1
|
Degen J, Storms M, Lee CB, Jechow A, Stöckl AL, Hölker F, Jakhar A, Walter T, Walter S, Mitesser O, Hovestadt T, Degen T. Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Natl Acad Sci U S A 2024; 121:e2401215121. [PMID: 39378094 PMCID: PMC11494349 DOI: 10.1073/pnas.2401215121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 10/10/2024] Open
Abstract
One of the most dramatic changes occurring on our planet is the ever-increasing extensive use of artificial light at night, which drastically altered the environment to which nocturnal animals are adapted. Such light pollution has been identified as a driver in the dramatic insect decline of the past years. One nocturnal species group experiencing marked declines are moths, which play a key role in food webs and ecosystem services such as plant pollination. Moths can be easily monitored within the illuminated area of a streetlight, where they typically exhibit disoriented behavior. Yet, little is known about their behavior beyond the illuminated area. Harmonic radar tracking enabled us to close this knowledge gap. We found a significant change in flight behavior beyond the illuminated area of a streetlight. A detailed analysis of the recorded trajectories revealed a barrier effect of streetlights on lappet moths whenever the moon was not available as a natural celestial cue. Furthermore, streetlights increased the tortuosity of flights for both hawk moths and lappet moths. Surprisingly, we had to reject our fundamental hypothesis that most individuals would fly toward a streetlight. Instead, this was true for only 4% of the tested individuals, indicating that the impact of light pollution might be more severe than assumed to date. Our results provide experimental evidence for the fragmentation of landscapes by streetlights and demonstrate that light pollution affects movement patterns of moths beyond what was previously assumed, potentially affecting their reproductive success and hampering a vital ecosystem service.
Collapse
Affiliation(s)
- Jacqueline Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Mona Storms
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Chengfa Benjamin Lee
- Department of Remote Sensing, University of Würzburg, Würzburg97074, Germany
- Photogrammetry and Image Analysis Department, German Aerospace Center, Remote Sensing Technology Institute, Berlin12489, Germany
| | - Andreas Jechow
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel14770, Germany
| | - Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz78457, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Aryan Jakhar
- Department of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram695551, India
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
- Institute at Brown for Environment and Society, Brown University, Providence, RI02912
| | - Thomas Walter
- Department of Computer Science, University of Würzburg, Würzburg97074, Germany
| | - Stefan Walter
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Tobias Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| |
Collapse
|
2
|
Fristrup K, Miller ZD, Newton J, Buckley S, Cole H, Linares C, Donners M, Taff BD, Beeco JA, Barber J, Newman P. National Park visitors perceive benefits for themselves and wildlife under blended red-white outdoor lighting. Sci Rep 2024; 14:21791. [PMID: 39294210 PMCID: PMC11410814 DOI: 10.1038/s41598-024-71868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Visitors to Colter Bay Village in Grand Teton National Park were surveyed to elicit their evaluations of experimental outdoor lighting conditions. Luminaires capable of dimming and switching between two LED modules (white, blended red-white) were installed in street and parking areas. The blended red-white lamps consisted of 30 narrowband LED with a peak wavelength 623 nm and two 3000 K white LEDs. Similar "red" lamps were previously shown to reduce impacts to bats and insects. The white and red lamps were closely matched for luminance. Measured horizontal illuminance at survey locations had an interquartile range from 0.63 to 3.82 lx. The red lamps produced lower perceived brightness (VB2(λ)), even after reflection off asphalt, yet survey participants expressed higher ratings for visual comfort and safety under red lighting. Surveys conducted earlier in the evening, with higher levels of predicted solar and measured horizontal illuminance, rated higher on visual comfort and safety, though these correlations were not as strong as the effect of lamp color. Streetlight ratings and support for lighting that protected natural resources were not contingent upon age or gender. Survey participants assessed red lighting as more protective of the environment. These results demonstrate that outdoor lighting designed to reduce ecological impacts can yield superior nocturnal experience for pedestrians.
Collapse
Affiliation(s)
- Kurt Fristrup
- Division of Natural Sounds and Night Skies, National Park Service, 1201 Oakridge Drive, Suite 100, Fort Collins, CO, 80525, USA.
| | - Zachary D Miller
- Bureau of Land Management, National Operations Center, Denver, CO, USA
| | - Jennifer Newton
- National Park Service, Grand Teton National Park, Moose, WY, USA
| | - Stephanie Buckley
- South Dakota Game, Fish and Parks, 4130 Adventure Trail, Rapid City, SD, USA
| | - Hunter Cole
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Carlos Linares
- Department of Biological Science, Boise State University, Boise, ID, USA
| | | | - B Derrick Taff
- Department of Recreation, Park, and Tourism Management, The Pennsylvania State University, University Park, PA, USA
| | - J Adam Beeco
- Division of Natural Sounds and Night Skies, National Park Service, 1201 Oakridge Drive, Suite 100, Fort Collins, CO, 80525, USA
| | - Jesse Barber
- American Museum of Natural History, New York City, NY, USA
| | - Peter Newman
- Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| |
Collapse
|
3
|
Hermans C, Litovska I, de Pastors M, Visser ME, Spoelstra K. Artificial light at night drives diel activity patterns of synanthropic pipistrelle bats and their prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173699. [PMID: 38830420 DOI: 10.1016/j.scitotenv.2024.173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The use of artificial light at night (ALAN) has increased drastically worldwide over the last decades. ALAN can have major effects on nocturnal communities, including insects and bats. Insects are attracted to street lights and few bat species take advantage of this by foraging on the attracted insects. ALAN potentially affects the temporal patterns of insect abundance and thereby bat foraging behaviour. In a natural dark environment, these patterns are usually bimodal, with an activity peak in the early evening and the morning. Little is known about how ALAN affects insect presence throughout the night, and whether the light spectrum plays a role. This is important, as these temporal changes may be a key driver of disturbances in bat-insect interactions. Here, we studied how white and red light affect insects' and bats' nightly activity patterns. The activity of insects and bats (Pipistrellus spp.) was recorded throughout the night at seven experimentally illuminated sites in a forest-edge ecosystem. ALAN disrupted activity patterns, with both insects and bats being more active throughout the night. ALAN facilitated all-night foraging in bats especially near white light, but these effects were attenuated near red light. The ability to forage throughout the night may be a key advantage causing synanthropic bats to dominate in illuminated environments, but this could also prove detrimental in the long term. As red light reduced disturbing effects of ALAN on insects and bats diel activity pattern, it opens the possibility of using spectral composition as a mitigation measure.
