1
|
Westermann L, Diergaarde B, Heidegger S, Poeck H, Szczepański MJ, Reichert TE, Spoerl S, Whiteside TL, Spoerl S, Ludwig N. Expression of vesiculation-related genes is associated with a tumor-promoting microenvironment: a pan-cancer analysis. Clin Transl Oncol 2025:10.1007/s12094-024-03796-8. [PMID: 39776398 DOI: 10.1007/s12094-024-03796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME). METHODS Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells. Expression profiles were compared among 28 tumor types listed in the Cancer Genome Atlas (TCGA). Gene expression and survival analysis (GEPIA2), immunogenomic analysis (TISIDB), and genomic analysis (GSCA) were performed. RESULTS Vesiculation-related genes were overexpressed in tissues of most tumor types compared to healthy tissues, and high expression levels were associated with worse overall survival in cervical squamous cell carcinoma, kidney chromophobe, lower grade glioma, hepatocellular carcinoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma but with improved overall survival in kidney renal clear cell carcinoma. Expression of these signatures correlated with an increased abundance of infiltrating CD4( +) T cells and dendritic cells, a decreased abundance of B cells and eosinophils, and activation of tumor cell apoptosis and epithelial-mesenchymal transition pathways in all tumor types. 17-AAG was identified as a potential drug candidate to target tumors with elevated expression of vesiculation-related genes. CONCLUSIONS Vesiculation-related genes were associated with distinct immunological and genomic landscapes further emphasizing the important role of TEX in cancer progression.
Collapse
Affiliation(s)
- Luisa Westermann
- Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Heidegger
- Department of Medicine III, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Early Clinical Development, Oncology, Genentech, South San Francisco, CA, USA
| | - Hendrik Poeck
- Clinic and Polyclinic for Internal Medicine III, University Hospital Regensburg and Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Mirosław J Szczepański
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Torsten E Reichert
- Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa L Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steffen Spoerl
- Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nils Ludwig
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pathology, UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Renu K. Exosomes derived from human adipose mesenchymal stem cells act as a therapeutic target for oral submucous fibrosis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102224. [PMID: 39765310 DOI: 10.1016/j.jormas.2025.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Oral submucosal fibrosis is a highly malignant oral condition that necessitates the use of sophisticated therapeutic procedures. OSF is a multifactorial precancerous condition induced by areca nut chewing, deficiencies in vitamins and trace minerals, immunological aspects, and hereditary factors. Adipose tissue-derived mesenchymal stem cells possess the capability for multidirectional activation and are extensively distributed throughout the body. They have minimal immunogenicity and are extensively utilized in cancer treatment. Exosomes are extracellular vesicles produced by the intracellular route. They are biological carriers comprising microRNA, messenger RNA, lipids and proteins crucial for intercellular communication. ADSC exosomes, serving as a vehicle for miRNA, possess accessibility and little immunogenicity. They can significantly contribute to adipose tissue regrowth, angiogenesis, immunological modulation, and tissue repair. ADSC-Exo exhibits antifibrotic properties and may serve as a potential treatment for OSF. This review presents a novel therapeutic approach and clarifies the precise mechanisms involved in the clinical management of OSF using ADSC-Exo.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Fochtman D, Marczak L, Pietrowska M, Wojakowska A. Challenges of MS-based small extracellular vesicles proteomics. J Extracell Vesicles 2024; 13:e70020. [PMID: 39692094 DOI: 10.1002/jev2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024] Open
Abstract
Proteomic profiling of small extracellular vesicles (sEV) is a powerful tool for discovering biomarkers of various diseases. This process most often assisted by mass spectrometry (MS) usually lacks standardization and recognition of challenges which may lead to unreliable results. General recommendations for sEV MS analyses have been briefly given in the MISEV2023 guidelines. The present work goes into detail for every step of sEV protein profiling with an overview of factors influencing such analyses. This includes reporting and defining the sEV source and vesicle isolation, protein solubilization and digestion, 'offline' and 'online' sample complexity reduction, the analysis type itself, and subsequent data analysis. Every stage in this process affects the others, which could result in different outcomes. Although characterization and comparisons of different sEV isolation methods are known and accessible and MS-based profiling details are provided for cell or tissue samples, no consensus work has been ever published to describe the whole process of sEV proteomic analysis. Reliable results can be obtained from sEV profiling provided that the analysis is well planned, prepared for, and backed by pilot studies or appropriate research.
