1
|
Huang Y, Li J, Bian C, Li R, You X, Shi Q. Evolutionary Genomics Reveals Multiple Functions of Arylalkylamine N-Acetyltransferase in Fish. Front Genet 2022; 13:820442. [PMID: 35664299 PMCID: PMC9160868 DOI: 10.3389/fgene.2022.820442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
As an important hormone, melatonin participates in endocrine regulation of diverse functions in vertebrates. Its biosynthesis is catalyzed by four cascaded enzymes, among them, arylalkylamine N-acetyltransferase (AANAT) is the most critical one. Although only single aanat gene has been identified in most groups of vertebrates, researchers including us have determined that fish have the most diverse of aanat genes (aanat1a, aanat1b, and aanat2), playing various potential roles such as seasonal migration, amphibious aerial vision, and cave or deep-sea adaptation. With the rapid development of genome and transcriptome sequencing, more and more putative sequences of fish aanat genes are going to be available. Related phylogeny and functional investigations will enrich our understanding of AANAT functions in various fish species.
Collapse
Affiliation(s)
- Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-Ugent Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Nasri A, Lafon PA, Mezni A, Clair P, Cubedo N, Mahmoudi E, Beyrem H, Rossel M, Perrier V. Developmental exposure to the A6-pesticide causes changes in tyrosine hydroxylase gene expression, neurochemistry, and locomotors behavior in larval zebrafish. Toxicol Mech Methods 2022; 32:569-579. [PMID: 35313786 DOI: 10.1080/15376516.2022.2056100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, the increase in the synthesis of biopesticides for alternative agricultural uses has necessitated the study of their impacts. Among these compounds, several of them are known to exert endocrine-disrupting effects causing deregulation of a variety of physiological functions affecting cell signaling pathways involved in neural cell differentiation leading to developmental neurotoxicity. In this current paper, we thus determined the impact of the biopesticide A6 on zebrafish larvae, which is structurally linked to estrogenic endocrine disruptors. The objective of this study was to define the toxicity of A6, the mechanisms responsible, and to evaluate its effects on the locomotors activity at nanomolar concentrations (0, 0.5, 5, and 50 nM). We show through its blue fluorescence properties that A6 accumulates in different parts of the body as intestine, adipose tissue, muscle, yolk sac and head. We display also that A6 disrupt the development and affects the function of the central nervous system, especially the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. We studied whether A6 disturbs the target genes expression and recorded that it downregulated genes embroiled in TH expression, suggesting that A6's neurotoxic effect may be the result of its binding propinquity to the estrogen receptor.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.,U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Pierre-André Lafon
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Philippe Clair
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Nicolas Cubedo
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Mireille Rossel
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Véronique Perrier
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| |
Collapse
|
3
|
Badruzzaman M, Goswami C, Sayed MA. Photoperiodic light pulse induces ovarian development in the catfish, Mystus cavasius: Possible roles of dopamine and melatonin in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112941. [PMID: 34710816 DOI: 10.1016/j.ecoenv.2021.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
4
|
Perelmuter JT, Hom KN, Mohr RA, Demis L, Kim S, Chernenko A, Timothy M, Middleton MA, Sisneros JA, Forlano PM. Testosterone Treatment Mimics Seasonal Downregulation of Dopamine Innervation in the Auditory System of Female Midshipman Fish. Integr Comp Biol 2021; 61:269-282. [PMID: 33974077 DOI: 10.1093/icb/icab070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergic cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.,Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA
| | - Kelsey N Hom
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Doctoral Program in Biology, The Graduate Center, The City University of New York, New York, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Robert A Mohr
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Lina Demis
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Spencer Kim
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Alena Chernenko
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Mollie A Middleton
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA.,Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| |
Collapse
|
5
|
Ciani E, Haug TM, Maugars G, Weltzien FA, Falcón J, Fontaine R. Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Front Endocrinol (Lausanne) 2020; 11:605111. [PMID: 33505357 PMCID: PMC7831660 DOI: 10.3389/fendo.2020.605111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude M. Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gersende Maugars
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Romain Fontaine,
| |
Collapse
|
6
|