Collapse
Affiliation(s)
- Claire Hermans
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands.
| | - Iryna Litovska
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; Wageningen University and Research, Wageningen, the Netherlands
| | - Mélyssa de Pastors
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
4
|
van Koppenhagen N, Haller J, Kappeler J, Gossner MM, Bolliger J. LED streetlight characteristics alter the functional composition of ground-dwelling invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124209. [PMID: 38795821 DOI: 10.1016/j.envpol.2024.124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Artificial Light at Night (ALAN) has been identified as a primary driver of environmental change in the 21st century with key impacts on ecosystems. At the same time, developments of LED lighting systems with adjustable parameters-such as color temperature and light intensity-may provide an opportunity to mitigate the negative effects of ALAN. To test the potential effects of LED properties, we conducted a comprehensive field study over two summers at three forest sites in Switzerland. We investigated the impact of three key attributes of LED lights (color temperature, brightness, and luminaire shape) on the abundance and community structure of ground-dwelling invertebrate functional groups (predators, omnivores, and detritivores). We found a significantly increased nocturnal attraction of omnivores (+275%) and predators (+70%), but not detritivores, to ALAN, altering arthropod community composition and trophic interactions in forests. LED color temperature and luminaire shape showed minimal effects on all three functional groups, while reducing light level from 100% to 50% attracted fewer individuals in all groups with a significant effect in omnivores (-57%). In addition, we observed significant interactions of color temperatures and luminaire shapes with light intensity, with a decrease in numbers when dimming the light to 50% intensity combined with a color temperature of 3700 K for predators (-53%), with diffusing luminaire shapes for omnivores (-77%) and with standard luminaire shape for detritivores (-27%). The predator-detritivore ratio showed a significant color temperature - light level interaction, with increased numbers of predators around streetlights with 3700 K and 100% intensity, resulting in an elevated top-down pressure on detritivores. These results suggest the importance of considering combined light characteristics in future outdoor lighting designs.
Collapse
Affiliation(s)
- Nicola van Koppenhagen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Jörg Haller
- EKZ, Dreikönigstrasse 18, CH-8022, Zürich, Switzerland
| | - Julia Kappeler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, CH-8092, Zurich, Switzerland
| | - Janine Bolliger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Longcore T, Villanueva SAMB, Nguyen-Ngo K, Ghiani CA, Harrison B, Colwell CS. Relative importance of intensity and spectrum of artificial light at night in disrupting behavior of a nocturnal rodent. J Exp Biol 2024; 227:jeb247235. [PMID: 38873751 PMCID: PMC11418196 DOI: 10.1242/jeb.247235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.
Collapse
Affiliation(s)
- Travis Longcore
- UCLA Institute of the Environment and Sustainability, 619 Charles E. Young Drive East, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Sophia Anne Marie B. Villanueva
- UCLA Department of Integrative Biology and Physiology, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, USA
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kyle Nguyen-Ngo
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Cristina A. Ghiani
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
- UCLA Department of Pathology and Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | - Benjamin Harrison
- Korrus, Inc., 837 North Spring Street, Suite 103, Los Angeles, CA 90012, USA
| | - Christopher S. Colwell
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Bará S, Falchi F. Artificial light at night: a global disruptor of the night-time environment. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220352. [PMID: 37899010 PMCID: PMC10613534 DOI: 10.1098/rstb.2022.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution is the alteration of the natural levels of darkness by an increased concentration of light particles in the night-time environment, resulting from human activity. Light pollution is profoundly changing the night-time environmental conditions across wide areas of the planet, and is a relevant stressor whose effects on life are being unveiled by a compelling body of research. In this paper, we briefly review the basic aspects of artificial light at night as a pollutant, describing its character, magnitude and extent, its worldwide distribution, its temporal and spectral change trends, as well as its dependence on current light production technologies and prevailing social uses of light. It is shown that the overall effects of light pollution are not restricted to local disturbances, but give rise to a global, multiscale disruption of the night-time environment. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Salvador Bará
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
| | - Fabio Falchi
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
- ISTIL Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso–Light Pollution Science and Technology Institute, Via Roma, 13 - I 36016 Thiene, Italy
| |
Collapse
|
7
|
Spoelstra K, Teurlincx S, Courbois M, Hopkins ZM, Visser ME, Jones TM, Hopkins GR. Long-term exposure to experimental light affects the ground-dwelling invertebrate community, independent of light spectra. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220364. [PMID: 37899017 PMCID: PMC10613541 DOI: 10.1098/rstb.2022.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 10/31/2023] Open
Abstract
Our planet endures a progressive increase in artificial light at night (ALAN), which affects virtually all species, and thereby biodiversity. Mitigation strategies include reducing its intensity and duration, and the adjustment of light spectrum using modern light emitting diode (LED) light sources. Here, we studied ground-dwelling invertebrate (predominantly insects, arachnids, molluscs, millipedes, woodlice and worms) diversity and community composition after 3 or 4 years of continued nightly exposure (every night from sunset to sunrise) to experimental ALAN with three different spectra (white-, and green- and red-dominated light), as well as for a dark control, in natural forest-edge habitat. Diversity of pitfall-trapped ground-dwelling invertebrates, and the local contribution to beta diversity, did not differ between the dark control and illuminated sites, or between the different spectra. The invertebrate community composition, however, was significantly affected by the presence of light. Keeping lights off during single nights did show an immediate effect on the composition of trapped invertebrates compared to illuminated nights. These effects of light on species composition may impact ecosystems by cascading effects across the food web. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Sven Teurlincx
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Matthijs Courbois
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Zoë M. Hopkins
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Therésa M. Jones
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Gareth R. Hopkins
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
- Department of Biology, Western Oregon University, 345 Monmouth Avenue North, Monmouth, OR 97361, USA
| |
Collapse
|
8
|
Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220360. [PMID: 37899012 PMCID: PMC10613548 DOI: 10.1098/rstb.2022.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution caused by artificial light at night (ALAN) is increasingly recognized as a major driver of global environmental change. Since emissions are rapidly growing in an urbanizing world and half of the human population lives close to a freshwater shoreline, rivers and lakes are ever more exposed to light pollution worldwide. However, although light conditions are critical to aquatic species, and freshwaters are biodiversity hotspots and vital to human well-being, only a small fraction of studies conducted on ALAN focus on these ecosystems. The effects of light pollution on freshwaters are broad and concern all levels of biodiversity. Experiments have demonstrated diverse behavioural and physiological responses of species, even at low light levels. Prominent examples are skyglow effects on diel vertical migration of zooplankton and the suppression of melatonin production in fish. However, responses vary widely among taxa, suggesting consequences for species distribution patterns, potential to create novel communities across ecosystem boundaries, and cascading effects on ecosystem functioning. Understanding, predicting and alleviating the ecological impacts of light pollution on freshwaters requires a solid consideration of the physical properties of light propagating in water and a multitude of biological responses. This knowledge is urgently needed to develop innovative lighting concepts, mitigation strategies and specifically targeted measures. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, 60325 Frankfurt Germany
- Department of BioSciences, Goethe-University, 60438 Frankfurt, Germany
| | - Mark O. Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, 10587 Berlin, Germany
| |
Collapse
|
9
|
Jägerbrand AK, Spoelstra K. Effects of anthropogenic light on species and ecosystems. Science 2023; 380:1125-1130. [PMID: 37319223 DOI: 10.1126/science.adg3173] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic light is ubiquitous in areas where humans are present and is showing a progressive increase worldwide. This has far-reaching consequences for most species and their ecosystems. The effects of anthropogenic light on natural ecosystems are highly variable and complex. Many species suffer from adverse effects and often respond in a highly specific manner. Ostensibly surveyable effects such as attraction and deterrence become complicated because these can depend on the type of behavior and specific locations. Here, we considered how solutions and new technologies could reduce the adverse effects of anthropogenic light. A simple solution to reducing and mitigating the ecological effects of anthropogenic light seems unattainable, because frugal lighting practices and turning off lights may be necessary to eliminate them.
Collapse
Affiliation(s)
- Annika K Jägerbrand
- Department of Electrical Engineering, Mathematics and Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB Wageningen, Netherlands
| |
Collapse
|
10
|
Eckhartt GM, Ruxton GD. Insects within bushes assemble and forage closer to artificial light at night. Ethology 2023. [DOI: 10.1111/eth.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | - Graeme D. Ruxton
- School of Biology University of St Andrews St Andrews KY16 9TH UK
| |
Collapse
|
11
|
Morelli F, Tryjanowski P, Ibáñez-Álamo JD, Díaz M, Suhonen J, Pape Møller A, Prosek J, Moravec D, Bussière R, Mägi M, Kominos T, Galanaki A, Bukas N, Markó G, Pruscini F, Reif J, Benedetti Y. Effects of light and noise pollution on avian communities of European cities are correlated with the species' diet. Sci Rep 2023; 13:4361. [PMID: 36928766 PMCID: PMC10020436 DOI: 10.1038/s41598-023-31337-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Urbanization affects avian community composition in European cities, increasing biotic homogenization. Anthropic pollution (such as light at night and noise) is among the most important drivers shaping bird use in urban areas, where bird species are mainly attracted by urban greenery. In this study, we collected data on 127 breeding bird species at 1349 point counts distributed along a gradient of urbanization in fourteen different European cities. The main aim was to explore the effects of anthropic pollution and city characteristics, on shaping the avian communities, regarding species' diet composition. The green cover of urban areas increased the number of insectivorous and omnivorous bird species, while slightly decreasing the overall diet heterogeneity of the avian communities. The green heterogeneity-a measure of evenness considering the relative coverage of grass, shrubs and trees-was positively correlated with the richness of granivorous, insectivorous, and omnivorous species, increasing the level of diet heterogeneity in the assemblages. Additionally, the effects of light pollution on avian communities were associated with the species' diet. Overall, light pollution negatively affected insectivorous and omnivorous bird species while not affecting granivorous species. The noise pollution, in contrast, was not significantly associated with changes in species assemblages. Our results offer some tips to urban planners, managers, and ecologists, in the challenge of producing more eco-friendly cities for the future.
Collapse
Affiliation(s)
- Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic.
- Department of Life and Environmental Sciences, Bournemouth University, Fern Barrow, Poole, 12 5BB, BH, UK.
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznan, Poland
| | | | - Mario Díaz
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (BGC-MNCN-CSIC), 28006, Madrid, Spain
| | - Jukka Suhonen
- Department of Biology, University of Turku, Turku, Finland
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Jiri Prosek
- Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - David Moravec
- Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | | | - Marko Mägi
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Theodoros Kominos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonia Galanaki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nikos Bukas
- Plegadis, Riga Feraiou 6A, 45444, Ioannina, Greece
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant Protection Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Jiri Reif
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Yanina Benedetti
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| |
Collapse
|
12
|
Eckhartt GM, Ruxton GD. Artificial light at night may decrease predation risk for terrestrial insects. Biol Lett 2022; 18:20220281. [PMID: 36349582 PMCID: PMC9653218 DOI: 10.1098/rsbl.2022.0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is thought to be detrimental for terrestrial insect populations. While there exists evidence for lower abundance under ALAN, underlying mechanisms remain unclear. One mechanism by which ALAN may contribute to insect declines may be through facilitating increased predation. We investigated this by experimentally manipulating insect-substitute abundance under differential levels of light. We used insect-containing birdfeed placed at varying distances from streetlights as a proxy for terrestrial insects, inspecting the rate of predation before and after dusk (when streetlights are, respectively, off and on). We found that there was a significantly greater effect of increasing distance on predation after dusk, suggesting that predation was actually reduced by greater levels of artificial light. This may occur because ALAN also increases the vulnerability of insectivores to their own predators. Implications for foraging behaviour and alternative explanations are discussed.
