1
|
Lewis MT, Levitsky Y, Bazil JN, Wiseman RW. Measuring Mitochondrial Function: From Organelle to Organism. Methods Mol Biol 2022; 2497:141-172. [PMID: 35771441 DOI: 10.1007/978-1-0716-2309-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondrial energy production is crucial for normal daily activities and maintenance of life. Herein, the logic and execution of two main classes of measurements are outlined to delineate mitochondrial function: ATP production and oxygen consumption. Aerobic ATP production is quantified by phosphorus magnetic resonance spectroscopy (31PMRS) in vivo in both human subjects and animal models using the same protocols and maintaining the same primary assumptions. Mitochondrial oxygen consumption is quantified by oxygen polarography and applied in isolated mitochondria, cultured cells, and permeabilized fibers derived from human or animal tissue biopsies. Traditionally, mitochondrial functional measures focus on maximal oxidative capacity-a flux rate that is rarely, if ever, observed outside of experimental conditions. Perhaps more physiologically relevant, both measurement classes herein focus on one principal design paradigm; submaximal mitochondrial fluxes generated by graded levels of ADP to map the function for ADP sensitivity. We propose this function defines the bioenergetic role that mitochondria fill within the myoplasm to sense and match ATP demands. Any deficit in this vital role for ATP homeostasis leads to symptoms often seen in cardiovascular and cardiopulmonary diseases, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, USA
| | - Yan Levitsky
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI, USA. .,Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Quantification of Mitochondrial Oxidative Phosphorylation in Metabolic Disease: Application to Type 2 Diabetes. Int J Mol Sci 2019; 20:E5271. [PMID: 31652915 PMCID: PMC6862501 DOI: 10.3390/ijms20215271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with nearly 400 million affected worldwide as of 2014. T2D presents with hyperglycemia and insulin resistance resulting in increased risk for blindness, renal failure, nerve damage, and premature death. Skeletal muscle is a major site for insulin resistance and is responsible for up to 80% of glucose uptake during euglycemic hyperglycemic clamps. Glucose uptake in skeletal muscle is driven by mitochondrial oxidative phosphorylation and for this reason mitochondrial dysfunction has been implicated in T2D. In this review we integrate mitochondrial function with physiologic function to present a broader understanding of mitochondrial functional status in T2D utilizing studies from both human and rodent models. Quantification of mitochondrial function is explained both in vitro and in vivo highlighting the use of proper controls and the complications imposed by obesity and sedentary lifestyle. This review suggests that skeletal muscle mitochondria are not necessarily dysfunctional but limited oxygen supply to working muscle creates this misperception. Finally, we propose changes in experimental design to address this question unequivocally. If mitochondrial function is not impaired it suggests that therapeutic interventions and drug development must move away from the organelle and toward the cardiovascular system.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Present address: Molecular Physiology Institute, Duke University, Durham, NC 27701, USA.
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Skeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2019; 317:R356-R368. [PMID: 31188651 PMCID: PMC6732426 DOI: 10.1152/ajpregu.00127.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes (T2D) presents with hyperglycemia and insulin resistance, affecting over 30 million people in the United States alone. Previous work has hypothesized that mitochondria are dysfunctional in T2D and results in both reduced ATP production and glucose disposal. However, a direct link between mitochondrial function and T2D has not been determined. In the current study, the Goto-Kakizaki (GK) rat model of T2D was used to quantify mitochondrial function in vitro and in vivo over a broad range of contraction-induced metabolic workloads. During high-frequency sciatic nerve stimulation, hindlimb muscle contractions at 2- and 4-Hz intensities, the GK rat failed to maintain similar bioenergetic steady states to Wistar control (WC) rats measured by phosphorus magnetic resonance spectroscopy, despite similar force production. Differences were not due to changes in mitochondrial content in red (RG) or white gastrocnemius (WG) muscles (cytochrome c oxidase, RG: 22.2 ± 1.6 vs. 23.3 ± 1.7 U/g wet wt; WG: 10.8 ± 1.1 vs. 12.1 ± 0.9 U/g wet wt; GK vs. WC, respectively). Mitochondria isolated from muscles of GK and WC rats also showed no difference in mitochondrial ATP production capacity in vitro, measured by high-resolution respirometry. At lower intensities (0.25-1 Hz) there were no detectable differences between GK and WC rats in sustained energy balance. There were similar phosphocreatine concentrations during steady-state contraction and postcontractile recovery (τ = 72 ± 6 s GK versus 71 ± 2 s WC). Taken together, these results suggest that deficiencies in skeletal muscle energetics seen at higher intensities are not due to mitochondrial dysfunction in the GK rat.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
Korohoda W, Golda J, Sroka J, Wojnarowicz A, Jochym P, Madeja Z. Chemotaxis of Amoeba proteus in the developing pH gradient within a pocket-like chamber studied with the computer assisted method. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:38-53. [PMID: 9295140 DOI: 10.1002/(sici)1097-0169(1997)38:1<38::aid-cm5>3.0.co;2-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new "U" shaped, pocket-like chamber was used to observe the chemotactic responses of individual cells. This method permits monitoring of both the development of the concentration gradient of a tested substance and cell locomotion. We investigated the chemotactic responses of Amoeba proteus and observed that the amoebae moved in positively and negatively developing [H+] gradients towards the solution of lower pH in a pH range 5.75-7.75. The chemotactic response of amoebae to [H+] gradients required the presence of extracellular calcium ions. It was blocked and random locomotion was restored by the replacement of calcium with magnesium in the cell medium. Time-lapse video recording and data processing were accomplished with computer-assisted methods. This made it possible to compare selected methods of data presentation and analysis for cells locomoting in isotropic and anisotropic conditions. The cell trajectories were determined and displayed in circular diagrams, lengths of cell tracks and final cell displacements were estimated and a few parameters characterizing cell locomotion were computed.