Collapse
Affiliation(s)
- Daniel Fochtman
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
5
|
Whiteside TL. Tumor-derived Exosomes and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:923-931. [PMID: 39284119 DOI: 10.4049/jimmunol.2400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 11/13/2024]
Abstract
Cancer immunotherapy, including immune checkpoint blockade, has been approved for treatment of patients with many cancer types. However, some patients fail to respond to immunotherapy, and emerging evidence indicates that tumor-derived exosomes (TEX) play a major role in reprogramming the host immune cells by inducing their dysfunction. Focusing on effector T cells, this review illustrates mechanisms of suppression that TEX use, thus promoting tumor escape from the host immune system. TEX carry multiple suppressive signals that drive T cell dysfunction and convert the tumor microenvironment into "an immune desert" in which activated T cells either die or are reprogrammed to mediate protumor functions. The reprogrammed T cells produce a new crop of CD3+ immunoinhibitory exosomes that further amplify suppression mediated by TEX. The result is a profound depletion of antitumor immune effector cells that reflects the defective immune competence of the cancer patient and partly explains why TEX are a significant barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA; and UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
6
|
Nieszporek A, Wierzbicka M, Labedz N, Zajac W, Cybinska J, Gazinska P. Role of Exosomes in Salivary Gland Tumors and Technological Advances in Their Assessment. Cancers (Basel) 2024; 16:3298. [PMID: 39409917 PMCID: PMC11475412 DOI: 10.3390/cancers16193298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Backgroud: Salivary gland tumors (SGTs) are rare and diverse neoplasms, presenting significant challenges in diagnosis and management due to their rarity and complexity. Exosomes, lipid bilayer vesicles secreted by almost all cell types and present in all body fluids, have emerged as crucial intercellular communication agents. They play multifaceted roles in tumor biology, including modulating the tumor microenvironment, promoting metastasis, and influencing immune responses. Results: This review focuses on the role of exosomes in SGT, hypothesizing that novel diagnostic and therapeutic approaches can be developed by exploring the mechanisms through which exosomes influence tumor occurrence and progression. By understanding these mechanisms, we can leverage exosomes as diagnostic and prognostic biomarkers, and target them for therapeutic interventions. The exploration of exosome-mediated pathways contributing to tumor progression and metastasis could lead to more effective treatments, transforming the management of SGT and improving patient outcomes. Ongoing research aims to elucidate the specific cargo and signaling pathways involved in exosome-mediated tumorigenesis and to develop standardized techniques for exosome-based liquid biopsies in clinical settings. Conclusions: Exosome-based liquid biopsies have shown promise as non-invasive, real-time systemic profiling tools for tumor diagnostics and prognosis, offering significant potential for enhancing patient care through precision and personalized medicine. Methods like fluorescence, electrochemical, colorimetric, and surface plasmon resonance (SPR) biosensors, combined with artificial intelligence, improve exosome analysis, providing rapid, precise, and clinically valid cancer diagnostics for difficult-to-diagnose cancers.