Collapse
Affiliation(s)
| | - Graeme D. Ruxton
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
13
|
An Investigation of the Influence of the Night Lighting in a Urban Park on Individuals’ Emotions. SUSTAINABILITY 2022. [DOI: 10.3390/su14148556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Outdoor urban lighting design is a complex issue. It involves multiple aspects (energy consumption, lighting pollution, aesthetics, and safety) that must be balanced to make sustainable decisions. Although the energy and environmental issues assumed a driving role in the optimization of the urban lighting design, its impact on the psychophysical well-being of individuals has received less attention. Artificial lighting has been shown to add several meanings to an individual’s experience of space: affective (affect, emotion, mood), cognitive (attention, imagination, perception), associative (memory, judgment), and motivational (closeness, openness, communication). Traditionally, studies on the effects of lighting on individuals’ emotions have mainly focused on indoor spaces, while the present study aims to investigate the influence of lighting on individuals’ emotions in an outdoor environment. Participants experienced a simulated urban park through virtual reality. Specifically, the urban park was shown with different combinations of overall illuminance (high vs medium vs low) and correlated colour temperature (CCT) (warm vs intermediate vs cool). For each combination, participants were asked to judge how they felt. In general, results showed that high-intensity cool light made participants more nervous, while warm light made individuals feel more tired and less motivated to explore the park. In contrast, an intermediate CCT at low or medium illuminance impacted individuals positively. Finally, it was found that participants’ mood predicted the impact that park lighting would have on them. These results suggest that assessing the influence of lighting on individuals’ emotions allows the decision-makers to implement the type of artificial lighting that will simultaneously safeguard both the well-being of individuals and the environment.
Collapse
|
14
|
Owens ACS, Dressler CT, Lewis SM. Costs and benefits of "insect friendly" artificial lights are taxon specific. Oecologia 2022; 199:487-497. [PMID: 35650413 DOI: 10.1007/s00442-022-05189-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 01/13/2023]
Abstract
The expansion of human activity into natural habitats often results in the introduction of artificial light at night, which can disrupt local ecosystems. Recent advances in LED technology have enabled spectral tuning of artificial light sources, which could in theory limit their impact on vulnerable taxa. To date, however, experimental comparisons of ecologically friendly candidate colors have often considered only one type of behavioral impact, sometimes on only single species. Resulting recommendations cannot be broadly implemented if their consequences for other local taxa are unknown. Working at a popular firefly ecotourism site, we exposed the insect community to artificial illumination of three colors (blue, broad-spectrum amber, red) and measured flight-to-light behavior as well as the courtship flash behavior of male Photinus carolinus fireflies. Firefly courtship activity was greatest under blue and red lights, while the most flying insects were attracted to blue and broad-spectrum amber lights. Thus, while impacts of spectrally tuned artificial light varied across taxa, our results suggest that red light, rather than amber light, is least disruptive to insects overall, and therefore more generally insect friendly.
Collapse
Affiliation(s)
- Avalon C S Owens
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| | - Caroline T Dressler
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.,Department of Ecology, Evolution, and Organismal Biology, Brown University, 80 Waterman Street, Providence, RI, 02912, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| |
Collapse
|
15
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
16
|
Lockett MT, Jones TM, Elgar MA, Gaston KJ, Visser ME, Hopkins GR. Urban street lighting differentially affects community attributes of airborne and ground‐dwelling invertebrate assemblages. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin T. Lockett
- School of BioSciences University of Melbourne Melbourne Vic. Australia
| | - Therésa M. Jones
- School of BioSciences University of Melbourne Melbourne Vic. Australia
| | - Mark A. Elgar
- School of BioSciences University of Melbourne Melbourne Vic. Australia
| | - Kevin J. Gaston
- Environment & Sustainability Institute University of Exeter Penryn Cornwall UK
| | - Marcel E. Visser
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Gareth R. Hopkins
- School of BioSciences University of Melbourne Melbourne Vic. Australia
- Department of Biology Western Oregon University Monmouth OR USA
| |
Collapse
|
17
|
van Grunsven RHA, van Deijk JR, Donners M, Berendse F, Visser ME, Veenendaal E, Spoelstra K. Experimental light at night has a negative long-term impact on macro-moth populations. Curr Biol 2021; 30:R694-R695. [PMID: 32574627 DOI: 10.1016/j.cub.2020.04.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Van Grunsven et al. experimentally test the long-term effects of artificial light on natural moth populations. In the initial two years there was no effect on populations, but in the latter three years population sizes were reduced compared with the dark controls. This shows that artificial light negatively affects moth populations.
Collapse
Affiliation(s)
- Roy H A van Grunsven
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Dutch Butterfly Conservation, P.O. Box 506, 6700 AM Wageningen, The Netherlands.
| | - Jurriën R van Deijk
- Dutch Butterfly Conservation, P.O. Box 506, 6700 AM Wageningen, The Netherlands
| | - Maurice Donners
- Signify, High Tech Campus 7, 5656 AE Eindhoven, The Netherlands
| | - Frank Berendse
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
18
|
Straka TM, von der Lippe M, Voigt CC, Gandy M, Kowarik I, Buchholz S. Light pollution impairs urban nocturnal pollinators but less so in areas with high tree cover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146244. [PMID: 33714820 DOI: 10.1016/j.scitotenv.2021.146244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The increase in artificial light at night (ALAN) is widely considered as a major driver for the worldwide decline of nocturnal pollinators such as moths. However, the relationship between light and trees as 'islands of shade' within urban areas has not yet been fully understood. Here, we studied (1) the effects of three landscape variables, i.e. sources of ALAN (mercury vapour/LED street lamps; overall light pollution), impervious surfaces (e.g. roads, parking lots and buildings), and tree cover on species richness and abundance of two major macro-moth families (Noctuidae and Geometridae) and (2) the potential mitigating effect of trees on macro-moths attracted to ALAN. We undertook a landscape-scale study on 22 open green areas along an urban-rural gradient within Berlin, Germany, using light traps to collect moths. Macro-moths were identified to species level and GLMMs applied with the three landscape variables at different scales (100 m, 500 m and 1000 m). We found a significant negative effect of mercury vapour street lamps on macro-moth species richness, while impervious surfaces showed significant negative effects on abundance (total and Geometridae). We further found significant positive effects of tree cover density on species richness and abundance (total and Geometridae). Effects of tree cover, however, were mostly driven by one site. LED lamps showed no predictive effects. A negative effect of ALAN (MV lamps and overall light) on macro-moths was most prominent in areas with low tree coverage, indicating a mitigating effect of trees on ALAN. We conclude that mercury vapour street lamps should be replaced by ecologically more neutral ALAN, and that in lit and open areas trees could be planted to mitigate the negative effect of ALAN on nocturnal pollinators. In addition, sources of ALAN should be carefully managed, using movement detection technology and other means to ensure that light is only produced when necessary.