Dey R, Bhattacharya S, Maitra SK. Importance of Photoperiods in the Regulation of Ovarian Activities in Indian Major Carp Catla catla in an Annual Cycle. J Biol Rhythms 2016; 20:145-58. [PMID: 15834111 DOI: 10.1177/0748730404272925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study attempted for the first time to explore the importance of photoperiod in the regulation of seasonal ovarian functions in any subtropical major carp. Adult Indian major carp Catla catla were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 30 days on 4 dates corresponding to the beginnings of 4 reproductive phases in an annual cycle, and responsiveness of the ovary was evaluated by comparison with the gonadal weight (IG), relative number of developing oocytes, serum levels of vitellogenin, and the activity of 2 important steroidogenic enzymes, that is, Δ53β-hydroxysteroid dehydrogenase and 17.β-hydroxysteroid dehydrogenase, in the ovary of fish in a natural photoperiod. Exposure of fish to LP during the preparatory phase (February-March) resulted in a significant ( p < 0.001) increase in the values of vitellogenin and in the activity of both the steroidogenic enzymes but not in the ovarian weight and in the relative number of different stages of oocytes. A more stimulatory influence of LP was noted during the prespawning phase (April-May), when precocious maturation of ovary was evident from a significant ( p < 0.001) rise in the values of each studied features of ovarian functions. However, no ovarian response was found when the fish were transferred to LP during the spawning (July-August) and the postspawning (September-October) phases. On the other hand, the SP was found to have an inhibitory influence on ovarian growth and maturation during the prespawning and the spawning phases or to have no influences on ovarian functions during the preparatory and the postspawning phases of an annual cycle. The results of our study provide the first evidence that photoperiod per se plays an important role in the seasonal maturation of ovary in a subtropical freshwater major carp.
Collapse
Affiliation(s)
- Ruma Dey
- Department of Zoology, Visva-Bharati University, Santiniketan, India
| | | | | |
Collapse
|
7
|
Forlano PM, Ghahramani ZN, Monestime CM, Kurochkin P, Chernenko A, Milkis D. Catecholaminergic innervation of central and peripheral auditory circuitry varies with reproductive state in female midshipman fish, Porichthys notatus. PLoS One 2015; 10:e0121914. [PMID: 25849450 PMCID: PMC4388377 DOI: 10.1371/journal.pone.0121914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/08/2015] [Indexed: 11/24/2022] Open
Abstract
In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
- Program in Neuroscience, City University of New York, New York, NY, United States of America
- Program in Ecology, Evolutionary Biology and Behavior, City University of New York, New York, NY, United States of America
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, United States of America
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, United States of America
- * E-mail:
| | - Zachary N. Ghahramani
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
- Program in Ecology, Evolutionary Biology and Behavior, City University of New York, New York, NY, United States of America
| | - Camillia M. Monestime
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| | - Philip Kurochkin
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| | - Alena Chernenko
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| | - Dmitriy Milkis
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, United States of America
| |
Collapse
|
8
|
Effect of long-afterglow phosphorescent pigment on reproductive parameters and ovarian maturation in the yellowtail damselfish, Chrysiptera parasema. Comp Biochem Physiol A Mol Integr Physiol 2015; 182:113-20. [DOI: 10.1016/j.cbpa.2014.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/30/2022]
|
9
|
Chaube R, Joy KP. Estradiol-17β modulates dose-dependently hypothalamic tyrosine hydroxylase activity inhibited by α-methylparatyrosine in the catfish Heteropneustes fossilis. Endocrine 2011; 40:394-9. [PMID: 21994011 DOI: 10.1007/s12020-011-9543-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/14/2011] [Indexed: 01/17/2023]
Abstract
The brain is a target for organizational and activational effects of oestrogens synthesized de novo or transported from the peripheral organs. A neuroprotective role of oestrogens has been documented in a variety of vertebrates. In the present study in the catfish Heteropneustes fossilis, we have demonstrated that estradiol-17β (E(2)), the major circulating oestrogen at low dosages (0.05 and 0.1 μg/g body weight of fish for 3 days) stimulated hypothalamic tyrosine hydroxylase (TH) activity, and countered the negative effects of ovariectomy (3-week) or α-methylparatyrosine (α-MPT: 250 μg/g body weight, a competitive inhibitor of TH). In contrast, high dosages of E(2) (1 and 2 μg/g body weight of fish for 3 days) were inhibitory and further amplified the inhibitory effects of ovariectomy and α-MPT. The inhibiting role of E(2) was higher in gonad-active (prespawning) phase than gonad-inactive (resting phase) phase. The dual roles of E(2) may ensure a tight regulation of catecholaminergic activity, activating and inhibiting the system against wide fluctuations that are characteristic of seasonally breeding animals.