Collapse
Affiliation(s)
- Artur Nieszporek
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Małgorzata Wierzbicka
- Institute of Human Genetics Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
- Department of Otolaryngology, Regional Specialist Hospital Wroclaw, Research & Development Centre, Kamienskiego Street 73a, 51-124 Wroclaw, Poland
| | - Natalia Labedz
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Weronika Zajac
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Joanna Cybinska
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Patrycja Gazinska
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| |
Collapse
|
7
|
Cerrotti G, Buratta S, Latella R, Calzoni E, Cusumano G, Bertoldi A, Porcellati S, Emiliani C, Urbanelli L. Hitting the target: cell signaling pathways modulation by extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:527-552. [PMID: 39697631 PMCID: PMC11648414 DOI: 10.20517/evcna.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites. A large part of these molecules are involved in mediating or influencing signal transduction in target cells. In multicellular organisms, EVs have been suggested to modulate signals in cells localized either in the neighboring tissue or in distant regions of the body by interacting with the cell surface or by entering the cells via endocytosis or membrane fusion. Most of the EV-modulated cell signaling pathways have drawn considerable attention because they affect morphogenetic signaling pathways, as well as pathways activated by cytokines and growth factors. Therefore, they are implicated in relevant biological processes, such as embryonic development, cancer initiation and spreading, tissue differentiation and repair, and immune response. Furthermore, it has recently emerged that multicellular organisms interact with and receive signals through EVs released by their microbiota as well as by edible plants. This review reports studies investigating EV-mediated signaling in target mammalian cells, with a focus on key pathways for organism development, organ homeostasis, cell differentiation and immune response.
Collapse
Affiliation(s)
- Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Agnese Bertoldi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia 06123, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia 06123, Italy
| |
Collapse
|
8
|
Piszczatowska K, Czerwaty K, Dżaman K, Jermakow N, Brzost J, Kantor I, Ludwig N, Szczepański MJ. Evaluation of CNPase and TGFβ1/Smad Signalling Pathway Molecule Expression in Sinus Epithelial Tissues of Patients with Chronic Rhinosinusitis with (CRSwNP) and without Nasal Polyps (CRSsNP). J Pers Med 2024; 14:894. [PMID: 39338148 PMCID: PMC11433593 DOI: 10.3390/jpm14090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP, respectively) is a chronic inflammatory disease affecting almost 5 to 12% of the population and exhibiting high recurrence rates after functional endoscopic sinus surgery (FESS). TGFβ1-related pathways contribute to tissue remodelling, which is one of the key aspects of CRS pathogenesis. Additionally, adenosine signalling participates in inflammatory processes, and CNPase was shown to elevate adenosine levels by metabolizing cyclic monophosphates. Thus, the aim of this study was to assess the expression levels of Smad2, pSmad3, TGFβ1, and CNPase protein via immunohistochemistry in sinus epithelial tissues from patients with CRSwNP (n = 20), CRSsNP (n = 23), and non-CRS patients (n = 8). The expression of Smad2, pSmad3, TGFβ1, and CNPase was observed in the sinus epithelium and subepithelial area of all three groups of patients, and their expression correlated with several clinical symptoms of CRS. Smad2 expression was increased in CRSsNP patients compared to CRSwNP patients and controls (p = 0.001 and p < 0.001, respectively), pSmad3 expression was elevated in CRSwNP patients compared to controls (p = 0.007), TGFβ1 expression was elevated in CRSwNP patients compared to controls (p = 0.009), and CNPase was decreased in CRSsNP patients compared to controls (p = 0.03). To the best of our knowledge, we are the first to demonstrate CNPase expression in the upper airway epithelium of CRSwNP, CRSsNP, and non-CRS patients and point out a putative synergy between CNPase and TGFβ1/Smad signalling in CRS pathogenesis that emerges as a novel still undiscovered aspect of CRS pathogenesis; further studies are needed to explore its function in the course of the chronic inflammation of the upper airways.
