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Co-pyrolysis of sewage sludge and straws has been used to improve the pore structure and reduce the ecological risks of heavy metals in sewage sludge-derived biochars. However, to date, no study has focused on the effects of biochar derived from sewage sludge/straws on the immobilization and phytoavailability of heavy metals in soil. Here, we studied the effects of biochar derived from sewage sludge/cotton stalks (SCB) and that derived from sewage sludge alone (SSB) on the remediation of sandy loam soil contaminated by Pb, Cu, and Zn. SCB amendment decreased the bioavailable forms of Pb, Cu, and Zn in the soil by 19.0%, 34.9%, and 18.2%, respectively, and reduced their accumulation in ryegrass by 28.6%, 50.1%, and 30.0%, respectively, compared with those by SSB amendment. Furthermore, SCB amendment transformed more metals from the acid-soluble fraction to the oxidizable fraction than SSB amendment, indicating that complexation played a more critical role in SCB amendment than in SSB amendment. Both biochar amendments effectively improved soil water holding capacity, increased the supply of available P, N, and K, and promoted ryegrass growth. The findings of this study show the benefits of SCB over SSB for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Zhipu Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Rong Shen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Shibo Ji
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China.
| | - Like Xie
- Experimental Testing Institute of Petro China Xinjiang Oilfield Company, Karamay 834000, China.
| | - Haibing Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| |
Collapse
|
9
|
One Year Residual Effect of Sewage Sludge Biochar as a Soil Amendment for Maize in a Brazilian Oxisol. SUSTAINABILITY 2021. [DOI: 10.3390/su13042226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The thermochemical transformation of sewage sludge (SS) to biochar (SSB) allows exploring the advantages of SS and reduces possible environmental risks associated with its use. Recent studies have shown that SSB is nutrient-rich and may replace mineral fertilizers. However, there are still some questions to be answered about the residual effect of SSB on soil nutrient availability. In addition, most of the previous studies were conducted in pots or soil incubations. Therefore, the residual effect of SSB on soil properties in field conditions remains unclear. This study shows the results of nutrient availability and uptake as well as maize yield the third cropping of a three-year consecutive corn cropping system. The following treatments were compared: (1) control: without mineral fertilizer and biochar; (2) NPK: with mineral fertilizer; (3) SSB300: with biochar produced at 300 °C; (4) SSB300+NPK; (5) SSB500: with biochar produced at 500 °C; and (6) SSB500+NPK. The results show that SSB has one-year residual effects on soil nutrient availability and nutrient uptake by maize, especially phosphorus. Available soil P contents in plots that received SSB were around five times higher than the control and the NPK treatments. Pyrolysis temperature influenced the SSB residual effect on corn yield. One year after suspending the SSB application, SSB300 increased corn yield at the same level as the application of NPK. SSB300 stood out and promoted higher grain yield in the residual period (8524 kg ha−1) than SSB500 (6886 kg ha−1). Regardless of pyrolysis temperature, biochar boosted the mineral fertilizer effect resulting in higher grain yield than the exclusive application of NPK. Additional long-term studies should be focused on SSB as a slow-release phosphate fertilizer.
Collapse
|