1
|
Vijay P, Panwar D, Narwal R, Sehgal N. Structural modeling and gene expression analysis of phosvitinless vitellogenin (vgc) in the Indian freshwater murrel, Channa punctatus (Bloch, 1793). Gen Comp Endocrinol 2024; 352:114491. [PMID: 38494038 DOI: 10.1016/j.ygcen.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.
Collapse
Affiliation(s)
- Pooja Vijay
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Deepak Panwar
- Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ritu Narwal
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Finn RN, Cerdà J. Genetic adaptations for the oceanic success of fish eggs. Trends Genet 2024; 40:540-554. [PMID: 38395683 DOI: 10.1016/j.tig.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024]
Abstract
Genetic adaptations of organisms living in extreme environments are fundamental to our understanding of where life can evolve. Water is the single limiting parameter in this regard, yet when released in the oceans, the single-celled eggs of marine bony fishes (teleosts) have no means of acquiring it. They are strongly hyposmotic to seawater and lack osmoregulatory systems. Paradoxically, modern teleosts successfully release vast quantities of eggs in the extreme saline environment and recorded the most explosive radiation in vertebrate history. Here, we highlight key genetic adaptations that evolved to solve this paradox by filling the pre-ovulated eggs with water. The degree of water acquisition is uniquely prevalent to marine teleosts, permitting the survival and oceanic dispersal of their eggs.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain.
| | - Joan Cerdà
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain; Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Sharma L, Pipil S, Rawat VS, Sehgal N. Role of cathepsins B and D in proteolysis of yolk in the catfish Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:749-765. [PMID: 35482165 DOI: 10.1007/s10695-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Yolk processing pathways vary in the oocytes of benthophil and pelagophil teleosts. The present study investigated the yolk processing pattern in the oocytes of the fresh water catfish Clarias gariepinus at vitellogenic, maturation, and ovulated stages. This study concludes that during maturation stage, an electrophoretic shift in the major peptide band on Polyacrylamide gel electrophoresis (PAGE) occurs due to a decrease in the size of the yolk protein. The PMF spectrum of corresponding peptides from vitellogenic and ovulated oocytes revealed a difference in the minor ions. A minor difference in the molecular weight of the corresponding peptides occurs due to a difference in their amino acid composition. Maximal activity of the proteases cathepsin D and cathepsin B was observed in the vitellogenic oocytes, thus confirming their role in the processing of yolk. A significant transient increase in the activity of cathepsin B in the mature oocytes also suggests its role in oocyte maturation.
Collapse
Affiliation(s)
- Luni Sharma
- Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Supriya Pipil
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Feng QM, Liu MM, Cheng YX, Wu XG. Comparative proteomics elucidates the dynamics of ovarian development in the Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100878. [PMID: 34333232 DOI: 10.1016/j.cbd.2021.100878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Ovarian development is a complex physiological process for crustacean reproduction that is divided into the oogonium proliferation stage, endogenous vitellogenic stage, exogenous vitellogenic stage, and oocyte maturation stage. Proteomics analysis offers a feasible approach to reveal the proteins involved in the complex physiological processes of any organism. Therefore, this study performed a comparative proteomics analysis of the ovary and hepatopancreas at three key ovarian stages, including stages I (oogonium proliferation), II (endogenous vitellogenesis) and IV (exogenous vitellogenesis), of the Chinese mitten crab Eriocheir sinensis using a label-free quantitative approach. The results showed that a total of 2,224 proteins were identified, and some key proteins related to ovarian development and nutrition metabolism were differentially expressed. The 26 key proteins were mainly involved in the ubiquitin/proteasome pathway (UPP), cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway during oogenesis. Fifteen differentially abundant proteins (DAPs) were found to participate in vitellogenesis and oocyte development, such as vitelline membrane outer layer protein 1 homolog, vitellogenin, vitellogenin receptor, heat shock 70 kDa protein cognate 3 and farnesyl pyrophosphate synthase. Forty-seven DAPs related to nutrition metabolism were identified, including the protein digestion, fatty acid metabolism, prostaglandin metabolism, lipid digestion and transportation, i.e. short-chain specific acyl-CoA dehydrogenase, acyl-CoA desaturase, fatty acid-binding protein, long-chain fatty acid CoA ligase 4, and hematopoietic prostaglandin D synthase. These results not only indicate proteins involved in ovarian development and nutrient deposition but also enhance the understanding of the regulatory pathways and physiological processes of crustacean ovarian development.
Collapse
Affiliation(s)
- Qiang-Mei Feng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Mei-Mei Liu
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yong-Xu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xu-Gan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Küster E, Kalkhof S, Aulhorn S, von Bergen M, Gündel U. Effects of Five Substances with Different Modes of Action on Cathepsin H, C and L Activities in Zebrafish Embryos. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3956. [PMID: 31627361 PMCID: PMC6843663 DOI: 10.3390/ijerph16203956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 11/24/2022]
Abstract
Cathepsins have been proposed as biomarkers of chemical exposure in the zebrafish embryo model but it is unclear whether they can also be used to detect sublethal stress. The present study evaluates three cathepsin types as candidate biomarkers in zebrafish embryos. In addition to other functions, cathepsins are also involved in yolk lysosomal processes for the internal nutrition of embryos of oviparous animals until external feeding starts. The baseline enzyme activity of cathepsin types H, C and L during the embryonic development of zebrafish in the first 96 h post fertilisation was studied. Secondly, the effect of leupeptin, a known cathepsin inhibitor, and four embryotoxic xenobiotic compounds with different modes of action (phenanthrene-baseline toxicity; rotenone-an inhibitor of electron transport chain in mitochondria; DNOC (Dinitro-ortho-cresol)-an inhibitor of ATP synthesis; and tebuconazole-a sterol biosynthesis inhibitor) on in vivo cathepsin H, C and L total activities have been tested. The positive control leupeptin showed effects on cathepsin L at a 20-fold lower concentration compared to the respective LC50 (0.4 mM) of the zebrafish embryo assay (FET). The observed effects on the enzyme activity of the four other xenobiotics were not or just slightly more sensitive (factor of 1.5 to 3), but the differences did not reach statistical significance. Results of this study indicate that the analysed cathepsins are not susceptible to toxins other than the known peptide-like inhibitors. However, specific cathepsin inhibitors might be identified using the zebrafish embryo.
Collapse
Affiliation(s)
- Eberhard Küster
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
- IZI, Fraunhofer Institute for Cell Therapy and Immunology, Department of Therapy Validation, 04103 Leipzig, Germany
| | - Silke Aulhorn
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrike Gündel
- Department Bioanalytical Ecotoxicology, UFZ- Helmholtz -Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Department Chemicals and Product Safety, Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| |
Collapse
|
6
|
Kyosaka I, Fujita S, Shimizu Y, Saeki H. Digestibility in the gastrointestinal tract and migration to blood of β'-component (Onk k 5), a major salmon roe IgE-binding protein. Food Chem 2019; 289:694-700. [PMID: 30955667 DOI: 10.1016/j.foodchem.2019.03.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
The major allergen of chum salmon (Oncorhynchus keta) roe is the β'-component (Onc k 5, β'-c), which is a yolk protein and a fragment of vitellogenin. When yolk content containing β'-c was orally administered to mice, β'-c passed through the gastrointestinal tract and was excreted in feces without marked degradation. The direct administration of β'-c to ligated jejunal and ileal loops showed that β'-c was absorbed through the small intestine and transferred into the blood. Immunohistochemical staining showed that orally administered β'-c was distributed from the apical side to the basal side of intestinal epithelial cells, suggesting that endocytosis may be involved in the intestinal absorption of β'-c. In conclusion, β'-c is absorbed along a large portion of the small intestine and circulates in the blood stream without significant digestion. The resistance of β'-c to gastrointestinal digestion seems to contribute to its strong allergenicity.
