1
|
Schultz A, Owens J, Demidenko E, Roy Chowdhury P. Differential Toxicity of Arsenic in Daphnia pulex Under Phosphorus and Food Limitation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1807-1819. [PMID: 38837804 DOI: 10.1002/etc.5901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
The on-going anthropogenic degradation of freshwater habitats has drastically altered the environmental supply of both nutrients and common pollutants. Most organisms living in these altered habitats experience interactive effects of various stressors that can initiate adjustments at multiple levels impacting their fitness. Hence, studies measuring response to a single environmental parameter fail to capture the complexities of the status quo. We tested both the individual and the interactive effect of arsenic (As) exposure, food quantity, and dietary phosphorus (P)-supply on six life-history traits (Juvenile Growth Rate; Adult Growth Rate; Age and Size at Maturity, Lifespan, and Fecundity) as surrogates for organismal fitness in the keystone aquatic grazer Daphnia pulex. We also tested the effect of food quantity and P-supply on somatic As accumulation in Daphnia. Our results indicated an influence of P-supply on neonatal growth and an influence of As and food quantity on growth and maintenance later in life. Maturation was strongly influenced by all three variables, with no reproduction observed in the presence of two or more environmental stressors. We found a strong interaction between As and dietary P, with increased P-supply intensifing the toxicity effect of As. No such effects were seen between As and food quantity, indicating a differential role of quantity versus quality on As toxicity. We found a nominal effect of diet on somatic As accumulation. The results from the present study emphasize the importance of considering such interactions between co-occurring environmental stressors and the dietary status of organisms, to better predict and manage impacts and risks associated with common environmental toxicants in highly vulnerable ecosystems. Environ Toxicol Chem 2024;43:1807-1819. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Anthony Schultz
- Department of Biology, Keene State College, Keene, New Hampshire, USA
| | - Joseph Owens
- Translational Biology, Medicine, and Health, Virginia Tech Graduate School, Blacksburg, Virginia, USA
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
2
|
Isanta‐Navarro J, Prater C, Peoples LM, Loladze I, Phan T, Jeyasingh PD, Church MJ, Kuang Y, Elser JJ. Revisiting the growth rate hypothesis: Towards a holistic stoichiometric understanding of growth. Ecol Lett 2022; 25:2324-2339. [PMID: 36089849 PMCID: PMC9595043 DOI: 10.1111/ele.14096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 01/11/2023]
Abstract
The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has found broad but not uniform support in studies across diverse biota and habitats. We synthesise information on how and why the tripartite growth-RNA-P relationship predicted by the GRH may be uncoupled and outline paths for both theoretical and empirical work needed to broaden the working domain of the GRH. We found strong support for growth to RNA (r2 = 0.59) and RNA-P to P (r2 = 0.63) relationships across taxa, but growth to P relationships were relatively weaker (r2 = 0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation in non-RNA pools, inactive ribosomes, translation elongation rates and protein turnover rates), ecological (limitation by resources other than P), and evolutionary (adaptation to different nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the GRH and formalised mathematically to facilitate a predictive understanding of growth.
Collapse
Affiliation(s)
- Jana Isanta‐Navarro
- Flathead Lake Biological StationUniversity of MontanaPolsonMontanaUSA,Department of BiologyLund UniversityLundSweden
| | - Clay Prater
- Department of Integrative BiologyUniversity of OklahomaStillwaterOklahomaUSA
| | - Logan M. Peoples
- Flathead Lake Biological StationUniversity of MontanaPolsonMontanaUSA
| | - Irakli Loladze
- Bryan College of Health Sciences, Lincoln, NE, USA and School of Mathematical & Statistical SciencesArizona State UniversityTempeArizonaUSA
| | - Tin Phan
- Division of Theoretical Biology and BiophysicsLos Alamos National LaboratoryLos AlamosNew MexicoUSA
| | | | - Matthew J. Church
- Flathead Lake Biological StationUniversity of MontanaPolsonMontanaUSA
| | - Yang Kuang
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - James J. Elser
- Flathead Lake Biological StationUniversity of MontanaPolsonMontanaUSA
| |
Collapse
|
3
|
Sherman RE, Hartnett R, Kiehnau EL, Weider LJ, Jeyasingh PD. Quantitative genetics of phosphorus content in the freshwater herbivore, Daphnia pulicaria. J Anim Ecol 2020; 90:909-916. [PMID: 33368234 DOI: 10.1111/1365-2656.13419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Phosphorus (P) is essential for growth of all organisms, and P content is correlated with growth in most taxa. Although P content was initially considered to be a trait fixed at the species level, there is growing evidence for considerable intraspecific variation. Selection on such variation can thus alter the rates at which P fluxes through food webs. Nevertheless, prior work describing the sources and extent of intraspecific variation in P content were not genetically explicit, confounded by unknown genetic background and evolutionary history. We constructed an F2 recombinant population of the dominant freshwater grazer, Daphnia pulicaria to mitigate such issues. F2 recombinants exhibited considerable variation in growth rate, P content (0.49%-1.97%), P use efficiency (PUE; 51-208 mg biomass/mg P), and correlated traits such as hatching time of resting eggs, in common garden conditions. These results clearly demonstrate the scope of genetic recombination in generating