Collapse
Affiliation(s)
- Radha Chaube
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India.
| | | |
Collapse
|
10
|
Takemura A, Uchimura M, Shibata Y. Dopaminergic activity in the brain of a tropical wrasse in response to changes in light and hydrostatic pressure. Gen Comp Endocrinol 2010; 166:513-9. [PMID: 20064517 DOI: 10.1016/j.ygcen.2010.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/08/2009] [Accepted: 01/02/2010] [Indexed: 10/20/2022]
Abstract
Many tropical wrasses show a daily pattern of spawning with gamete release typically near daytime high tide. The environmental cues the fish obtains from day-night and tidal cycles to ensure spawning synchrony and how those cues are transduced, however, are not fully understood. To gain insight into these issues, the involvement of monoamines in mediating endogenous day-night and tidal rhythms in the threespot wrasse, Halichoeres trimaculatus, were examined. Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC, a metabolite of DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) in the brain of the fish were measured with high-performance liquid chromatography and electrochemical detection. DOPAC and the metabolic rate of DA activity (DOPAC/DA) were found to increase during the day and decrease during the night for fish held under a natural photoperiod. Fish acclimated to a 12:12 light-dark cycle and to constant dark conditions exhibited similar changes, whereas fish acclimated to constant light conditions exhibited little or no change. Intraperitoneal injection of melatonin resulted in a significant reduction in DOPAC/DA. Furthermore, DOPAC/DA was significantly lower in fish held at 3m compared to 0m depth, suggesting that hydrostatic pressure influences DA metabolic rate. These results indicate that light and hydrostatic pressure control dopaminergic turnover in the brain of threespot wrasse. Day-night and tidal changes in these two factors therefore may be the main environmental cues the fish uses to synchronize its spawning activity.
Collapse
Affiliation(s)
- Akihiro Takemura
- Department of Biology, Chemistry, and Marine Science, Faculty of Science, University of the Ryukyus. Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | | | | |
Collapse
|
11
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
12
|
Sébert ME, Legros C, Weltzien FA, Malpaux B, Chemineau P, Dufour S. Melatonin activates brain dopaminergic systems in the eel with an inhibitory impact on reproductive function. J Neuroendocrinol 2008; 20:917-29. [PMID: 18445127 DOI: 10.1111/j.1365-2826.2008.01744.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the eel, a deficit in gonadotrophin-releasing hormone (GnRH) and a strong dopaminergic (DA) inhibition are responsible for the blockade of gonad development if silver eels are prevented from their reproductive migration. Environmental factors that eels encounter during their oceanic reproductive migration are thought to play an important role in the stimulation of eel pubertal development. We investigated the potential role of melatonin, a known mediator of the effects of external factors on reproductive function in vertebrates. We demonstrated that a long-term melatonin treatment increased brain tyrosine hydroxylase (TH, the rate limiting enzyme of DA synthesis) mRNA expression in a region-dependent way. Melatonin stimulated the dopaminergic system of the preoptic area, which is involved in the inhibitory control of gonadotrophin [luteinising hormone (LH) and follicle-stimulating hormone (FSH)] synthesis and release. Moreover, we showed that the increased TH expression appeared to be consistent with melatonin binding site distribution as shown by 2[(125)I]-melatonin labelling studies. On the other hand, melatonin had no effects on the two eel native forms of GnRH (mGnRH and cGnRH-II) mRNA expression. Concerning the pituitary-gonad axis, we showed that melatonin treatment decreased both gonadotrophin beta-subunit (LHbeta, FSHbeta) mRNA expression and reduced sexual steroid (11-ketotestosterone, oestradiol) plasma levels. This indicates that melatonin treatment had a negative effect on eel reproductive function. To our knowledge, the results of the present study provide the first evidence that melatonin enhances TH expression in specific brain regions in a non-mammalian species. By this mechanism melatonin could represent one pathway by which environmental factors could modulate reproductive function in the eel.