Collapse
Affiliation(s)
- Issei Kyosaka
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Shingo Fujita
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
7
|
Carducci F, Biscotti MA, Canapa A. Vitellogenin gene family in vertebrates: evolution and functions. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1631398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
8
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
9
|
Oh HJ, Kim JH, Mun SH, Kim JH, Kim DJ, Kwon JY. Expression of Yolk Processing Enzyme Genes in Fertilized Eggs from Artificially Matured Female Eel, Anguilla japonica. Dev Reprod 2018; 22:289-295. [PMID: 30324166 PMCID: PMC6182232 DOI: 10.12717/dr.2018.22.3.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022]
Abstract
Large quantity of eggs fail to be fertilized and many of fertilized eggs are
unable to hatch in the eel, Anguilla japonica. Larvae of eel
absorb egg yolk up to 8 days after hatching but the majority of hatched larvae
die before they reach the stage of first feeding in this species. Genes of key
enzymes for yolk processing (cathepsin B, D, L and lipoprotein lipase -
abbreviated as ctsb, ctsd, ctsl and lpl,
respectively) could be associated with egg quality. In this study, we
investigated differences in the expression of these genes between floating eggs
and sinking eggs, and also the relationship between the gene expressions of the
enzymes and fertilization rates in the fertilized eggs obtained from
artificially matured female eels. Expressions of yolk processing enzyme genes
did not show significant difference between floating and sinking egg groups.
Expression of ctsb decreased when fertilization rate was high.
Expression of ctsd, ctsl and lpl, however, did
not show any significant differences. These results suggest that
ctsb expression could be an indicator of egg quality, and
that some proteins prone to be digested by ctsb could be very
important in the process of fertilization and normal cleavage in this species.
Further study should identify these critical proteins to improve our
understanding on the quality of fish eggs.
Collapse
Affiliation(s)
- Hyeon Ji Oh
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| | - Jung-Hyun Kim
- Aquaculture Research Team, NFRDI, Busan 46083, Korea.,Dept. of Future Culture Center, NFRDI, Jeju 63610, Korea
| | - Seong Hee Mun
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| | - Jin Hui Kim
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| | - Dae-Jung Kim
- Aquaculture Research Team, NFRDI, Busan 46083, Korea.,Dept. of Future Culture Center, NFRDI, Jeju 63610, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
10
|
Gwon SH, Kim HK, Baek HJ, Lee YD, Kwon JY. Cathepsin B & D and the Survival of Early Embryos in Red Spotted Grouper, Ephinephelus akaara. Dev Reprod 2017; 21:457-466. [PMID: 29354791 PMCID: PMC5769140 DOI: 10.12717/dr.2017.21.4.457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022]
Abstract
Survival of embryos largely depends on yolk processing during early development. Proteolytic enzymes, cathepsin B & D (ctsb & ctsd) are known to have some important roles in yolk processing of various fish species. Mature female red spotted groupers were injected with human chorionic gonadotropin (HCG) to induce ovulation. The fertilized eggs and embryos were sampled at 0, 4 and 24 HPF (hours post fertilization). Survivals of each groups of embryos were checked at 24 and 48 HPH (hours post hatching). Transcripts of ctsb & ctsd showed the highest level at 0 HPF and relatively high at 4 HPF, but greatly decreased at 24 HPF. In bad egg quality group (BE, embryos survived until 24 HPH), transcript level of ctsb at 4 HPF were significantly lower than the transcript level at the same stage in good egg quality group (GE, embryos survived until 48 HPH) while no significant change of ctsb transcript level was observed at 0 or 24 HPF between BE and GE. Transcript level of ctsd was decreased at 24 HPF, but the difference was not as strong as the case of ctsb transcript. These results suggest that maternal ctsb transcript rather than ctsd transcript is likely to be involved in egg quality resulting in the difference of survival rate of embryos at early developmental period in this species.
Collapse
Affiliation(s)
- Seo-Hui Gwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hyun Kyu Kim
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Don Lee
- Dept. of Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
11
|
Yilmaz O, Prat F, Ibáñez AJ, Köksoy S, Amano H, Sullivan CV. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis. Comp Biochem Physiol B Biochem Mol Biol 2015; 194-195:71-86. [PMID: 26643259 DOI: 10.1016/j.cbpb.2015.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya, 07070, Turkey
| | - Francisco Prat
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Avda. República Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - A Jose Ibáñez
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal, s/n 12595, Ribera de Cabanes, Castellòn, Spain
| | - Sadi Köksoy
- Central Research and Immunology Laboratories, Akdeniz University, Faculty of Medicine, Antalya, 07070, Turkey
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig V Sullivan
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
12
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015. [PMID: 26506386 DOI: 10.3390/nu710543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
13
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015; 7:8818-29. [PMID: 26506386 PMCID: PMC4632452 DOI: 10.3390/nu7105432] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Lee JW, Lee YM, Yang H, Noh JK, Kim HC, Park CJ, Park JW, Hwang IJ, Kim SY, Lee JH. Expression Analysis of Cathepsin F during Embryogenesis and Early Developmental Stage in Olive Flounder (Paralichthys olivaceus). Dev Reprod 2015; 17:221-9. [PMID: 25949137 PMCID: PMC4282294 DOI: 10.12717/dr.2013.17.3.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.
Collapse
Affiliation(s)
- Jang-Wook Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Yang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jae Koo Noh
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - In Joon Hwang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Sung Yeon Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jeong-Ho Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| |
Collapse
|
15
|
Salmerón C, Navarro I, Johnston IA, Gutiérrez J, Capilla E. Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea bream (Sparus aurata) skeletal muscle. BMC Res Notes 2015; 8:149. [PMID: 25880457 PMCID: PMC4431372 DOI: 10.1186/s13104-015-1121-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/02/2015] [Indexed: 12/02/2022] Open
Abstract
Background The proteolytic enzymes involved in normal protein turnover in fish muscle are also responsible for post-mortem softening of the flesh and are therefore potential determinants of product quality. The main enzyme systems involved are calpains, cathepsins, and the ubiquitin-proteasome (UbP). In this study on Sparus aurata (Sa), the coding sequences of cathepsins (SaCTSB and SaCTSDb) and UbP family members (SaN3 and SaUb) were cloned from fast skeletal muscle, and their expression patterns were examined during ontogeny and in a fasting/re-feeding experiment. Results The amino acid sequences identified shared 66-100% overall identity with their orthologues in other vertebrates, with well conserved characteristic functional domains and catalytic residues. SaCTSDb showed phylogenetic, sequence and tissue distribution differences with respect to its paralogue SaCTSDa, previously identified in the ovary. Expression of gilthead sea bream cathepsins (B, L, Da, Db) and UbP members (N3, Ub, MuRF1 and MAFbx) in fast skeletal muscle was determined at three different life-history stages and in response to fasting and re-feeding in juveniles. Most of the proteolytic genes analysed were significantly up-regulated during fasting, and down-regulated with re-feeding and, between the fingerling (15 g) and juvenile/adult stages (~50/500 g), consistent with a decrease in muscle proteolysis in both later contexts. In contrast, SaCTSDa and SaMuRF1 expression was relatively stable with ontogeny and SaUb had higher expression in fingerlings and adults than juveniles. Conclusions The data obtained in the present study suggest that cathepsins and UbP genes in gilthead sea bream are co-ordinately regulated during ontogeny to control muscle growth, and indicate that feeding regimes can modulate their expression, providing a potential dietary method of influencing post-mortem fillet tenderisation, and hence, product quality. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1121-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Isabel Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews Fife, KY16 8LB, Scotland, UK.
| | - Joaquim Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| | - Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
16
|
Li M, Li Q, Yang Z, Hu G, Li T, Chen X, Ao J. Identification of cathepsin B from large yellow croaker (Pseudosciaena crocea) and its role in the processing of MHC class II-associated invariant chain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:313-320. [PMID: 24705226 DOI: 10.1016/j.dci.2014.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
In teleost, cathepsin B has been identified from several species and shown to play roles in the host immune response during pathogen challenge. However, the mechanism of how cathepsin B modulates the immune response in teleosts remains poorly understood. In this study, we identified and characterized cathepsin B (LycCatB) and invariant chain (LycIi) from the large yellow croaker (Pseudosciaena crocea). Sequence comparison and phylogenetic analysis indicated that LycCatB and LycIi are highly conserved within teleosts. Quantitative RT-PCR analysis showed that LycCatB mRNA was widely expressed in all examined tissues. We then recombinantly expressed LycCatB and Lyc-TR-Ii (transmembrane domain removed Ii chain) in Pichia pastoris and Escherichiacoli, respectively. The recombinant LycCatB (rLycCatB) can hydrolyze the substrate Z-FR-AMC with a Km value of 40.68μM. Furthermore, co-incubation of rLycCatB with rLyc-TR-Ii led to an efficient cleavage of rLyc-TR-Ii in a time-dependant manner. These results indicated that cathepsin B may be involved in MHC class II-associated Ii processing in large yellow croaker, and provide new information helping to elucidate the immunological functions of teleost cathepsin B.