Collapse
Affiliation(s)
- Tanja M Straka
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Moritz von der Lippe
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Christian C Voigt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany; Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Matthew Gandy
- University of Cambridge, Department of Geography, Downing Place, Cambridge CB2 3EN, UK.
| | - Ingo Kowarik
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Sascha Buchholz
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| |
Collapse
|
19
|
Alaasam VJ, Kernbach ME, Miller CR, Ferguson SM. The diversity of photosensitivity and its implications for light pollution. Integr Comp Biol 2021; 61:1170-1181. [PMID: 34232263 DOI: 10.1093/icb/icab156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Artificial light at night (ALAN) is a pervasive anthropogenic pollutant, emanating from urban and suburban developments and reaching nearly all ecosystems from dense forests to coastlines. One proposed strategy for attenuating the consequences of ALAN is to modify its spectral composition to forms that are less disruptive for photosensory systems. However, ALAN is a complicated pollutant to manage due to the extensive variation in photosensory mechanisms and the diverse ways these mechanisms manifest in biological and ecological contexts. Here, we highlight the diversity in photosensitivity across taxa and the implications of this diversity in predicting biological responses to different forms of night lighting. We curated this paper to be broadly accessible and inform current decisions about the spectrum of electric lights used outdoors. We advocate that efforts to mitigate light pollution should consider the unique ways species perceive ALAN, as well as how diverse responses to ALAN scale up to produce diverse ecological outcomes.
Collapse
Affiliation(s)
- Valentina J Alaasam
- Ecology, Evolution and Conservation Program, University of Nevada, Reno, Reno, NV.,Department of Biology, University of Nevada, Reno, Reno, NV
| | | | - Colleen R Miller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Stephen M Ferguson
- Department of Biology, College of Wooster, Wooster, OH.,Division of Natural Sciences, St. Norbert College, De Pere, WI
| |
Collapse
|
20
|
Briolat ES, Gaston KJ, Bennie J, Rosenfeld EJ, Troscianko J. Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators. Nat Commun 2021; 12:4163. [PMID: 34230463 PMCID: PMC8260664 DOI: 10.1038/s41467-021-24394-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The nighttime environment is being altered rapidly over large areas worldwide through introduction of artificial lighting, from streetlights and other sources. This is predicted to impact the visual ecology of many organisms, affecting both their intra- and interspecific interactions. Here, we show the effects of different artificial light sources on multiple aspects of hawkmoth visual ecology, including their perception of floral signals for pollination, the potential for intraspecific sexual signalling, and the effectiveness of their visual defences against avian predators. Light sources fall into three broad categories: some that prevent use of chromatic signals for these behaviours, others that more closely mimic natural lighting conditions, and, finally, types whose effects vary with light intensity and signal colour. We find that Phosphor Converted (PC) amber LED lighting – often suggested to be less harmful to nocturnal insects – falls into this third disruptive group, with unpredictable consequences for insect visual ecology depending on distance from the light source and the colour of the objects viewed. The diversity of impacts of artificial lighting on hawkmoth visual ecology alone argues for a nuanced approach to outdoor lighting in environmentally sensitive areas, employing intensities and spectra designed to limit those effects of most significant concern. Artificial light at night is a major way in which humans are altering the environment, impacting the ecology and behaviour of other species. Modelling how nocturnal hawkmoths see and are seen under multiple light sources suggests a range of potentially disruptive impacts on key behaviours.
Collapse
Affiliation(s)
| | - Kevin J Gaston
- Environment & Sustainability Institute, University of Exeter, Penryn, UK
| | - Jonathan Bennie
- Environment & Sustainability Institute, University of Exeter, Penryn, UK
| | - Emma J Rosenfeld
- Environment & Sustainability Institute, University of Exeter, Penryn, UK
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK.
| |
Collapse
|
21
|
Kühne JL, van Grunsven RHA, Jechow A, Hölker F. Impact of different wavelengths of artificial light at night on phototaxis in aquatic insects. Integr Comp Biol 2021; 61:1182-1190. [PMID: 34180520 DOI: 10.1093/icb/icab149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The use of artificial light at night (ALAN) is increasing exponentially worldwide and there is growing evidence that ALAN contributes to the decline of insect populations. One of the most conspicuous ecological effects is the strong attraction of ALAN to flying insects. In several studies, light sources with strong short wavelength emissions have been shown to attract the highest numbers of flying insects. Furthermore, flying stages of aquatic insects are reported to be more vulnerable to ALAN than flying stages of terrestrial insects. This is concerning because freshwater habitats are likely affected by ALAN that originates from human activity centers, which are typically close to sources of freshwater. However, the effects of ALAN on aquatic insects, that spend their larval phase (amphibiotic insects) or their whole life cycle (fully aquatic insects) in freshwaters, are entirely understudied. Here, we investigated phototaxis of aquatic insects to ALAN at different wavelengths and intensities. We used floating light traps and compared four, near monochromatic, lights (blue, green, red and yellow) at two different photopic light intensities in a ditch system, which was not exposed to ALAN previously. Similar to flying stages of (aquatic and terrestrial) insects we found a strong positive phototaxis of aquatic life stages. However, in contrast to the flying stages there is no clear preference for short-wavelength light. Overall, responsivity to wavelengths in the center of the visible range (green, yellow; 500-600nm) was significant for all orders of aquatic insects studied and the nymphs of Ephemeroptera didn't respond to blue light at all. This is likely an adaption to how light is attenuated in freshwater systems, where not only the water itself but also a variety of optical constituents act as a color filter, often like in in our case filtering out short-wavelength light. Therefore, insects living in freshwater bodies often live in longer wavelength-dominated environments and might therefore be especially sensitive to green/yellow light. In conclusion, the different spectral sensitivities of both aquatic and flying insects should be taken into account when planning lighting near fresh water.