Collapse
Affiliation(s)
- M-E Sébert
- USM 0401, UMR 5178 CNRS/MNHN/UPMC Biologie des Organismes Marins et Ecosystèmes, Département des Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Sokołowska E, Kalamarz H, Kulczykowska E. Seasonal changes in brain melatonin concentration in the three-spined stickleback (Gasterosteus aculeatus): towards an endocrine calendar. Comp Biochem Physiol A Mol Integr Physiol 2004; 139:365-9. [PMID: 15556393 DOI: 10.1016/j.cbpb.2004.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 10/01/2004] [Accepted: 10/02/2004] [Indexed: 11/21/2022]
Abstract
Pineal organ and its hormone melatonin (N-acetyl-5-methoxytryptamine) is likely involved in timing and synchronisation of many internal processes, such as reproduction, with annual changes in environmental cues, i.e., photoperiod and water temperature. The seasonal changes in melatonin profile in stickleback brains related to the following reproductive phases were examined, and the link between melatonin concentrations and the stages of spawning cycle was analysed. Two wild populations of sticklebacks were exposed to annual environmental changes in their natural habitats. Brains, gonads, kidneys and livers were collected over 2 years. Melatonin was measured using RIA and the indices, gonadosomatic (GSI), nephrosomatic (NSI) and hepatosomatic (HSI), were calculated. The role of melatonin, as a component of internal calendar engaged in the control of seasonal breeding in this species, is discussed. The extremely high melatonin levels observed in early spring (March) and autumn (October) seem to mark out a time frame for spawning in sticklebacks. The seasonal pattern of melatonin production and identified development stages of gonads suggests the potential inhibitory effect of the hormone on stickleback reproduction in shortening photoperiod and stimulatory effect in lengthening photoperiod.
Collapse
Affiliation(s)
- Ewa Sokołowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, św. Wojciecha 5 Str., 81-347 Gdynia, Poland
| | | | | |
Collapse
|
14
|
Chaube R, Joy KP. In vitro effects of catecholamines and catecholestrogens on brain tyrosine hydroxylase activity and kinetics in the female catfish Heteropneustes fossilis. J Neuroendocrinol 2003; 15:273-9. [PMID: 12588516 DOI: 10.1046/j.1365-2826.2003.01002.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of catecholamines and catecholestrogens on tyrosine hydroxylase (TH) activity and kinetics were investigated in the telencephalon and hypothalamus of female Heteropneustes fossilis in gonad quiescent (resting) and recrudescent (preparatory) phases. Dopamine, noradrenaline and adrenaline and the catecholestrogen, 2-hydroxyestradiol-17 beta inhibited TH activity in a concentration-dependent manner in both resting and preparatory phases, with a higher effect in the resting phase. Two- methoxyestradiol-17 beta did not alter TH activity in any season. The catecholamines inhibited TH in a competitive manner increasing apparent K(m) values significantly without altering the apparent V(max). Two-hydroxyestradiol-17 beta inhibited significantly the enzyme in a noncompetitive manner and decreased apparent V(max) without altering apparent K(m) values. The apparent K(i) is higher for dopamine than noradrenaline or adrenaline. The apparent K(i) for 2-hydroxyestradiol-17 beta is not significantly different from that of noradrenaline. The present results suggest an interaction between oestradiol-17beta (E2) and catecholamine metabolism at the level of tyrosine hydroxylation and E2 effects on catecholamines may be mediated through its 2-hydroxylation.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|