Collapse
Affiliation(s)
- Mingyu Li
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Qiuhua Li
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Zhijun Yang
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Guohai Hu
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Ting Li
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
17
|
Quagio-Grassiotto I, Wildner DD, Guimarães-Bassoli ACD. A cytochemical approach to describe oocyte development in the freshwater ostariophysan, Serrasalmus maculatus (Characiformes). Micron 2014; 60:18-28. [DOI: 10.1016/j.micron.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 12/17/2013] [Accepted: 01/05/2014] [Indexed: 12/15/2022]
|
18
|
Tingaud-Sequeira A, Lozano JJ, Zapater C, Otero D, Kube M, Reinhardt R, Cerdà J. A rapid transcriptome response is associated with desiccation resistance in aerially-exposed killifish embryos. PLoS One 2013; 8:e64410. [PMID: 23741328 PMCID: PMC3669298 DOI: 10.1371/journal.pone.0064410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 11/21/2022] Open
Abstract
Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ∼100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (∼70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. Interestingly, we found fast (0.5–1 h) transcriptional differences in representatives of classical “stress” proteins, such as some molecular chaperones, members of signalling pathways typically involved in the transduction of sensor signals to stress response genes, and oxidative stress-related proteins, similar to that described in other animals undergoing dormancy, diapause or desiccation. To our knowledge, these data represent the first transcriptional profiling of molecular processes associated with desiccation resistance during delayed hatching in non-mammalian vertebrates. The exceptional transcriptomic plasticity observed in killifish embryos provides an important insight as to how the embryos are able to rapidly adapt to non-lethal desiccation conditions.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Almenara DP, de Moura JP, Scarabotto CP, Zingali RB, Winter CE. The molecular and structural characterization of two vitellogenins from the free-living nematode Oscheius tipulae. PLoS One 2013; 8:e53460. [PMID: 23308227 PMCID: PMC3538542 DOI: 10.1371/journal.pone.0053460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
This paper describes the purification of yolk proteins, which are important for the reproduction of egg-laying animals, and the structural characterization of two vitellogenins, VT1 and OTI-VIT-6, of the nematode Oscheius tipulae. O. tipulae is an alternative model organism to its relative, the widely used Caenorhabditis elegans, and is a good model to understand reproduction in insect parasitic nematodes of the genus Heterorhabditis. The native purified O. tipulae vitellogenin is composed of three polypeptides (VT1, VT2 and VT3), whereas in C. elegans, vitellogenin is composed of four polypeptides. The gene (Oti-vit-1) encoding yolk polypeptide VT1 has been recently identified in the genome of O. tipulae. Immunoblotting and N-terminal sequencing confirmed that VT1 is indeed coded by Oti-vit-1. Utilizing the same experimental approaches, we showed that the polypeptides VT2 and VT3 are derived from the proteolytic processing of the C- and N-terminal portions of the precursor OTI-VIT-6, respectively. We also showed that the recombinant polypeptide (P40), corresponding to the N-terminal sequence of OTI-VIT-6, preferentially interacts with a 100-kDa polypeptide found in adult worm extracts, as we have previously shown for the native vitellins of O. tipulae. Using the putative nematode vitellogenin amino acid sequences available in the UniProtKB database, we constructed a phylogenetic tree and showed that the O. tipulae vitellogenins characterized in this study are orthologous to those of the Caenorhabditis spp. Together, these results represent the first structural and functional comparative study of nematode yolk proteins outside the Caenorhabditis genus and provide insight into the evolution of these lipoproteins within the Nematode Phylum.
Collapse
Affiliation(s)
- Daniela P. Almenara
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Joselene P. de Moura
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Cristiane P. Scarabotto
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Russolina B. Zingali
- Laboratory of Proteomics and Protein and Peptide Microsequencing, Institute of Medical Biochemistry - UFRJ/CCS/Bloco H, Cid. Universitária – Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carlos E. Winter
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Gardner LD, Jayasundara N, Castilho PC, Block B. Microarray gene expression profiles from mature gonad tissues of Atlantic bluefin tuna, Thunnus thynnus in the Gulf of Mexico. BMC Genomics 2012; 13:530. [PMID: 23036107 PMCID: PMC3478158 DOI: 10.1186/1471-2164-13-530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 10/01/2012] [Indexed: 01/17/2023] Open
Abstract
Background Bluefin tunas are highly prized pelagic fish species representing a significant economic resource to fisheries throughout the world. Atlantic bluefin tuna (Thunnus thynnus) populations have significantly declined due to overexploitation. As a consequence of their value and population decline, T. thynnus has been the focus of considerable research effort concerning many aspects of their life history. However, in-depth understanding of T. thynnus reproductive biology is still lacking. Knowledge of reproductive physiology is a very important tool for determining effective fisheries and aquaculture management. Transcriptome techniques are proving powerful and provide novel insights into physiological processes. Construction of a microarray from T. thynnus ESTs sourced from reproductive tissues has provided an ideal platform to study the reproductive physiology of bluefin tunas. The aim of this investigation was to compare transcription profiles from the ovaries and testes of mature T. thynnus to establish sex specific variations underlying their reproductive physiology. Results Male and females T. thynnus gonad tissues were collected from the wild and histologically staged. Sub-samples of sexually mature tissues were also measured for their mRNA differential expression among the sexes using the custom microarray design BFT 4X44K. A total of 7068 ESTs were assessed for differential expression of which 1273 ESTs were significantly different (p<0.05) with >2 fold change in expression according to sex. Differential expression for 13 of these ESTs was validated with quantitative PCR. These include genes involved in egg envelope formation, hydration, and lipid transport/accumulation more highly expressed in ovaries compared with testis, while genes involved in meiosis, sperm motility and lipid metabolism were more highly expressed in testis compared with ovaries. Conclusions This investigation has furthered our knowledge of bluefin tunas reproductive biology by using a contemporary transcriptome approach. Gene expression profiles in T. thynnus sexually mature testes and ovaries were characterized with reference to gametogenesis and potential alternative functions. This report is the first application of microarray technology for bluefin tunas and demonstrates the efficacy by which this technique may be used for further characterization of specific biological aspects for this valuable teleost fish.