Collapse
Affiliation(s)
- Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland;
| | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Nils Ludwig
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| |
Collapse
|
9
|
Guo W, Liu W, Wang J, Fan X. Extracellular vesicles and macrophages in tumor microenvironment: Impact on cervical cancer. Heliyon 2024; 10:e35063. [PMID: 39165926 PMCID: PMC11334669 DOI: 10.1016/j.heliyon.2024.e35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Cervical cancer is a serious threat to women's health. Extracellular vesicles exist in most body fluids for communication between organisms, having different effects on the occurrence, development, angiogenesis, and metastasis of cervical cancer, and are expected to become new targets for treatment. Macrophages are natural immune systems closely linked to the development of cervical cancer. In recent years, an increasing number of studies have confirmed the role of extracellular vesicles and macrophages in the gynecologic tumor environment. This article reviews the mechanism of action and application prospects of extracellular vesicles and macrophages in the cervical cancer microenvironment. In addition, the relationship between extracellular vesicles and macrophages from different sources is described, which provides ideas for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wen Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Wenqiong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Junqing Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xinran Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
10
|
Kumar P, Lakhera R, Aggarwal S, Gupta S. Unlocking the Therapeutic Potential of Oral Cancer Stem Cell-Derived Exosomes. Biomedicines 2024; 12:1809. [PMID: 39200273 PMCID: PMC11351673 DOI: 10.3390/biomedicines12081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Oral cancer (OC) presents a significant global health burden with rising incidence rates. Despite advancements in diagnosis and treatments, the survival rate for OC patients, particularly those with advanced or recurrent disease, remains low at approximately 20%. This poor prognosis is often due to a small population of cancer stem cells (CSCs) that are capable of self-renewal and immune evasion, playing pivotal roles in proliferation, tumor initiation, progression, metastasis, and therapy resistance. Exosomes, which are nano-sized extracellular vesicles (EVs), have emerged as crucial mediators of cell-to-cell communication within the tumor microenvironment (TME). These vesicles carry diverse molecules such as DNA, RNA, proteins, lipids, and metabolites, influencing various cellular processes. Emerging evidence suggests that CSC-derived EVs significantly promote tumor progression and metastasis and maintain the balance between CSCs and non-CSCs, which is vital for intracellular communication within the TME of oral cancer. Recent reports indicate that oral cancer stem cell-derived EVs (OCSC-EVs) influence stemness, immune evasion, metastasis, angiogenesis, tumor reoccurrence, and drug resistance. Understanding OCSC-EVs could significantly improve oral cancer diagnosis, prognosis, and therapy. In this mini-review, we explore OCSC-derived exosomes in oral cancer, examining their potential as diagnostic and prognostic biomarkers that reflect CSC characteristics, and delve into their therapeutic implications, emphasizing their roles in tumor progression and therapy resistance. However, despite their promising potential, several challenges remain, including the need to standardize isolation and characterization methods and to elucidate exosome-mediated mechanisms. Thus, a comprehensive understanding of OCSC-EVs could pave the way for innovative therapeutic strategies that have the potential to improve clinical outcomes for OC patients.
Collapse
Affiliation(s)
- Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rishabh Lakhera
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Sadhna Aggarwal
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| |
Collapse
|
11
|
Ding W, Su Y, Mo J, Sun D, Cao C, Zhang X, Wang Y. Novel artemisinin derivative P31 inhibits VEGF-induced corneal neovascularization through AKT and ERK1/2 pathways. Heliyon 2024; 10:e29984. [PMID: 38699723 PMCID: PMC11063438 DOI: 10.1016/j.heliyon.2024.e29984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Corneal neovascularization (CoNV)is a major cause of blindness in many ocular diseases. Substantial evidence indicates that vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of corneal neovascularization. Previous evidence showed that artemisinin may inhibit angiogenesis through down regulation of the VEGF receptors. We designed and synthesized artemisinin derivatives, and validated their inhibitory effect on neovascularization in cell and animal models, and explored the mechanisms by which they exert an inhibitory effect on CoNV. Among these derivatives, P31 demonstrated significant anti-angiogenic effects in vivo and in vitro. Besides, P31 inhibited VEGF-induced HUVECs angiogenesis and neovascularization in rabbit model via AKT and ERK pathways. Moreover, P31 alleviated angiogenic and inflammatory responses in suture rabbit cornea. In conclusion, as a novel artemisinin derivative, P31 attenuates corneal neovascularization and has a promising application in ocular diseases.