Collapse
Affiliation(s)
- Judith L Kühne
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Roy H A van Grunsven
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Andreas Jechow
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
22
|
Diamantopoulou C, Christoforou E, Dominoni DM, Kaiserli E, Czyzewski J, Mirzai N, Spatharis S. Wavelength-dependent effects of artificial light at night on phytoplankton growth and community structure. Proc Biol Sci 2021; 288:20210525. [PMID: 34157871 DOI: 10.1098/rspb.2021.0525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Artificial light at night (ALAN) is a disruptive form of pollution, impacting physiological and behavioural processes that may scale up to population and community levels. Evidence from terrestrial habitats show that the severity and type of impact depend on the wavelength and intensity of ALAN; however, research on marine organisms is still limited. Here, we experimentally investigated the effect of different ALAN colours on marine primary producers. We tested the effect of green (525 nm), red (624 nm) and broad-spectrum white LED ALAN, compared to a dark control, on the green microalgae Tetraselmis suesica and a diatom assemblage. We show that green ALAN boosted chlorophyll production and abundance in T. suesica. All ALAN wavelengths affected assemblage biomass and diversity, with red and green ALAN having the strongest effects, leading to higher overall abundance and selective dominance of specific diatom species, some known to cause harmful algal blooms. Our findings show that green and red ALAN should be used with caution as alternative LED colours in coastal areas, where there might be a need to strike a balance between the effects of green and red light on marine primary producers with the benefit they appear to bring to other organisms.
Collapse
Affiliation(s)
- Christina Diamantopoulou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.,School of Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Eleni Christoforou
- School of Life Sciences, University of Glasgow, Glasgow G128QQ, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| | - Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| | - Eirini Kaiserli
- Molecular Cell and Systems Biology, University of Glasgow, Glasgow G128QQ, UK
| | - Jakub Czyzewski
- College of Medical, Veterinary and Life Sciences (MVLS), Bioelectronics Unit, University of Glasgow, Glasgow G128QQ, UK
| | - Nosrat Mirzai
- College of Medical, Veterinary and Life Sciences (MVLS), Bioelectronics Unit, University of Glasgow, Glasgow G128QQ, UK
| | - Sofie Spatharis
- School of Life Sciences, University of Glasgow, Glasgow G128QQ, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
23
|
Singh D, Montoure J, Ketterson ED. Exposure to artificial light at night accelerates but does not override latitude-dependent seasonal reproductive response in a North American songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116867. [PMID: 33770652 DOI: 10.1016/j.envpol.2021.116867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In the modern era of industrialization, illuminated nights have become a common defining feature of human-occupied environments, particularly cities. Artificial light at night (ALAN) imposes several known negative impacts on the neuroendocrine system, metabolism, and seasonal reproduction of species living in the wild. However, we know little about the impact of ALAN on populations of birds that either live year-round in the same location or move to different latitudes across seasons. To test whether ALAN has a differing impact on the reproductive timing of bird populations that winter in sympatry but breed at different latitudes, we monitored sedentary and migratory male dark-eyed juncos that were or were not exposed to low intensity (∼2.5 ± 0.5 lux) ALAN. All groups were held in common conditions and day length was gradually increased to mimic natural day length changes (NDL). We assessed seasonal reproductive response from initiation to termination of the breeding cycle. As expected based on earlier research, the sedentary birds exhibited earlier gonadal recrudescence and terminated breeding later than the migratory birds. In addition, resident and migrant birds exposed to ALAN initiated gonadal recrudescence earlier and terminated reproductive events sooner as compared to their conspecifics experiencing NDL. Importantly, the difference in the reproductive timing of sedentary and migratory populations was maintained even when exposed to ALAN. This variation in the seasonal reproductive timing may likely have a genetic basis or be the result of early developmental effects imposed due to different light regimes related to the latitude of origin. This study reveals first that ALAN accelerated reproductive development across both migrants and residents and second that latitude-dependent variation in reproductive timing is maintained despite exposure to ALAN. These results corroborate a relationship between latitude, population, and reproductive timing while also revealing ALAN's impact on seasonal reproductive timing. This study reveals that, ALAN accelerated reproductive development but maintained latitude-dependent variation in reproductive timing across both migrant and resident bird populations.
Collapse
Affiliation(s)
- D Singh
- Department of Biology, Indiana University, Bloomington, 47405, IN, USA; Environmental Resilience Institute, Indiana University, Bloomington, 47405, IN, USA.
| | - J Montoure
- Department of Biology, Indiana University, Bloomington, 47405, IN, USA
| | - E D Ketterson
- Department of Biology, Indiana University, Bloomington, 47405, IN, USA; Environmental Resilience Institute, Indiana University, Bloomington, 47405, IN, USA
| |
Collapse
|
24
|
Haynes KJ, Robertson BA. A transdisciplinary research agenda for understanding insect responses to ecological light pollution informed by evolutionary trap theory. CURRENT OPINION IN INSECT SCIENCE 2021; 45:91-96. [PMID: 33601058 DOI: 10.1016/j.cois.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary traps are phenomena in which rapid environmental change causes environmental cues that historically guided adaptive behavioral or life-history decisions to become poor predictors of the consequences of such decisions for an organism's fitness. Evolutionary trap theory offers an ideal framework for understanding and mitigating the effects of ecological light pollution (ELP) on insects. We emphasize the utility of an evolutionary trap perspective in demonstrating the importance of an integrated understanding of the sensory, behavioral, evolutionary, and demographic mechanisms underlying insect responses to ELP. We also highlight neglected areas of research where greater focus can help enhance understanding of how ELP affects the persistence, evolutionary trajectory, and population dynamics of insects across space and time.