Collapse
Affiliation(s)
- Luke D Gardner
- Biology Department, Hopkins Marine Station, Pacific Grove, Stanford University, California 93950, USA.
| | | | | | | |
Collapse
|
21
|
In vitro digestion of major allergen in salmon roe and its peptide portion with proteolytic resistance. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C. Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 2011; 6:e21908. [PMID: 21747967 PMCID: PMC3128622 DOI: 10.1371/journal.pone.0021908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/14/2011] [Indexed: 02/04/2023] Open
Abstract
The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Matteo Ozzano
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Vera Mugoni
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roberta Castino
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Massimo Santoro
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
- * E-mail:
| |
Collapse
|
23
|
Tingaud-Sequeira A, Carnevali O, Cerdà J. Cathepsin B differential expression and enzyme processing and activity during Fundulus heteroclitus embryogenesis. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:221-8. [PMID: 21059400 DOI: 10.1016/j.cbpa.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
The role of lysosomal proteases such as cathepsin B (Ctsb) and one of the paralogs of cathepsin L (Ctsla) during yolk metabolism in fish oocytes is well established. However, the function of Ctsb during embryogenesis, particularly in marine teleosts, has been poorly documented. In this study, the spatio-temporal expression of Ctsb and Ctsla, their enzymatic activities, and the processing of the Ctsb and its cellular localization, was investigated in developing embryos of the killifish (Fundulus heteroclitus). Both fhctsb and fhctsla transcript levels, as well as cathepsin B- and L-like activities, gradually increased in embryos from the 2-4 cell stage up to 7 days post-fertilization. During the morula to gastrula transition an increase of the active FhCtsb single chain form was followed by a rise in cathepsin B activity, which were apparently regulated by post-transcriptional mechanisms. During neurulation, a 8-fold increase in cathepsin B activity was accompanied by a more moderate increase in cathepsin L activity, which was 6-fold enhanced by 7 dpf. These increased catalytic activities were well-correlated to changes in the electrophoretic pattern of yolk proteins and a strong expression of fhctsb and its protein product in the yolk syncytial layer. The increase of cathepsin B activity was further correlated with an increment of the relative amount of the FhCtsb single and double chain forms, both active forms of FhCtsb. These results suggest that FhCtsb may be involved in the mechanisms underlying the onset of gastrulation in F. heteroclitus embryos, and may play complementary roles with FhCtsla during yolk metabolism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | |
Collapse
|
24
|
Amano H, Mochizuki M, Fujita T, Hiramatsu N, Todo T, Hara A. Purification and characterization of a novel incomplete-type vitellogenin protein (VgC) in Sakhalin taimen (Hucho perryi). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:41-8. [DOI: 10.1016/j.cbpa.2010.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
25
|
Eykelbosh AJ, Van Der Kraak G. A role for the lysosomal protease cathepsin B in zebrafish follicular apoptosis. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:218-23. [PMID: 20170740 DOI: 10.1016/j.cbpa.2010.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/19/2022]
Abstract
This study presents evidence that cathepsin B, a lysosomal protease, may be involved in the regulation of apoptosis during serum-starvation in teleost follicles. Zebrafish vitellogenic follicles were isolated, incubated under serum-free conditions and homogenized. The follicle extracts demonstrated caspase-3-like activity using the fluorogenic substrate DEVD-AMC, indicating the onset of apoptosis. Cathepsin B activity as measured using the fluorogenic cathepsin B substrate, Z-Arg-Arg-AMC was elevated within the first 6h of incubation in serum-free media and coincided with the onset of apoptosis. This increase in cathepsin B activity was sensitive to the cathepsin B inhibitor, CA-074-ME. Furthermore, adding CA-074-ME to the follicle incubation blocked caspase-3-like activation, suggesting that cathepsin B activity is a positive regulator of the apoptotic cascade during serum-starvation. Interestingly, the increase in cathepsin-B-like activity was not preceded by an increase in cathepsin B mRNA transcription, suggesting that regulation of this enzyme is at a level other than of the gene. These results suggest a regulatory role for cathepsin B during follicular apoptosis in zebrafish ovarian follicles.
Collapse
Affiliation(s)
- Angela J Eykelbosh
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
26
|
Vitellogenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi. Biochem Biophys Res Commun 2010; 392:479-84. [DOI: 10.1016/j.bbrc.2010.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/04/2010] [Indexed: 11/17/2022]
|
27
|
Kagawa H, Horiuchi Y, Kasuga Y, Kishi T. Oocyte hydration in the Japanese eel (Anguilla japonica) during meiosis resumption and ovulation. ACTA ACUST UNITED AC 2009; 311:752-62. [DOI: 10.1002/jez.560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Samaee SM, Lahnsteiner F, Giménez G, Estévez A, Sarg B, Lindner H. Quantitative composition of vitellogenin-derived yolk proteins and their effects on viability of embryos and larvae of common dentex (Dentex dentex), a marine pelagophil teleost. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/jez.549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Reading BJ, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively MO, Sullivan CV. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:169-187. [PMID: 18766402 DOI: 10.1007/s10126-008-9133-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
Three complete cDNAs encoding different forms of vitellogenin (Vtg) were isolated from a white perch (Morone americana) liver cDNA library and characterized with respect to immunobiochemical and functional features of the three Vtgs and their product yolk proteins (YPs) in this species and in the congeneric striped bass (Morone saxatilis). The two longest cDNAs encoded Vtgs with a complete suite of yolk protein domains that, based on comparisons with vtg sequences from other species, were categorized as VtgAa and VtgAb using the current nomenclature for multiple teleost Vtgs. The shorter cDNA encoded a Vtg that lacked a phosvitin domain, had a shortened C-terminus, and was categorized as VtgC. Mapping of peptide sequences from the purified Vtgs and their derived YPs to Vtg sequences deduced from the cDNAs definitively identified the white perch VtgAa, VtgAb, and VtgC proteins. Detailed comparisons of the primary structures of each Vtg with partial or complete sequences of Morone yolk proteins or of Vtgs from other fishes revealed conserved and variant structural elements of teleost Vtgs with functional significance, including, as examples, signal peptide cleavage sites, dimerization sites, cathepsin D protease recognition sites, and receptor-binding domains. These comparisons also yielded an interim revision of the classification scheme for multiple teleost Vtgs.
Collapse
Affiliation(s)
- Benjamin J Reading
- Department of Zoology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang T, Rawson D, Tosti L, Carnevali O. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to −196°C using controlled slow cooling. Cryobiology 2008; 56:138-43. [DOI: 10.1016/j.cryobiol.2008.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
|
31
|
Ziv T, Gattegno T, Chapovetsky V, Wolf H, Barnea E, Lubzens E, Admon A. Comparative proteomics of the developing fish (zebrafish and gilthead seabream) oocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:12-35. [DOI: 10.1016/j.cbd.2007.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/29/2007] [Accepted: 06/30/2007] [Indexed: 01/22/2023]
|
32
|
Carnevali O, Cionna C, Tosti L, Cerdà J, Gioacchini G. Changes in cathepsin gene expression and relative enzymatic activity during gilthead sea bream oogenesis. Mol Reprod Dev 2008; 75:97-104. [PMID: 17538957 DOI: 10.1002/mrd.20768] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to provide evidence on the modulation of lysosomal enzymes in terms of both gene expression and enzymatic activity during follicle maturation. For this purpose three lysosomal enzymes, cathepsins B, D, and L, were studied in relation to yolk formation and degradation, during the main phases of ovarian follicle growth in the pelagophil species, the sea bream Sparus aurata. Specific attention was focused on the gene expression quantification method, on the assay of enzymatic activities, and on the relationship between the proteolytic cleavage of yolk proteins (YPs), cathepsin gene expression and cathepsin activities. For the gene expression study, the cathepsins B-like and L-like mRNAs were isolated and partially or fully characterized, respectively; the sequences were used as design specific primers for the quantification of cathepsin gene expression by real-time PCR, in follicles at different stages of maturation. The enzymatic assays for cathepsins B, D, and L were optimized in terms of specificity, sensitivity and reliability, using specific substrates and inhibitors. In ovulated eggs, the lipovitellin I (LV I) was degraded and the changes in electrophoretic pattern were preceded by an increase in the activity of a cysteine proteinase, cathepsin L, and its mRNA. Cathepsin B did not appear to be involved in YP changes during the final maturation stage.