Collapse
Affiliation(s)
- Wen Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Jianshan Mo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Danyuan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yandong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Liu L, Liu Q. Characterization of macrophages in head and neck squamous cell carcinoma and development of MRG-based risk signature. Sci Rep 2024; 14:9914. [PMID: 38688945 PMCID: PMC11061135 DOI: 10.1038/s41598-024-60516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Macrophages are immune cells in the TME that can not only inhibit angiogenesis, extracellular matrix remodeling, cancer cell proliferation, and metastasis but also mediate the phagocytosis and killing of cancer cells after activation, making them key targets in anti-tumor immunotherapy. However, there is little research on macrophages and their relation to disease prognosis in HNSCC. Initially, we collected scRNA-seq, bulk RNA-seq, and clinical data. Subsequently, we identified macrophages and distinguished MRGs. Using the K-means algorithm, we performed consensus unsupervised clustering. Next, we used ssGSEA analysis to assess immune cell infiltration in MRG clusters. A risk model was established using multivariate Cox analysis. Then, Kaplan-Meier, ROC curves, univariate and multivariate COX analyses, and C-index was used to validate the predictive power of the signature. The TIDE method was applied to assess the response to immunotherapy in patients diagnosed with HNSCC. In addition, drug susceptibility predictions were made for the GDSC database using the calcPhenotype function. We found that 8 MRGs had prognostic potential. Patients in the MRG group A had a higher probability of survival, and MRG clusters A and B had different characteristics. Cluster A had a higher degree of expression and infiltration in MRG, indicating a closer relationship with MRG. The accuracy of the signature was validated using univariate and multivariate Cox analysis, C-index, and nomogram. Immune landscape analysis found that various immune functions were highly expressed in the low-risk group, indicating an improved response to immunotherapy. Finally, drugs with high sensitivity to HNSCC (such as 5-Fluorouracil, Temozolomide, Carmustine, and EPZ5676) were explored and analyze the malignant characteristics of HNSCC. We constructed a prognostic model using multivariate Cox analysis, consisting of 8 MRGs (TGM2, STC1, SH2D3C, PIK3R3, MAP3K8, ITGA5, ARHGAP4, and AQP1). Patients in the low-risk group may have a higher response to immunotherapy. The more prominent drugs for drug selection are 5-fluorouracil, temozolomide and so on. Malignant features associated with HNSCC include angiogenesis, EMT, and the cell cycle. This study has opened up new prospects for the prognosis, prediction, and clinical treatment strategy of HNSCC.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Liu
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Dhamdhere MR, Spiegelman VS. Extracellular vesicles in neuroblastoma: role in progression, resistance to therapy and diagnostics. Front Immunol 2024; 15:1385875. [PMID: 38660306 PMCID: PMC11041043 DOI: 10.3389/fimmu.2024.1385875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.
Collapse
Affiliation(s)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
14
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, Kosar M, Bartek J, Wang ZX, Xu RH. Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull (Beijing) 2024; 69:803-822. [PMID: 38320897 DOI: 10.1016/j.scib.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 02/08/2024]
Abstract
Patients with high tumor mutational burden (TMB) levels do not consistently respond to immune checkpoint inhibitors (ICIs), possibly because a high TMB level does not necessarily result in adequate infiltration of CD8+ T cells. Using bulk ribonucleic acid sequencing (RNA-seq) data from 9311 tumor samples across 30 cancer types, we developed a novel tool called the modulator of TMB-associated immune infiltration (MOTIF), which comprises genes that can determine the extent of CD8+ T cell infiltration prompted by a certain TMB level. We confirmed that MOTIF can accurately reflect the integrity and defects of the cancer-immunity cycle. By analyzing 84 human single-cell RNA-seq datasets from 32 types of solid tumors, we revealed that MOTIF can provide insights into the diverse roles of various cell types in the modulation of CD8+ T cell infiltration. Using pretreatment RNA-seq data from 13 ICI-treated cohorts, we validated the use of MOTIF in predicting CD8+ T cell infiltration and ICI efficacy. Among the components of MOTIF, we identified EMC3 as a negative regulator of CD8+ T cell infiltration, which was validated via in vivo studies. Additionally, MOTIF provided guidance for the potential combinations of programmed death 1 blockade with certain immunostimulatory drugs to facilitate CD8+ T cell infiltration and improve ICI efficacy.