Collapse
Affiliation(s)
- W Korohoda
- Department of Cell Biology, The J. Zurzycki Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | |
Collapse
|
5
|
Dykens JA, Wiseman RW, Hardin CD. Preservation of phosphagen kinase function during transient hypoxia via enzyme abundance or resistance to oxidative inactivation. J Comp Physiol B 1996; 166:359-68. [PMID: 8923745 DOI: 10.1007/bf02336918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian lactate dehydrogenase and phosphofructokinase are more susceptible in vitro to superoxide (O2) and hydroxyl (.OH) radicals than pyruvate kinase and glucose-6-phosphate dehydrogenase, suggesting that differential inactivation of regulatory enzymes contributes to the metabolic disintegration in stenoxic tissues during transient hypoxia. Likewise, creatine kinase in smooth muscle from porcine ileum is significantly reduced by hypoxia-reoxygenation ex vivo from 300 (+/- 18.2 SE, n = 8) to 196 U.g wet wt-1 (+/- 16.7, P < 0.001, ANOVA). Conversely, arginine kinase, from the myocardium of Limulus polyphemus, a species that tolerates anoxia for days was 2.9-fold less susceptible to oxidative inactivation. To examine whether preservation of kinase function is related to euryoxic capacity, a combination of non-invasive 31P-NMR spectroscopy and enzyme-linked assays was used to follow ATP and phosphagen status during hypoxia-reoxygenation in porcine ileum smooth muscle, L. polyphemus myocardium, and the myocardium of Argopecten irradians, a scallop species tolerant of hypoxia for only 24 h. Despite wide differences in phylogeny, euryoxic capacity and oxidative vulnerability of the phosphagen kinases, in all three tissues, the phosphagen pool recovered concomitant with ATP during reoxygenation, thereby revealing competent kinase function. In the mammalian tissue, such preservation of kinase function is facilitated by a 2400-fold excess of enzyme activity.
Collapse
Affiliation(s)
- J A Dykens
- Department of Immunopathology, Parke-Davis Pharmaccutical Research, Division of Warner-Lambert Comp, Ann Arbor, MI 48106, USA
| | | | | |
Collapse
|
6
|
Wasser JS, Lawler RG, Jackson DC. Nuclear Magnetic Resonance Spectroscopy and Its Applications in Comparative Physiology. ACTA ACUST UNITED AC 1996. [DOI: 10.1086/physzool.69.1.30164198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Wiseman RW, Moerland TS, Kushmerick MJ. Biological applications for small solenoids: NMR spectroscopy of microliter volumes at high fields. NMR IN BIOMEDICINE 1993; 6:153-156. [PMID: 8499246 DOI: 10.1002/nbm.1940060208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this paper we describe features of an NMR probe designed for the study of small, superfused muscles. We also present the results of an empirical study of the performance characteristics of several configurations of small solenoid coils, ca 2 mm diameter. Our data show that optimal use of the available volume of sample becomes the prime consideration in coil design at this scale. In contrast to large biological samples, for such small coils the equivalent resistance associated with the sample is minor relative to the resistance of the RF coil itself. Thus, substantial improvements in the S/N ratio can be obtained by adopting coil configurations that are inferior electrically, but which can sample a greater volume of tissue.
Collapse
Affiliation(s)
- R W Wiseman
- Department of Radiology, University of Washington Medical Centre, Seattle 98195
| | | | | |
Collapse
|
8
|
Juretschke HP, Kamp G. Influence of intracellular pH on reduction of energy metabolism during hypoxia in the lugwormArenicola marina. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/jez.1402560304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|