Collapse
Affiliation(s)
- O Carnevali
- Dipartimento di Scienze del Mare, Universita Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | |
Collapse
|
33
|
Gündel U, Benndorf D, von Bergen M, Altenburger R, Küster E. Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: a proteomic approach. Proteomics 2008; 7:4541-54. [PMID: 18022936 DOI: 10.1002/pmic.200700381] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vitellogenins (Vtgs) are the major yolk proteins in all oviparous animals. Systematic and regulated processing of these during embryogenesis is crucial for embryonic development. In the present study, toxicant-induced disturbance of Vtg degradation processes during Danio rerio (DR) embryogenesis was analysed to establish a sensitive tool for monitoring toxic stress at the molecular level. A 2-DE-based proteomic approach for whole DR embryos was established to study Vtg cleavage products (lipovitellin (Lv) derivatives). Ethanol was chosen as a positive control for a toxicity related change in the proteome of whole zebra fish embryos. Protein extracts from embryos treated with two ethanol concentrations, 0.5 and 2% v/v, showing either no or very strong visible effects, like absent heartbeat and blood circulation, were examined. Significant changes in the Lv pattern were detected for both conditions. The results are interpreted as scope for the use of the high abundant Lv derivatives as sensitive stress indicators in zebra fish embryos reflecting the overall fitness of the intact organisms.
Collapse
Affiliation(s)
- Ulrike Gündel
- Department of Bioanalytical Ecotoxicology, UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
34
|
Liu ZY, Wang Z, Zhang J. An acidic protease from the grass carp intestine (Ctenopharyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:83-90. [PMID: 17889581 DOI: 10.1016/j.cbpb.2007.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 11/24/2022]
Abstract
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.
Collapse
Affiliation(s)
- Zhong-yi Liu
- Department of Food and Biological Technology, Xiangtan University, Xiangtan, Hunan, 411105, China.
| | | | | |
Collapse
|
35
|
Finn RN. The Maturational Disassembly and Differential Proteolysis of Paralogous Vitellogenins in a Marine Pelagophil Teleost: A Conserved Mechanism of Oocyte Hydration1. Biol Reprod 2007; 76:936-48. [PMID: 17314318 DOI: 10.1095/biolreprod.106.055772] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A structural analysis of the differential proteolysis of vitellogenin (Vtg)-derived yolk proteins in the maturing oocytes of a marine teleost that spawns very large pelagic eggs is presented. Two full-length hepatic cDNAs (hhvtgAa and hhvtgAb) encoding paralogous vitellogenins (HhvtgAa and HhvtgAb) were cloned from nonestrogenized Atlantic halibut, and the N-termini of their subdomain structures were mapped to the oocyte and egg yolk proteins (Yps). The maturational oocyte Yp degradation products were further mapped to the free amino acid (FAA) pool in the ovulated egg. The deduced amino acid sequences conformed to the linear NH(2)-(LvH-Pv-LvL-beta'-CT)-COO(-) structure of complete teleost Vtgs. However, the Yps did not match the expected cleavage products of complete Vtgs. Specifically, the phosvitin subdomain of the HhvtgAa paralogue remains covalently attached to the lipovitellin light chain, while the phosvitin subdomain of the HhvtgAb paralogue remains covalently attached to a C-terminal fragment of the lipovitellin heavy chain (LvH). During oocyte hydration, the LvH of the HhvtgAa paralogue is disassembled and extensively degraded to FAA. In the HhvtgAb paralogue, the LvH is nicked in the C-sheet in a manner similar to that seen in lamprey and other teleosts. A small part of the C-terminal end of the LvH-Ab undergoes proteolysis to FAA, together with the phosvitin, beta' component, and much ( approximately 65%) of the lipovitellin light chain (LvL-Ab). The independently measured FAA pool in the ovulated egg corroborates that calculated from differential proteolysis of the Yps. Based on the 3:1 (HhvtgAb:HhvtgAa) Yp expression ratio, each paralogue contributes approximately equal amounts of FAA to the organic osmolyte pool of the hydrating oocyte during maturation.
Collapse
|
36
|
Finn RN. Vertebrate Yolk Complexes and the Functional Implications of Phosvitins and Other Subdomains in Vitellogenins1. Biol Reprod 2007; 76:926-35. [PMID: 17314313 DOI: 10.1095/biolreprod.106.059766] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In nonplacental or nontrophotenic vertebrates, early development depends on the maternal provision of egg yolk, which is mainly derived from large multidomain vitellogenin (Vtg) precursors. To reveal the molecular nature of the protein pools in vertebrate oocytes, published data on the N-termini of yolk proteins has been mapped to the deduced primary structures of their parent Vtgs. The available evidence shows that the primary cleavage sites of Vtgs are conserved, whereas the cleavage products exist as multidomain variants in the yolk protein pool. The serine-rich phosvitin (Pv) domains are linearly related to the molecular masses of the lipovitellin heavy chain. The 3-D localization of Pv maps to the outer edges of the Vtg monomer, where it is proposed to form amphipathic structures that loop up over the lipid pocket. At this locus, it is proposed that Pv stabilizes the nascent Vtg while it receives its lipid cargo, thereby facilitating the hepatic loading and locking of lipid within the Vtg (C-sheet)-(A-sheet)-(LvL) cavity, and enhances its solubility following secretion to the circulating plasma. The C-terminal regions of Vtgs are homologous to human von Willebrand factor type D domains (Vwfd), which are conserved cysteine-rich molecules with homologous regions that are prevalent in Vtgs, lipophorins, mucins, integrins, and zonadhesins. Unlike human VWFD, lower vertebrate Vwfds do not contain RGD motifs, which are associated with extracellular matrix binding. Although its function in Vtg is unknown, the lubricant properties associated with mucins and the cell adhesion properties associated with integrins and zonadhesins implicate Vwfd in the genesis of hemostatic platelet aggregation. Similarly, the proteolytic inhibitory properties associated with the binding of factor VIII in humans suggest that Vwfd stabilizes Vtg during passage in the systemic circulation.
Collapse
|
37
|
Palumbo AJ, Linares-Casenave J, Jewell W, Doroshov SI, Tjeerdema RS. Induction and partial characterization of California halibut (Paralichthys californicus) vitellogenin. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:200-7. [PMID: 17188011 DOI: 10.1016/j.cbpa.2006.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 09/12/2006] [Accepted: 10/12/2006] [Indexed: 10/24/2022]
Abstract
The egg yolk precursor protein, vitellogenin (Vg), was isolated by size exclusion and ion exchange chromatography from plasma of California halibut (Paralichthys californicus) treated with estrogen. MALDI TOF mass spectrometry (MS) analysis resulted in a molecular mass of 188 kDa. MS/MS de novo sequencing identified the protein as Vg by matching sequences of tryptic peptides to the known sequences of several other species. Matches were also made to two different forms of Vg in haddock, medaka, and mummichog, providing evidence that California halibut has more than one form of Vg. Native PAGE and Western blot with an antibody to turbot (Scophthalmus maximus) Vg confirmed the identity of the protein. Protein resolved on the SDS PAGE as a double band of approximately the same mass as determined with MALDI TOF, and two lower mass bands that were also immunoreactive. MALDI TOF and MS/MS de novo sequencing were useful for determining the molecular mass, identification, and exploring the multiplicity of Vg. The potential of using other MS methods to understand the structure and function of Vg is discussed.