Collapse
Affiliation(s)
- Zheng-Yu Qian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Yi-Qian Pan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Xue-Xin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Hao-Xiang Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ze-Xian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Martin Kosar
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH1 1LT, UK
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
16
|
Nannan L, Decombis S, Terryn C, Audonnet S, Michel J, Brassart‐Pasco S, Gsell W, Himmelreich U, Brassart B. Dysregulation of intercellular communication in vitro and in vivo via extracellular vesicles secreted by pancreatic duct adenocarcinoma cells and generated under the influence of the AG9 elastin peptide-conditioned microenvironment. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e145. [PMID: 38939412 PMCID: PMC11080898 DOI: 10.1002/jex2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 06/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor prognosis due to its highly metastatic profile. Intercellular communication between cancer and stromal cells via extracellular vesicles (EVs) is crucial for the premetastatic microenvironment preparation leading to tumour metastasis. This study shows that under the influence of bioactive peptides derived from the extracellular matrix microenvironment, illustrated here by the AG-9 elastin-derived peptide (EDP), PDAC cells secrete more tumour-derived EVs. Compared to PDAC-derived EVs, tumour-derived EVs resulting from AG-9 treatment (PDAC AG-9-derived EVs) significantly stimulated cell proliferation. At constant amount, tumour-derived EVs were similarly taken up by PDAC and HMEC-1 cells. Tumour-derived EVs stimulated cell proliferation, migration, proteinase secretion, and angiogenesis. Bioluminescence imaging allowed tumour-derived EV/FLuc+ tracking in vivo in a PDAC mouse model. The biodistribution of PDAC AG-9-derived EVs was different to PDAC-derived EVs. Our results demonstrate that the microenvironment, through EDP release, may not only influence the genesis of EVs but may also affect tumour progression (tumour growth and angiogenesis), and metastatic homing by modifying the in vivo biodistribution of tumour-derived EVs. They are potential candidates for targeted drug delivery and modulation of tumour progression, and they constitute a new generation of therapeutic tools, merging oncology and genic therapy.
Collapse
Affiliation(s)
- Lise Nannan
- Université de Reims Champagne‐ArdenneLaboratoire de Biochimie Médicale et Biologie Moléculaire, UFR MédecineReimsFrance
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique CellulaireReimsFrance
- KU Leuven, Department of Imaging and PathologyBiomedical MRILeuvenBelgium
| | - Salomé Decombis
- Université de Reims Champagne‐ArdenneLaboratoire de Biochimie Médicale et Biologie Moléculaire, UFR MédecineReimsFrance
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique CellulaireReimsFrance
| | | | - Sandra Audonnet
- URCACyt PlatformUniversity of Reims Champagne‐ArdenneReimsFrance
| | - Jean Michel
- Inserm, Université de Reims Champagne‐Ardenne, P3Cell UMR‐S1250, SFR CAP‐SANTEReimsFrance
| | - Sylvie Brassart‐Pasco
- Université de Reims Champagne‐ArdenneLaboratoire de Biochimie Médicale et Biologie Moléculaire, UFR MédecineReimsFrance
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique CellulaireReimsFrance
| | - Willy Gsell
- KU Leuven, Department of Imaging and PathologyBiomedical MRILeuvenBelgium
| | - Uwe Himmelreich
- KU Leuven, Department of Imaging and PathologyBiomedical MRILeuvenBelgium
| | - Bertrand Brassart
- Université de Reims Champagne‐ArdenneLaboratoire de Biochimie Médicale et Biologie Moléculaire, UFR MédecineReimsFrance
- CNRS UMR 7369 Matrice Extracellulaire et Dynamique CellulaireReimsFrance
| |
Collapse
|
17
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
18
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
19
|