variation in ecologically relevant traits. The absence of environmental selection is a likely component driving such variation not observed in natural settings. Although phosphoglucose isomerase (PGI) genotype was significantly associated with variation in hatching time of resting eggs, contrary to prior work with less rigorous designs, and allelic variation at the PGI locus did not explain variation in P content and PUE of Daphnia, indicating that such quantitative traits are under polygenic control. Together, these results suggest that although there is considerable genetic scope for variation in key ecologically relevant traits, such as P content and efficiency of P use, these traits are likely under strong stabilizing selection, most likely due to selection on growth rate and size. Importantly, our observations suggest that anthropogenic alterations to P supply due to eutrophication could alter selection on these traits, thereby rapidly altering the role Daphnia plays in the P cycle of lakes.
Collapse
Affiliation(s)
- Ryan E Sherman
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Rachel Hartnett
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.,Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Emily L Kiehnau
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Lawrence J Weider
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
4
|
Lemmen KD, Butler OM, Koffel T, Rudman SM, Symons CC. Stoichiometric Traits Vary Widely Within Species: A Meta-Analysis of Common Garden Experiments. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Ravindran SP, Herrmann M, Cordellier M. Contrasting patterns of divergence at the regulatory and sequence level in European Daphnia galeata natural populations. Ecol Evol 2019; 9:2487-2504. [PMID: 30891195 PMCID: PMC6405927 DOI: 10.1002/ece3.4894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding the genetic basis of local adaptation has long been a focus of evolutionary biology. Recently, there has been increased interest in deciphering the evolutionary role of Daphnia's plasticity and the molecular mechanisms of local adaptation. Using transcriptome data, we assessed the differences in gene expression profiles and sequences in four European Daphnia galeata populations. In total, ~33% of 32,903 transcripts were differentially expressed between populations. Among 10,280 differentially expressed transcripts, 5,209 transcripts deviated from neutral expectations and their population-specific expression pattern is likely the result of local adaptation processes. Furthermore, a SNP analysis allowed inferring population structure and distribution of genetic variation. The population divergence at the sequence level was comparatively higher than the gene expression level by several orders of magnitude consistent with strong founder effects and lack of gene flow between populations. Using sequence homology, the candidate transcripts were annotated using a comparative genomics approach. Additionally, we also performed a weighted gene co-expression analysis to identify population-specific regulatory patterns of transcripts in D. galeata. Thus, we identified candidate transcriptomic regions for local adaptation in this key species of aquatic ecosystems in the absence of any laboratory-induced stressor.
Collapse
Affiliation(s)
| | - Maike Herrmann
- Department of Veterinary MedicinePaul‐Ehrlich‐InstitutLangenGermany
| | | |
Collapse
|
6
|
Goos JM, Swain CJ, Munch SB, Walsh MR. Maternal diet and age alter direct and indirect relationships between life‐history traits across multiple generations. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jared M. Goos
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Cameron J. Swain
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Stephan B. Munch
- Fisheries Ecology Division, Southwest Fisheries Science Center National Marine Fisheries Science Center, National Oceanic and Atmospheric Administration Santa Cruz California
- Department of Ecology and Evolutionary Biology University of California‐Santa Cruz Santa Cruz California
| | - Matthew R. Walsh
- Department of Biology University of Texas at Arlington Arlington Texas
| |
Collapse
|
7
|
Sherman RE, Chowdhury PR, Baker KD, Weider LJ, Jeyasingh PD. Genotype-specific relationships among phosphorus use, growth and abundance in Daphnia pulicaria. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170770. [PMID: 29308224 PMCID: PMC5749992 DOI: 10.1098/rsos.170770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The framework ecological stoichiometry uses elemental composition of species to make predictions about growth and competitive ability in defined elemental supply conditions. Although intraspecific differences in stoichiometry have been observed, we have yet to understand the mechanisms generating and maintaining such variation. We used variation in phosphorus (P) content within a Daphnia species to test the extent to which %P can explain variation in growth and competition. Further, we measured 33P kinetics (acquisition, assimilation, incorporation and retention) to understand the extent to which such variables improved predictions. Genotypes showed significant variation in P content, 33P kinetics and growth rate. P content alone was a poor predictor of growth rate and competitive ability. While most genotypes exhibited the typical growth penalty under P limitation, a few varied little in growth between P diets. These observations indicate that some genotypes can maintain growth under P-limited conditions by altering P use, suggesting that decomposing P content of an individual into physiological components of P kinetics will improve stoichiometric models. More generally, attention to the interplay between nutrient content and nutrient-use is required to make inferences regarding the success of genotypes in defined conditions of nutrient supply.