Collapse
Affiliation(s)
- A J Palumbo
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, USA.
| | | | | | | | | |
Collapse
|
38
|
Tingaud-Sequeira A, Cerdà J. Phylogenetic relationships and gene expression pattern of three different cathepsin L (Ctsl) isoforms in zebrafish: Ctsla is the putative yolk processing enzyme. Gene 2007; 386:98-106. [PMID: 17027199 DOI: 10.1016/j.gene.2006.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 11/24/2022]
Abstract
Certain cysteine proteases, such as cathepsin L (Ctsl), have been involved in yolk processing mechanisms in oocytes and embryos of lower vertebrates. In zebrafish (Danio rerio), three different ctsl genes, ctsla, ctslb and ctslc, have been found in the genome, but their pattern of expression, as well as information on which the encoded enzymes are potentially involved in yolk absorption during embryogenesis, is unknown. Here, phylogenetic and gene structure analysis revealed that zebrafish ctsla and ctslb genes are similar, showing a highly conserved structure in comparison with human ctsl, while ctslc presents different exon organization together with an earlier evolution. Thus, ctslc appears to be evolved from a common ancestral ctsl-like gene, possibly through an early duplication event, whereas ctsla and ctslb may be originated from a second duplication mechanism. Zebrafish ctsla, ctslb and ctslc also showed different patterns of mRNA expression during embryogenesis and in adult tissues. While Ctsla transcripts were accumulated in embryos throughout development and in the adult ovary, those encoding Ctslb were detected only in embryos around the time of hatching as previously reported, and those for Ctslc appeared only in larvae and in some adult tissues, but not in the ovary. In zebrafish and killifish (Fundulus heteroclitus) embryos, Ctsla mRNA was first detected in blastomers, and later in development it was localized in cells of the yolk syncytial layer, an embryonic structure involved in yolk absorption. These data therefore suggested that Ctsla is most likely the putative protease involved in yolk processing in fish embryos, while Ctslc seems not to be required during early embryogenesis in zebrafish.
Collapse
|
39
|
Song JL, Wong JL, Wessel GM. Oogenesis: Single cell development and differentiation. Dev Biol 2006; 300:385-405. [PMID: 17074315 DOI: 10.1016/j.ydbio.2006.07.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/23/2022]
Abstract
Oocytes express a unique set of genes that are essential for their growth, for meiotic recombination and division, for storage of nutrients, and for fertilization. We have utilized the newly sequenced genome of Strongylocentrotus purpuratus to identify genes that help the oocyte accomplish each of these tasks. This study emphasizes four classes of genes that are specialized for oocyte function: (1) Transcription factors: many of these factors are not significantly expressed in embryos, but are shared by other adult tissues, namely the ovary, testis, and gut. (2) Meiosis: A full set of meiotic genes is present in the sea urchin, including those involved in cohesion, in synaptonemal complex formation, and in meiotic recombination. (3) Yolk uptake and storage: Nutrient storage for use during early embryogenesis is essential to oocyte function in most animals; the sea urchin accomplishes this task by using the major yolk protein and a family of accessory proteins called YP30. Comparison of the YP30 family members across their conserved, tandem fasciclin domains with their intervening introns reveals an incongruence in the evolution of its major clades. (4) Fertilization: This set of genes includes many of the cell surface proteins involved in sperm interaction and in the physical block to polyspermy. The majority of these genes are active only in oocytes, and in many cases, their anatomy reflects the tandem repeating interaction domains essential for the function of these proteins. Together, the expression profile of these four gene classes highlights the transitions of the oocyte from a stem cell precursor, through stages of development, to the clearing and re-programming of gene expression necessary to transition from oocyte, to egg, to embryo.
Collapse
Affiliation(s)
- Jia L Song
- Department of Molecular and Cellular Biology and Biochemistry, Box G, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
40
|
Fabra M, Raldúa D, Bozzo MG, Deen PMT, Lubzens E, Cerdà J. Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption. Dev Biol 2006; 295:250-62. [PMID: 16643885 DOI: 10.1016/j.ydbio.2006.03.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/17/2006] [Accepted: 03/22/2006] [Indexed: 11/30/2022]
Abstract
In marine fish, meiosis resumption is associated with a remarkable hydration of the oocyte, which contributes to the survival and dispersal of eggs and early embryos in the ocean. The accumulation of ions and the increase in free amino acids generated from the cleavage of yolk proteins (YPs) provide the osmotic mechanism for water influx into the oocyte, in which is involved the recently identified, fish specific aquaporin-1o (AQP1o). However, the timing when these processes occur during oocyte maturation, and the regulatory pathways involved, remain unknown. Here, we show that gilthead sea bream AQP1o (SaAQP1o) is synthesized at early vitellogenesis and transported towards the oocyte cortex throughout oocyte growth. During oocyte maturation, shortly after germinal vesicle breakdown and before complete hydrolysis of YPs and maximum K(+) accumulation is reached, SaAQP1o is further translocated into the oocyte plasma membrane. Inhibitors of yolk proteolysis and SaAQP1o water permeability reduce sea bream oocyte hydration that normally accompanies meiotic maturation in vitro by 80% and 20%, respectively. Thus, yolk hydrolysis appears to play a major role to create the osmotic driving force, while SaAQP1o possibly facilitates water influx into the oocyte. These results provide further evidence for the role of AQP1o mediating water uptake into fish oocytes, and support a novel model of fish oocyte hydration, whereby the accumulation of osmotic effectors and AQP1o intracellular trafficking are two highly regulated mechanisms.
Collapse
Affiliation(s)
- Mercedes Fabra
- Lab IRTA-ICM, CMIMA (CSIC), Room B46, CMIMA-CSIC, Passeig Marítim 37-49, 08003-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Carnevali O, Cionna C, Tosti L, Lubzens E, Maradonna F. Role of cathepsins in ovarian follicle growth and maturation. Gen Comp Endocrinol 2006; 146:195-203. [PMID: 16430893 DOI: 10.1016/j.ygcen.2005.12.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/28/2005] [Accepted: 12/04/2005] [Indexed: 11/22/2022]
Abstract
Several complex processes are involved in the production of viable eggs. The aim of this review is to provide an overview on the role played by lysosomal enzymes, especially cathepsins B, D, and L, during ovarian follicle growth and maturation. Specific attention is focused on the relationship between the second proteolytic cleavage of yolk proteins (YP) and the resumption of the meiosis during germinal vesicle break down (GVBD). Maturation represents the final stage of oocytes development prior to ovulation. Oocytes in this phase appear translucent. In many teleosts GVBD is accompanied by water uptake and among marine teleosts with pelagic eggs, most of the final volume is reached by this process. The last phase of maturation in benthonic eggs also occurs concomitant to a second proteolytic cleavage and is related with a slight hydration process. In vitro maturation by 17alpha,20beta-dihydroxy-4-pregnen-3one in class III Danio rerio oocytes, induced 80% of GVBD. The maturation of these oocytes is known to be associated with proteolysis of their major yolk components. In the present study, we show that inhibition of specific enzymes (cathepsins) involved in the second YP processing, did not affect the occurrence of GVBD as the oocytes become translucent and display a slight increase in size. More specifically, in vitro incubation of the maturing oocytes with a cathepsin B inhibitor suppressed both cathepsin B and L activities and the proteolysis of YP. On the contrary, the addition of cathepsin L inhibitor, only affected cathepsin L activity, indicating that cathepsin B is probably involved in Cathepsin L activation, and this enzyme is probably responsible for the second YP processing. These results, together with previous studies, indicate that the GVBD process is independent of the occurrence of the second proteolytic process. It supports the hypothesis that the maturation process is under K+ ion flux control, while yolk proteolysis is related to the temporal and specific activation of cathepsins by acidification of yolk spheres.