Wang J, Jing J, Zhou C, Fan Y. Emerging roles of exosomes in oral diseases progression. Int J Oral Sci 2024; 16:4. [PMID: 38221571 PMCID: PMC10788352 DOI: 10.1038/s41368-023-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
21
|
Wang B, Cheng D, Ma D, Chen R, Li D, Zhao W, Fang C, Ji M. Mutual regulation of PD-L1 immunosuppression between tumor-associated macrophages and tumor cells: a critical role for exosomes. Cell Commun Signal 2024; 22:21. [PMID: 38195554 PMCID: PMC10775441 DOI: 10.1186/s12964-024-01473-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Tumor cells primarily employ the PD-1/PD-L1 pathway to thwart the anti-tumor capabilities of T lymphocytes, inducing immunosuppression. This occurs through the direct interaction of PD-L1 with PD-1 on T lymphocyte surfaces. Recent research focusing on the tumor microenvironment has illuminated the pivotal role of immune cells, particularly tumor-associated macrophages (TAMs), in facilitating PD-L1-mediated immunosuppression. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. In addition to receiving signals from tumor-derived exosomes that promote PD-L1 expression, TAMs also exert control over PD-L1 expression in tumor cells through the release of exosomes. This paper aims to summarize the mechanisms by which exosomes participate in this process, identify crucial factors that influence these mechanisms, and explore innovative strategies for inhibiting or reversing the tumor-promoting effects of TAMs by targeting exosomes.
Collapse
Affiliation(s)
- Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Danyu Ma
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Dong Li
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
22
|
Whiteside TL. Effects of Tumor-derived Small Extracellular Vesicles on T cell Survival in Patients with Cancer; A Commentary. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:162-168. [PMID: 39634254 PMCID: PMC11616454 DOI: 10.33696/cancerimmunol.6.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Hosseini R, Hosseinzadeh N, Asef-Kabiri L, Akbari A, Ghezelbash B, Sarvnaz H, Akbari ME. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 2023; 30:1309-1322. [PMID: 37344681 DOI: 10.1038/s41417-023-00638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.
Collapse
Affiliation(s)
- Reza Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nashmin Hosseinzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
25
|
Allevato MM, Smith JD, Brenner MJ, Chinn SB. Tumor-Derived Exosomes and the Role of Liquid Biopsy in Human Papillomavirus Oropharyngeal Squamous Cell Carcinoma. Cancer J 2023; 29:230-237. [PMID: 37471614 PMCID: PMC10372688 DOI: 10.1097/ppo.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABSTRACT The global incidence of human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) has surged in recent decades, with HPV+ HNSCC accounting for >70% of oropharynx cancers in the United States. Its incidence in men has surpassed that of HPV+ cervical cancer in women, and reliable assays are needed for early detection and to monitor response to therapy. Human papillomavirus-positive OPSCC has a more favorable response to therapy and prognosis than HPV-negative (HPV-) HNSCC, motivating regimens to deintensify curative surgery or chemoradiotherapy protocols. A barrier to deintensifying and personalizing therapy is lack of reliable predictive biomarkers. Furthermore, HPV- HNSCC survival rates are static without reliable surveillance biomarkers available. The emergence of circulating plasma-based biomarkers reflecting the tumor-immune microenvironment heralds a new era in HNSCC diagnosis and therapy. We review evidence on tumor-derived extracellular vesicles (exosomes) as biomarkers for diagnosis, prognostication, and treatment in HPV+ and HPV- HNSCC.
Collapse
Affiliation(s)
- Michael M. Allevato
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joshua D. Smith
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael J. Brenner
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven B. Chinn
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|