Collapse
Affiliation(s)
- Kyle J Haynes
- Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA, 22620, USA.
| | - Bruce A Robertson
- Division of Science, Mathematics and Computing, Bard College, Annandale-on-Hudson, New York 12504, USA
| |
Collapse
|
25
|
Kernbach ME, Martin LB, Unnasch TR, Hall RJ, Jiang RHY, Francis CD. Light pollution affects West Nile virus exposure risk across Florida. Proc Biol Sci 2021; 288:20210253. [PMID: 33757351 PMCID: PMC8059973 DOI: 10.1098/rspb.2021.0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization. By modelling WNV exposure among sentinel chickens in Florida, we found strong support for a nonlinear relationship between ALAN and WNV exposure risk in chickens with peak WNV risk occurring at low ALAN levels. Although our goal was not to discern how ALAN affected WNV relative to other factors, effects of ALAN on WNV exposure were stronger than other known drivers of risk (i.e. impervious surface, human population density). Ambient temperature in the month prior to sampling, but no other considered variables, strongly influenced WNV risk. These results indicate that ALAN may contribute to spatio-temporal changes in WNV risk, justifying future investigations of ALAN on other vector-borne parasites.
Collapse
Affiliation(s)
- Meredith E. Kernbach
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Thomas R. Unnasch
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Richard J. Hall
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr., Athens, GA 30602, USA
| | - Rays H. Y. Jiang
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Clinton D. Francis
- Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| |
Collapse
|
26
|
Wilson AA, Seymoure BM, Jaeger S, Milstead B, Payne H, Peria L, Vosbigian R, Francis CD. Direct and ambient light pollution alters recruitment for a diurnal plant-pollinator system. Integr Comp Biol 2021; 61:1122-1133. [PMID: 33724371 DOI: 10.1093/icb/icab010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Artificial light at night (ALAN) functions as a novel environmental stimulus that has the potential to disrupt interactions among species. Despite recent efforts to explain nocturnal pollinators' responses to this stimulus, the likelihood and associated mechanisms of attraction towards artificial light and potential consequences on fitness for diurnal pollinators is still largely unclear. Here, we took advantage of the obligate mutualism between yucca moths (Tegeticula maculata maculata) and yucca plants (Hesperoyucca whipplei) to understand how direct light exposure and skyglow can influence a pairwise plant-pollinator interaction. To surmise whether adult moths exhibit positive phototaxis, we deployed a set of field-placed light towers during the peak of yucca flowering and compared the number of moths caught in traps between dark-controlled and light-treated trials. Adult moth abundance was much higher when light was present, which suggests that ALAN may alter this diurnal moth's activity patterns to expand their temporal niche into the night. To evaluate ALAN effects on yucca fruit set and moth larva recruitment, we measured skyglow exposure above yucca plants and direct light intensity from a second set of light towers. Both larva and fruit recruitment increased with skyglow, and fruit set also increased with direct lighting, but the relationship was weaker. Contrarily, larva recruitment did not change when exposed to a gradient of direct light, which may instead reflect effects of ALAN on moth physiology, such as disrupted female oviposition, or misdirecting behaviors essential to oviposition activity. Our results suggest that ALAN can positively influence the fitness of both plants and moths in this tightly co-evolved mutualism, but the benefits to each species may depend on whether night lighting is direct or indirect. Whether such effects and mechanisms could relate to susceptibility to the presence of ALAN on this or other plant-pollinator relationships will remain an important focus of future research.
Collapse
Affiliation(s)
- Ashley A Wilson
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| | - Brett M Seymoure
- Living Earth Collaborative, Washington University in St. Louis. St. Louis, MO.,Biology Department, Colorado State University, Fort Collins, CO
| | - Sierra Jaeger
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| | - Briana Milstead
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| | - Helen Payne
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| | - Lindsay Peria
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| | - Ryan Vosbigian
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| | - Clinton D Francis
- Biological Sciences, California Polytechnic State University, San Luis Obispo, CA
| |
Collapse
|
27
|
Peregrym M, Pénzesné Kónya E, Falchi F. Very important dark sky areas in Europe and the Caucasus region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111167. [PMID: 32791325 DOI: 10.1016/j.jenvman.2020.111167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
ALAN (artificial light at night) can give, if done adequately, a lot of benefits for human society, but it affects reproduction, navigation, foraging, habitat selection, communication, trophic and social interactions of the biota in the same time. Taking into account dramatic increase in light pollution of the night sky and night environment during the past decades, the creation of refugia where natural habitats are not influenced by ALAN is very important. We selected promising territories without, or with a low impact of, ALAN for the development of a VIDA (Very Important Dark Area) Network in Europe and the Caucasus region. 54 VIDAs within the borders of 30 countries were chosen, located in different biogeographic regions, at different altitudes, and in juxtaposition with protected areas. Special attention has been paid to sea and ocean islands, non-polluted by ALAN, as well as to large parts of European Russia and Kazakhstan where there is still a low level of light pollution. These places might be a basis for the protection of biodiversity from the consequences of ALAN, and they can also serve as key education centers for increasing the awareness of the problem of light pollution of the sky at night. Due to the fact that light propagates far away in the atmosphere, the protection of VIDAs can be obtained only if a strong anti-light pollution action is enforced also in the surrounding areas, at least 100 km from the borders of the VIDAs.
Collapse
Affiliation(s)
- Mykyta Peregrym
- Eszterházy Károly University, Leanyka Str., 6-8, Eger, 3300, Hungary.
| | | | - Fabio Falchi
- Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso (Light Pollution Science and Technology Institute), 36016, Thiene, Italy; Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
28
|
Boom MP, Spoelstra K, Biere A, Knop E, Visser ME. Pollination and fruit infestation under artificial light at night:light colour matters. Sci Rep 2020; 10:18389. [PMID: 33110135 PMCID: PMC7591485 DOI: 10.1038/s41598-020-75471-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/06/2020] [Indexed: 12/04/2022] Open
Abstract
Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light–dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant–insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant–insect interactions in the Silene latifolia–Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant–insect interactions differently, with direct consequences for plant fitness.