Collapse
Affiliation(s)
- O Carnevali
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche 60131, Ancona, Italy.
| | | | | | | | | |
Collapse
|
42
|
Funkenstein B, Rebhan Y, Dyman A, Radaelli G. alpha2-Macroglobulin in the marine fish Sparus aurata. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:440-9. [PMID: 16054852 DOI: 10.1016/j.cbpb.2005.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 06/02/2005] [Accepted: 06/04/2005] [Indexed: 11/25/2022]
Abstract
The alpha2-macroglobulin proteinase inhibitors (alpha2Ms) are a family of plasma proteins with the unique ability to inhibit a broad spectrum of proteinases, but are also known as binding proteins for many growth factors and cytokines, including growth hormone and members of the transforming growth factor-beta superfamily. A partial cDNA (475 amino acids) encoding the C-terminus of alpha2M was cloned from the liver of the marine teleostean fish Sparus aurata. The deduced amino acid sequence of the cloned fragment showed 58-60% similarity to carp alpha2Ms. Northern blot analysis of hepatic alpha2M revealed a transcript of about 5 kb. A transcript of a similar size was detected in 1-day larvae. Steady state levels of alpha2M in larvae increased gradually on subsequent days post-hatching. alpha2M expression in embryos was determined by RT-PCR and started in embryos aged 8 h post-fertilization, but not earlier. RT-PCR of muscle RNA detected alpha2M also in fish muscle, albeit with a lower expression than in the liver. Immunoreactive-alpha2M was found in yolk syncytial layer of 3-day larvae and in livers from larvae and adults. Immunoreactive-alpha2M was also identified in soluble total proteins from young larvae with a pattern resembling that of plasma. These data demonstrate that the alpha2M gene is expressed early in fish development. Moreover, in addition to its major expression in liver, alpha2M is expressed also in fish muscle.
Collapse
Affiliation(s)
- Bruria Funkenstein
- Department of Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel-Shikmona, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
43
|
Fujiwara Y, Fukada H, Shimizu M, Hara A. Purification of two lipovitellins and development of immunoassays for two forms of their precursors (vitellogenins) in medaka (Oryzias latipes). Gen Comp Endocrinol 2005; 143:267-77. [PMID: 15925368 DOI: 10.1016/j.ygcen.2005.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/20/2005] [Accepted: 03/28/2005] [Indexed: 11/30/2022]
Abstract
Two distinct yolk proteins (YP1 and YP2) were purified from the ovary of medaka, and specific antisera against YPs were generated to characterize YPs and reveal their relation to two vitellogenins (Vg1 and Vg2). The molecular masses of purified YP1 and YP2 on gel filtration were 270 and 380 kDa, respectively. YPs were confirmed to be lipoproteins by staining with Sudan black. Amino acid compositions of YP1 and YP2 were similar to those of Vg1 and Vg2, respectively. In double immunodiffusion using anti-Vg1, a precipitin line of YP1 formed a spur against the Vg1 line. YP2 and Vg2 were reacted with anti-Vg2, and a precipitin line of YP2 formed a fuse against the Vg2 line. These biochemical and immunological analyses of purified YPs revealed that YP1 is lipovitellin 1 (Lv1) derived from Vg1 and YP2 is lipovitellin 2 (Lv2) derived from Vg2. Using specific antibodies against Lvs and Vgs, specific, high sensitivity chemiluminescent immunoassays (CLIAs) for two Vgs were developed to reveal basal Vg levels and response to exogenous estradiol-17beta (E2). The measurable range of both CLIAs was from 0.975 to 1000 ng/ml. The cross-reactivity to the alternative Vg in each CLIA was extremely low (<or=0.57%). When immature fish were immersed in water containing E2 for 1 h, both Vgs were induced by 0.5 microg/L of E2 at 24 h after treatment. Vg1 increased in a concentration-dependant manner up to 100 microg/L E2, while Vg2 reached a plateau at 10 microg/L of E2. The ratio of Vg1:Vg2 in E2-treated fish changed in a concentration-dependent manner from 1.5:1 to 8.5:1. The results from E2-treatment suggest that differential regulation may control the expression of medaka Vgs.
Collapse
Affiliation(s)
- Yumi Fujiwara
- Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | | | | | | |
Collapse
|
44
|
Raldúa D, Fabra M, Bozzo MG, Weber E, Cerdà J. Cathepsin B-mediated yolk protein degradation during killifish oocyte maturation is blocked by an H+-ATPase inhibitor: effects on the hydration mechanism. Am J Physiol Regul Integr Comp Physiol 2005; 290:R456-66. [PMID: 16141306 DOI: 10.1152/ajpregu.00528.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In teleost oocytes, yolk proteins (YPs) derived from the yolk precursors vitellogenins are partially cleaved into free amino acids and small peptides during meiotic maturation before ovulation. This process increases the osmotic pressure of the oocyte that drives its hydration, which is essential for the production of buoyant eggs by marine teleosts (pelagophil species). However, this mechanism also occurs in marine species that produce benthic eggs (benthophil), such as the killifish (Fundulus heteroclitus), in which oocyte hydration is driven by K+. Both in pelagophil and benthophil teleosts, the enzymatic machinery underlying the maturation-associated proteolysis of YPs is poorly understood. In this study, lysosomal cysteine proteinases potentially involved in YP processing, cathepsins L, B, and F (CatL, CatB, and CatF, respectively), were immunolocalized in acidic yolk globules of vitellogenic oocytes from the killifish. During oocyte maturation in vitro induced with the maturation-inducing steroid (MIS), CatF disappeared from yolk organelles and CatL became inactivated, whereas CatB proenzyme was processed into active enzyme. Consequently, CatB enzyme activity and hydrolysis of major YPs were enhanced. Follicle-enclosed oocytes incubated with the MIS in the presence of bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, underwent maturation in vitro, but acidification of yolk globules, activation of CatB, and proteolysis of YPs were prevented. In addition, MIS plus bafilomycin A1-treated oocytes accumulated less K+ than those stimulated with MIS alone; hence, oocyte hydration was reduced. These results suggest that CatB is the major protease involved in yolk processing during the maturation of killifish oocytes, whose activation requires acidic conditions maintained by a vacuolar-type H+-ATPase. Also, the data indicate a link between ion translocation and YP proteolysis, suggesting that both events may be equally important physiological mechanisms for oocyte hydration in benthophil teleosts.
Collapse
|
45
|
LaFleur GJ, Raldúa D, Fabra M, Carnevali O, Denslow N, Wallace RA, Cerdà J. Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus. Biol Reprod 2005; 73:815-24. [PMID: 15930322 DOI: 10.1095/biolreprod.105.041335] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Various Coomassie blue-staining yolk proteins (YPs) present in oocytes and eggs of Fundulus heteroclitus, a teleost that produces low hydrated, demersal eggs (benthophil species), were subjected to N-terminal microsequencing. Four YPs were N-terminally blocked, while five yielded sequence information. Of the latter, four corresponded to internal sequences of vitellogenin 1 (Vg1), whereas a fifth band corresponded to the N-terminal sequence of Vg2. Phosphorylated YPs (phosvitins and phosvettes) derived from the polyserine domain of Vg were not successfully sequenced. The major N-terminally blocked 122-and 103-kDa YPs both represented the lipovitellin heavy chain of Vg1 (LvH1), and thus most of the oocyte YPs were derived from Vg1. During oocyte maturation in vivo and in vitro, the LvH1 122 is degraded, concomitant with an increased enzymatic activity of cathepsin B, while the 45-kDa YP is converted to a 42-kDa YP. The LvH1 122 was found to contain a consensus site for proteolytic degradation (PEST) near its C-terminus, which is missing from its stable, but truncated twin sequence, LvH1 103. We suggest that this site becomes exposed to cathepsin B during the hydration process that accompanies oocyte maturation and renders the LvH1 122 susceptible to proteolysis. PEST sites are found in Vg sequences from other benthophil fish, whereas, interestingly, they are missing in marine teleosts that spawn highly hydrated, pelagic eggs (pelagophil species), displaying a different pattern of Vg incorporation into YPs and LvH1 and LvH2 processing to that found in F. heteroclitus. Thus, different models of Vg/YP precursor/product relationship and further processing during oocyte maturation and hydration are proposed for pelagophil and benthophil teleosts.