Collapse
Affiliation(s)
- Ryan E. Sherman
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Kristina D. Baker
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lawrence J. Weider
- Department of Biology, Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Punidan D. Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Simpson AM, Jeyasingh PD, Belden JB. Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:122-127. [PMID: 29059598 DOI: 10.1016/j.aquatox.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
The evolution of tolerance to environmental contaminants in non-target taxa has been largely studied by comparing extant populations experiencing contrasting exposure. Previous research has demonstrated that "resurrected" genotypes from a population of Daphnia pulicaria express temporal variation in sensitivity to the insecticide chlorpyrifos. Ancient genotypes (1301-1646AD.) were on average more sensitive to this chemical compared to the contemporary genotypes (1967-1977AD.). To determine the physiological mechanisms of tolerance, a series of biochemical assays was performed on three ancient and three contemporary genotypes; these six genotypes exhibited the most sensitive and most tolerant phenotypes within the population, respectively. Metabolic tolerance mechanisms were evaluated using acute toxicity testing, while target-site tolerance was assessed via in vitro acetylcholinesterase (AChE) assays. Acute toxicity tests were conducted using i) the toxic metabolite chlorpyrifos-oxon (CPF-oxon) and ii) CPF-oxon co-applied with piperonyl butoxide (PBO), a known Phase-I metabolic inhibitor. Both series of toxicity tests reduced the mean variation in sensitivity between tolerant and sensitive genotypes. Exposure to CPF-O reduced the disparity from a 4.7-fold to 1.6-fold difference in sensitivity. The addition of PBO further reduced the variation to a 1.2-fold difference in sensitivity. In vitro acetylcholinesterase assays yielded no significant differences in constitutive activity or target-site sensitivity. These findings suggest that pathways involving Phase-I detoxification and/or bioactivation of chlorpyrifos play a significant role in dictating the microevolutionary trajectories of tolerance in this population.
Collapse
Affiliation(s)
- Adam M Simpson
- Oklahoma State University, Stillwater, OK 74078, United States; Penn State Erie, The Behrend College, Erie, PA 16563, United States.
| | | | - Jason B Belden
- Oklahoma State University, Stillwater, OK 74078, United States
| |
Collapse
|
9
|
Durston DJ, El‐Sabaawi RW. Bony traits and genetics drive intraspecific variation in vertebrate elemental composition. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Jeyasingh PD, Goos JM, Thompson SK, Godwin CM, Cotner JB. Ecological Stoichiometry beyond Redfield: An Ionomic Perspective on Elemental Homeostasis. Front Microbiol 2017; 8:722. [PMID: 28487686 PMCID: PMC5403914 DOI: 10.3389/fmicb.2017.00722] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms.
Collapse
Affiliation(s)
- Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State UniversityStillwater, OK, USA
| | - Jared M Goos
- Department of Biology, University of Texas at ArlingtonArlington, TX, USA
| | - Seth K Thompson
- Water Resources Science Program, University of MinnesotaSt. Paul, MN, USA
| | - Casey M Godwin
- School of Natural Resources and Environment, University of MichiganAnn Arbor, MI, USA
| | - James B Cotner
- Department of Ecology, Evolution, and Behavior, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
11
|
Leal MC, Seehausen O, Matthews B. The Ecology and Evolution of Stoichiometric Phenotypes. Trends Ecol Evol 2016; 32:108-117. [PMID: 28017452 DOI: 10.1016/j.tree.2016.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Ecological stoichiometry has generated new insights into how the balance of elements affects ecological interactions and ecosystem processes, but little is known about the ecological and evolutionary dynamics of stoichiometric traits. Understanding the origins and drivers of stoichiometric trait variation between and within species will improve our understanding about the ecological responses of communities to environmental change and the ecosystem effects of organisms. In addition, studying the plasticity, heritability, and genetic basis of stoichiometric traits might improve predictions about how organisms adapt to changing environmental conditions, and help to identify interactions and feedbacks between phenotypic evolution and ecosystem processes.