Collapse
Affiliation(s)
- Michiel P Boom
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Eva Knop
- Department of Evoluationary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland.,Agroscope, Agroecology and Environment, Reckenholzstr. 191, 8046, Zürich, Switzerland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Yao Q, Wang H, Dai Q, Shi F. Quantification assessment of light pollution of façade lighting display in Shenzhen, China. OPTICS EXPRESS 2020; 28:14100-14108. [PMID: 32403871 DOI: 10.1364/oe.390479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
In this work, we investigated 39 façade lighting displays, all of which consisted of tri-chromatic light sources, namely blue-, green-, and red- light units, in Shenzhen, China. We extracted the spectral characteristics of the mean peak wavelength/full-width at half-maximum, and proposed universal spectral models. We further established the 'chromaticity-performance' relation to quantitatively assess the impact of light pollution on typical species based on corresponding action spectra. The findings provide a low-cost, fast and precise approach to assess light pollution of complicated light environment, and may help reduce energy waste and adverse environmental consequences associated with light pollution.
Collapse
|
30
|
Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. SUSTAINABILITY 2020. [DOI: 10.3390/su12062551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Collapse
|
31
|
Kim KN, Huang QY, Lei CL. Advances in insect phototaxis and application to pest management: a review. PEST MANAGEMENT SCIENCE 2019; 75:3135-3143. [PMID: 31251458 DOI: 10.1002/ps.5536] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Many insects, especially nocturnal insects, exhibit positive phototaxis to artificial lights. Light traps are currently used to monitor and manage insect pest populations, and play a crucial role in physical pest control. Efficient use of light traps to attract target insect pests is an important topic in the application of integrated pest management (IPM). Phototactic responses of insects vary among species, light characteristics and the physiological status of the insects. In addition, light can cause several biological responses, including biochemical, physiological, molecular and fitness changes in insects. In this review, we discuss several hypotheses on insect phototaxis, factors affecting insect phototaxis, insect-sensitive wavelengths, biological responses of insects to light, and countermeasures for conserving beneficial insects and increasing the effect of trapping. In addition, we provide information on the different sensitivities to wavelengths causing positive phototactic behavior in > 70 insect pest and beneficial insect species. The use of advanced light traps equipped with superior light sources, such as light-emitting diodes (LEDs), will make physical pest control in IPM more efficient. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kil-Nam Kim
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Institute for Biodiversity, State Academy of Sciences, Pyongyang, Democratic People's Republic Korea
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Long-Term Comparison of Attraction of Flying Insects to Streetlights after the Transition from Traditional Light Sources to Light-Emitting Diodes in Urban and Peri-Urban Settings. SUSTAINABILITY 2019. [DOI: 10.3390/su11226198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among the different light sources used for street lighting, light-emitting diodes (LEDs) are likely to dominate the world market in the coming years. At the same time, the spectral composition of nocturnal illumination is changing. Europe and many other areas worldwide have implemented bans on energy-inefficient lamps, such as the still very common mercury vapor lamps. However, the impact of artificial light on insects is mostly tested with light-traps or flight-intercept traps that are used for short periods only. By comparing the numbers of insects attracted by street lamps before and after replacing mercury vapor light sources (MV) with light emitting diodes, we assessed the impact in more typical (urban and peri-urban) settings over several years. We found that LED attracted approximately half of the number of insects compared to MV lights. Furthermore, most insect groups are less drawn by LED than by MV, while Hymenoptera are less attracted by MV than by LED. Thus, the composition of the attracted communities differed between the light sources, which may impact ecosystem processes and functions. In green peri-urban settings more insects are attracted than in an urban setting, but the relative difference between the light sources is the same.
Collapse
|
33
|
The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting. SUSTAINABILITY 2019. [DOI: 10.3390/su11216160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the 21st century, the notion of “sustainable lighting” is closely associated with LED technology. In the past ten years, municipalities and private light users worldwide have installed light-emitting diodes in urban spaces and public streets to save energy. Yet an increasing body of interdisciplinary research suggests that supposedly sustainable LED installations are in fact unsustainable, because they increase light pollution. Paradoxically, blue-rich cool-white LED lighting, which is the most energy-efficient, also appears to be the most ecologically unfriendly. Biologists, physicians and ecologists warn that blue-rich LED light disturbs the circadian day-and-night rhythm of living organisms, including humans, with potential negative health effects on individual species and whole ecosystems. Can the paradox be solved? This paper explores this question based on our transdisciplinary research project Light Pollution—A Global Discussion. It reveals how light pollution experts and lighting professionals see the challenges and potential of LED lighting from their different viewpoints. This expert feedback shows that “sustainable LED lighting” goes far beyond energy efficiency as it raises complex design issues that imply stakeholder negotiation. It also suggests that the LED paradox may be solved in context, but hardly in principle.
Collapse
|
34
|
Dominoni DM, Nelson RJ. Artificial light at night as an environmental pollutant: An integrative approach across taxa, biological functions, and scientific disciplines. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 329:387-393. [PMID: 30371014 DOI: 10.1002/jez.2241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Davide M Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown,, Virginia
| |
Collapse
|
35
|
Seymoure BM, Linares C, White J. Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms. J Zool (1987) 2019. [DOI: 10.1111/jzo.12656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- B. M. Seymoure
- Department of Biology Colorado State University Fort Collins CO USA
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - C. Linares
- Department of Biology Colorado State University Fort Collins CO USA
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - J. White
- Department of Biology Colorado State University Fort Collins CO USA
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
36
|
Owens ACS, Lewis SM. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol Evol 2018; 8:11337-11358. [PMID: 30519447 PMCID: PMC6262936 DOI: 10.1002/ece3.4557] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.
Collapse
Affiliation(s)
| | - Sara M. Lewis
- Department of BiologyTufts UniversityMedfordMassachusetts
| |
Collapse
|