Collapse
Affiliation(s)
- Gary J LaFleur
- Nicholls State University, Thibodaux, Louisiana 70310, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Fabra M, Cerdà J. Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation. Mol Reprod Dev 2004; 67:282-94. [PMID: 14735489 DOI: 10.1002/mrd.20018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cysteine proteinases cathepsins B and L are members of the multigene family of lysosomal proteases that have been implicated in the processing of yolk proteins (YPs) in teleost oocytes. However, the full identification of the type of cathepsins expressed in fish ovarian follicles and embryos, as well as their regulatory mechanisms and specific function(s), are not yet elucidated. In this study, cDNAs encoding cathepsins B, L, F, K, S, Z, C, and H have been isolated from the teleost Fundulus heteroclitus, and the analysis of their deduced amino acid sequences revealed highly similar structural features to vertebrate orthologs, and confirmed in this species the existence of cathepsin L-like, cathepsin B-like, and cathepsin F-like subfamilies of cysteine proteinases. While all identified cathepsins were expressed in ovarian follicles, the corresponding mRNAs showed different temporal expression patterns. Thus, similar mRNA levels of cathepsins L, F, S, B, C, and Z were found throughout the oocyte growth or vitellogenesis period, whereas those for cathepsin H and K appeared to decrease as vitellogenesis advanced. During oocyte maturation, a transient accumulation of cathepsins L, S, H, and F mRNAs, approximately a 3-, 1.5-, 1.6-, and 6-fold increase, respectively, was detected in ovarian follicles within the 20-25 hr after hormone stimulation, coincident with the maximum proteolysis of the oocyte major YPs. The specific temporal pattern of expression of these genes may indicate a potential role of cathepsin L-like and cathepsin F proteases in the YP processing events occurring during fish oocyte maturation and/or early embryogenesis.
Collapse
Affiliation(s)
- Mercedes Fabra
- Center of Aquaculture-IRTA, 43540-San Carlos de la Rápita, Tarragona, Spain
| | | |
Collapse
|
47
|
Ohkubo N, Andoh T, Mochida K, Adachi S, Hara A, Matsubara T. Deduced primary structure of two forms of vitellogenin in Japanese common goby (Acanthogobius flavimanus). Gen Comp Endocrinol 2004; 137:19-28. [PMID: 15094332 DOI: 10.1016/j.ygcen.2004.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 02/18/2004] [Accepted: 02/23/2004] [Indexed: 11/30/2022]
Abstract
Complete nucleotide sequences of two forms of vitellogenin (Vg) cDNA in Japanese common goby were determined from a liver cDNA library of E(2)-treated male fish. These two Vg cDNAs contained complete open reading frames encoding 1664 and 1238 amino acid residues including signal peptides, respectively. From comparison of the deduced amino acid sequences of both Vgs and the partial amino acid sequences of the yolk proteins, the longer sequence was concluded to be cDNA of the Vg-530 and the shorter one was that of the Vg-320 of the Japanese common goby which were reported in our previous paper. The deduced sequence of Vg-530 without signal peptide was arranged by lipovitellin heavy-chain (LvH), phosvitin (Pv), lipovitellin light-chain (LvL), and beta'-component beta'-c) domains from the N-terminus, and showed a range of 40-45% sequence identity to those of other fish. Furthermore, the deduced sequence of Vg-320 showed no obvious Pv domain, has a shortened C-terminal coding region after the LvH domain, and showed a close similarity to the phosvitin-less Vg of zebrafish. Moreover, biochemical analysis of the yolk proteins verified that Vg-530 cleaves into the Lv-Pv complex (molecular mass: 470 kDa) and beta'-c (33 kDa), while Vg-320 showed no change when incorporated into oocytes. The present study demonstrated the existence of the two different forms of Vgs at both the cDNA and protein level, and showed molecular alteration of the two Vgs during vitellogenesis. Two Vg sequence data will aid in designing nucleotide probes for detecting Vg gene expressions as a biomarker of environmental estrogens.
Collapse
Affiliation(s)
- N Ohkubo
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, 116, Katsurakoi, Kushiro, Hokkaido 085-0802, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Komai T, Kawabata C, Amano M, Lee BR, Ichishima E. Todarepsin, a new cathepsin D from hepatopancreas of Japanese common squid (Todarodes pacificus). Comp Biochem Physiol B Biochem Mol Biol 2004; 137:373-82. [PMID: 15050524 DOI: 10.1016/j.cbpc.2004.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/28/2003] [Accepted: 01/05/2004] [Indexed: 11/20/2022]
Abstract
An intracellular aspartic proteinase obtained from the hepatopancreas (liver) of Japanese common squid (Todarodes pacificus) was purified to homogeneity. The molecular mass of the enzyme was 36,500 Da on SDS-PAGE, and the isoelectric point was 8.29 by isoelectric focusing. The enzyme activity was optimal at pH 3.5, pH 2.2 and pH 3.0 for the substrates acid-denatured hemoglobin, acid-denatured casein, and MOCAc-GKPILFFRLK(Dnp)-D-R-NH2, respectively. Enzyme activity decreased rapidly at 50 degrees C. The Km and kcat values of the enzyme were estimated to be 3.2 mM and 46 s(-1) with MOCAc-GKPILFFRLK(Dnp)-D-R-NH2, and 1.7 mM and 1.1 s(-1) with MOCAc-SEVNLDAEFRK(Dnp)RR-NH2. The enzyme activity was strongly inhibited by pepstatin A, but only partially inhibited by DAN and EPNP. The Ki values for pepstatin A, DAN and EPNP were 0.5 nM, 0.5 mM and 0.2 mM, respectively. A cDNA encoding the enzyme was cloned by RT-PCR and subjected to nucleotide sequencing. The entire open reading frame was 1179 bp and coded for a protein of 392 amino acid residues. The mature enzyme consisted of 334 amino acids. The deduced amino acid sequence of the enzyme showed a high degree of identity to the sequences of cathepsins D found in various species.
Collapse
Affiliation(s)
- Tsuyoshi Komai
- Technical Research Center, T. Hasegawa Co., Ltd., Kariyado, 335 Nakahara-ku, Kawasaki 211-0022, Japan.
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Maurizio Romano
- Department of Evolutionary and Comparative Biology, University Federico II, Via Mezzocannone, 8-80134 Naples, Italy
| | | | | | | |
Collapse
|
50
|
Wood AW, Matsumoto J, Van Der Kraak G. Thyroglobulin type-1 domain protease inhibitors exhibit specific expression in the cortical ooplasm of vitellogenic rainbow trout oocytes. Mol Reprod Dev 2004; 69:205-14. [PMID: 15293222 DOI: 10.1002/mrd.20118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The synthesis, uptake, and processing of yolk proteins remain poorly described aspects of oviparous reproductive development. In this study, we report the identification and characterization of two protease inhibitors in rainbow trout ovary whose expression and distribution are directly associated with yolk protein uptake in vitellogenic oocytes. The first transcript, termed "oocyte protease inhibitor-1" (OPI-1), is predicted to encode a 9.1 kDa, 87 amino acid protein containing a single thyroglobulin type-1 (TY) domain, identifying it as a putative TY domain inhibitor. The second transcript, termed OPI-2, is predicted to encode an 18.3 kDa, 173 amino acid protein with two similar, but not identical, TY domains. Messenger RNA expression of both genes was first detected in ovarian tissues at the onset of vitellogenesis, and persisted throughout the vitellogenic growth phase. We did not detect expression of either gene in previtellogenic ovaries, nor in any somatic tissues examined. Expression of OPI-1 mRNA was significantly reduced in atretic follicles as compared to healthy vitellogenic follicles, suggesting a downregulation of inhibitor expression during oocyte atresia. Western immunoblot analyses of whole yolk from vitellogenic oocytes revealed the presence of two immunoreactive proteins that corresponded to the predicted sizes of OPI-1 and OPI-2. We detected strong crossreactivity of this antiserum with specific vesicles in the cortical ooplasm of vitellogenic oocytes, in regions directly associated with vitellogenin processing. The identification of OPI-1 and OPI-2 provides new evidence for the expression of multiple TY domain protease inhibitors likely involved in the regulation of yolk processing during oocyte growth in salmonids.
Collapse
Affiliation(s)
- Antony W Wood
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|