Collapse
Affiliation(s)
- Miguel C Leal
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Center for Ecology, Evolution, and Biogeochemistry, 6047 Kastanienbaum, Switzerland.
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Center for Ecology, Evolution, and Biogeochemistry, 6047 Kastanienbaum, Switzerland; Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Blake Matthews
- Department of Aquatic Ecology, Eawag, Center for Ecology, Evolution, and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
12
|
Rund SSC, Yoo B, Alam C, Green T, Stephens MT, Zeng E, George GF, Sheppard AD, Duffield GE, Milenković T, Pfrender ME. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation. BMC Genomics 2016; 17:653. [PMID: 27538446 PMCID: PMC4991082 DOI: 10.1186/s12864-016-2998-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
Background Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Results Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. Conclusions This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel functional annotation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2998-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel S C Rund
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Centre for Immunity, Infection and Evolution, Institute of Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Boyoung Yoo
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Camille Alam
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Taryn Green
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Melissa T Stephens
- Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA.,Present Address: Department of Computer Science, University of South Dakota, Vermillion, SD, 57069, USA
| | - Gary F George
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Aaron D Sheppard
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Giles E Duffield
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tijana Milenković
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael E Pfrender
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
13
|
Muñoz J, Chaturvedi A, De Meester L, Weider LJ. Characterization of genome-wide SNPs for the water flea Daphnia pulicaria generated by genotyping-by-sequencing (GBS). Sci Rep 2016; 6:28569. [PMID: 27346179 PMCID: PMC4921830 DOI: 10.1038/srep28569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 12/01/2022] Open
Abstract
The keystone aquatic herbivore Daphnia has been studied for more than 150 years in the context of evolution, ecology and ecotoxicology. Although it is rapidly becoming an emergent model for environmental and population genomics, there have been limited genome-wide level studies in natural populations. We report a unique resource of novel Single Nucleotide Polymorphic (SNP) markers for Daphnia pulicaria using the reduction in genomic complexity with the restriction enzymes approach, genotyping-by-sequencing. Using the genome of D. pulex as a reference, SNPs were scored for 53 clones from five natural populations that varied in lake trophic status. Our analyses resulted in 32,313 highly confident and bi-allelic SNP markers. 1,364 outlier SNPs were mapped on the annotated D. pulex genome, which identified 2,335 genes, including 565 within functional genes. Out of 885 EuKaryotic Orthologous Groups that we found from outlier SNPs, 294 were involved in three metabolic and four regulatory pathways. Bayesian-clustering analyses showed two distinct population clusters representing the possible combined effects of geography and lake trophic status. Our results provide an invaluable tool for future population genomics surveys in Daphnia targeting informative regions related to physiological processes that can be linked to the ecology of this emerging eco-responsive taxon.
Collapse
Affiliation(s)
- Joaquín Muñoz
- Doñana Biological Station (CSIC), Isla de La Cartuja, Av. Américo Vespucio S/N, 41092-Seville, Spain.,Department of Biology, Program in Ecology and Evolutionary Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Anurag Chaturvedi
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Deberiotstraat 32, Leuven 3000, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Deberiotstraat 32, Leuven 3000, Belgium
| | - Lawrence J Weider
- Department of Biology, Program in Ecology and Evolutionary Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
14
|
Goos JM, Cothran RD, Jeyasingh PD. Sex-specific nutrient use and preferential allocation of resources to a sexually selected trait in Hyalella amphipods. ACTA ACUST UNITED AC 2016; 219:649-57. [PMID: 26747910 DOI: 10.1242/jeb.132498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/09/2015] [Indexed: 01/17/2023]
Abstract
Although sexually dimorphic traits are often well studied, we know little about sex-specific resource use strategies that should underlie such dimorphism. We measured sex-specific responses in acquisition and assimilation of two fundamental resources, carbon (C) and phosphorus (P) in juvenile and mature Hyalella amphipods given low and high supplies of inorganic phosphate, analogous to oligotrophic and eutrophic conditions, respectively. Additionally, we quantified allocation of resources to sexual traits in males. Dual radiotracer ((14)C and (33)P) assays revealed substantial age- and sex-specific differences in acquisition and assimilation. Furthermore, a phenotypic manipulation experiment revealed that amphipods fed low-P food allocated more C to all traits than those fed high-P food. Importantly, we found that amphipods preferentially allocated more C to the development of a sexually selected trait (the posterior gnathopod), compared with a serially homologous trait (the fifth pereopod) not under sexual selection. Substantial differences in how the sexes use fundamental resources, and the impact of altered nutrient supply on such differences, illuminate sexual dimorphism at the lowest level of biological organization. Such information will be important in understanding how sex- and age-specific life history demands influence nutrient processing in a biosphere characterized by rapidly changing alterations to biogeochemical cycles.
Collapse
Affiliation(s)
- Jared M Goos
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State, Weatherford, OK 73096, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Aalto SL, Decaestecker E, Pulkkinen K. A three-way perspective of stoichiometric changes on host-parasite interactions. Trends Parasitol 2015; 31:333-40. [PMID: 25978937 DOI: 10.1016/j.pt.2015.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/18/2023]
Abstract
Changes in environmental nutrients play a crucial role in driving disease dynamics, but global patterns in nutrient-driven changes in disease are difficult to predict. In this paper we use ecological stoichiometry as a framework to review host-parasite interactions under changing nutrient ratios, focusing on three pathways: (i) altered host resistance and parasite virulence through host stoichiometry (ii) changed encounter or contact rates at population level, and (iii) changed host community structure. We predict that the outcome of nutrient changes on host-parasite interactions depends on which pathways are modified, and suggest that the outcome of infection could depend on the overlap in stoichiometric requirements of the host and the parasite. We hypothesize that environmental nutrient enrichment alters infectivity dynamics leading to fluctuating selection dynamics in host-parasite coevolution.
Collapse
Affiliation(s)
- Sanni L Aalto
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland.
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, Katholieke Universiteit Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Katja Pulkkinen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
16
|
Yamamichi M, Meunier CL, Peace A, Prater C, Rúa MA. Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics. OIKOS 2015. [DOI: 10.1111/oik.02388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masato Yamamichi
- Hakubi Center for Advanced Research/Center for Ecological Research, Kyoto Univ.; JP-606-8501 Kyoto Japan
| | - Cédric L. Meunier
- Dept of Ecology and Environmental Sciences; Umeå Univ.; SE-901 87 Umeå Sweden
| | - Angela Peace
- National Inst. for Mathematical and Biological Synthesis, Univ. of Tennessee; Knoxville TN 37996-3410 USA
| | - Clay Prater
- Environmental and Life Sciences, Trent Univ.; 1600 West Bank Drive Peterborough, ON K9J 7B8 Canada
| | - Megan A. Rúa
- Dept of Biology; Univ. of Mississippi; 214 Shoemaker Hall PO Box 1848, University MS 38677-1848 USA
| |
Collapse
|
17
|
Genotypic differences in phosphorus use physiology in producers (Chlamydomonas reinhardtii) and consumers (Daphnia pulex) interact to alter primary and secondary production. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9760-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Roy Chowdhury P, Frisch D, Becker D, Lopez JA, Weider LJ, Colbourne JK, Jeyasingh PD. Differential transcriptomic responses of ancient and modern Daphnia genotypes to phosphorus supply. Mol Ecol 2015; 24:123-35. [PMID: 25410011 DOI: 10.1111/mec.13009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 01/13/2023]
Abstract
Little is known about the role of transcriptomic changes in driving phenotypic evolution in natural populations, particularly in response to anthropogenic environmental change. Previous analyses of Daphnia genotypes separated by centuries of evolution in a lake using methods in resurrection ecology revealed striking genetic and phenotypic shifts that were highly correlated with anthropogenic environmental change, specifically phosphorus (P)-driven nutrient enrichment (i.e. eutrophication). Here, we compared the transcriptomes of two ancient (~700-year-old) and two modern (~10-year-old) genotypes in historic (low P) and contemporary (high P) environmental conditions using microarrays. We found considerable transcriptomic variation between 'ancient' and 'modern' genotypes in both treatments, with stressful (low P) conditions eliciting differential expression (DE) of a larger number of genes. Further, more genes were DE between 'ancient' and 'modern' genotypes than within these groups. Expression patterns of individual genes differed greatly among genotypes, suggesting that different transcriptomic responses can result in similar phenotypes. While this confounded patterns between 'ancient' and 'modern' genotypes at the gene level, patterns were discernible at the functional level: annotation of DE genes revealed particular enrichment of genes involved in metabolic pathways in response to P-treatments. Analyses of gene families suggested significant DE in pathways already known to be important in dealing with P-limitation in Daphnia as well as in other organisms. Such observations on genotypes of a single natural population, separated by hundreds of years of evolution in contrasting environmental conditions before and during anthropogenic environmental changes, highlight the important role of transcriptional mechanisms in the evolutionary responses of populations.
Collapse
Affiliation(s)
- Priyanka Roy Chowdhury
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| | | | | | | | | | | | | |
Collapse
|