1
|
Ruiz Miñano M, Uller T, Pettersen AK, Nord A, Fitzpatrick LJ, While GM. Sexual color ornamentation, microhabitat choice, and thermal physiology in the common wall lizard (Podarcis muralis). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1041-1052. [PMID: 39101273 DOI: 10.1002/jez.2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Common wall lizards (Podarcis muralis) in Italy show a striking variation in body coloration across the landscape, with highly exaggerated black and green colors in hot and dry climates and brown and white colors in cool and wet climates. Males are more intensely colored than females, and previous work has suggested that the maintenance of variation in coloration across the landscape reflects climatic effects on the strength of male-male competition, and through this sexual selection. However climatic effects on the intensity of male-male competition would need to be exceptionally strong to fully explain the geographic patterns of color variation. Thus, additional processes may contribute to the maintenance of color variation. Here we test the hypothesis that selection for green and black ornamentation in the context of male-male competition is opposed by selection against ornamentation because the genes involved in the regulation of coloration have pleiotropic effects on thermal physiology, such that ornamentation is selected against in cool climates. Field observations revealed no association between body coloration and microhabitat use or field active body temperatures. Consistent with these field data, lizards at the extreme ends of the phenotypic distribution for body coloration did not show any differences in critical minimum temperature, preferred body temperature, temperature-dependent metabolic rate, or evaporative water loss when tested in the laboratory. Combined, these results provide no evidence that genes that underlie sexual ornamentation are selected against in cool climate because of pleiotropic effects on thermal biology.
Collapse
Affiliation(s)
- Maravillas Ruiz Miñano
- Discipline of Biological Sciences, University of Tasmania, Hobart, Australia
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| | - Amanda K Pettersen
- Department of Biology, Lund University, Lund, Sweden
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Andreas Nord
- Department of Biology, Lund University, Lund, Sweden
| | - Luisa J Fitzpatrick
- Discipline of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Geoffrey M While
- Discipline of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
2
|
Bodensteiner B, Burress ED, Muñoz MM. Adaptive Radiation Without Independent Stages of Trait Evolution in a Group of Caribbean Anoles. Syst Biol 2024; 73:743-757. [PMID: 39093688 DOI: 10.1093/sysbio/syae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive radiation involves diversification along multiple trait axes, producing phenotypically diverse, species-rich lineages. Theory generally predicts that multi-trait evolution occurs via a "stages" model, with some traits saturating early in a lineage's history, and others diversifying later. Despite its multidimensional nature, however, we know surprisingly little about how different suites of traits evolve during adaptive radiation. Here, we investigated the rate, pattern, and timing of morphological and physiological evolution in the anole lizard adaptive radiation from the Caribbean island of Hispaniola. Rates and patterns of morphological and physiological diversity are largely unaligned, corresponding to independent selective pressures associated with structural and thermal niches. Cold tolerance evolution reflects parapatric divergence across elevation, rather than niche partitioning within communities. Heat tolerance evolution and the preferred temperature evolve more slowly than cold tolerance, reflecting behavioral buffering, particularly in edge-habitat species (a pattern associated with the Bogert effect). In contrast to the nearby island of Puerto Rico, closely related anoles on Hispaniola do not sympatrically partition thermal niche space. Instead, allopatric and parapatric separation across biogeographic and environmental boundaries serves to keep morphologically similar close relatives apart. The phenotypic diversity of this island's adaptive radiation accumulated largely as a by-product of time, with surprisingly few exceptional pulses of trait evolution. A better understanding of the processes that guide multidimensional trait evolution (and nuance therein) will prove key in determining whether the stages model should be considered a common theme of adaptive radiation.
Collapse
Affiliation(s)
- Brooke Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL 35401, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
4
|
Alomar N, Bodensteiner BL, Hernández-Rodríguez I, Landestoy MA, Domínguez-Guerrero SF, Muñoz MM. Comparison of Hydric and Thermal Physiology in an Environmentally Diverse Clade of Caribbean Anoles. Integr Comp Biol 2024; 64:377-389. [PMID: 38702856 DOI: 10.1093/icb/icae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the "cybotoid" anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.
Collapse
Affiliation(s)
- Nathalie Alomar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | | | - Miguel A Landestoy
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, 10105, Dominican Republic
| | | | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
5
|
Scheun J, Venter L, Ganswindt A. A frog in hot water: the effect of temperature elevation on the adrenal stress response of an African amphibian. PeerJ 2024; 12:e17847. [PMID: 39157773 PMCID: PMC11328835 DOI: 10.7717/peerj.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Amphibians, with their unique physiology and habitat requirements, are especially vulnerable to changes in environmental temperatures. While the activation of the physiological stress response can help to mitigate the impact of such habitat alteration, chronic production of elevated glucocorticoid levels can be deleterious in nature. There is no empirical evidence indicating the physiological response of African amphibians to temperature changes, where individuals are unable to emigrate away from potential stressors. To rectify this, we used the edible bullfrog (Pyxicephalus edulis) as a model species to determine the effect of elevated temperature on the adrenocortical response of the species using a recently established matrix. While a control group was kept at a constant temperature (25 °C) throughout the study period, an experimental group was exposed to control (25 °C) and elevated temperatures (30 °C). Mucous swabs were collected throughout the study period to determine dermal glucocorticoid (dGC) concentrations, as a proxy for physiological stress. In addition to this, individual body mass measurements were collected. The results showed that individuals within the experimental group who experienced increased temperatures had significantly elevated dGC levels compared to the control animals. Furthermore, there was a significant difference in the percentage mass change between experimental and control animals . These findings indicate the physiological sensitivity of the edible bullfrog to a thermal stressor in captivity. While this study shows the importance of proper amphibian management within the captive environment, it also highlights the coming danger of global climate change to this and similar amphibian species.
Collapse
Affiliation(s)
- Juan Scheun
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Leanne Venter
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
6
|
Kynoch C, Paladino FV, Spotila JR, Santidrián Tomillo P. Variability in thermal tolerance of clutches from different mothers indicates adaptation potential to climate warming in sea turtles. GLOBAL CHANGE BIOLOGY 2024; 30:e17447. [PMID: 39098999 DOI: 10.1111/gcb.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
The current climate warming is a challenge to biodiversity that could surpass the adaptation capacity of some species. Hence, understanding the means by which populations undergo an increase in their thermal tolerance is critical to assess how they could adapt to climate warming. Specifically, sea turtle populations could respond to increasing temperatures by (1) colonizing new nesting areas, (2) nesting during cooler times of the year, and/or (3) by increasing their thermal tolerance. Differences in thermal tolerance of clutches laid by different females would indicate that populations have the potential to adapt by natural selection. Here, we used exhaustive information on nest temperatures and hatching success of leatherback turtle (Dermochelys coriacea) clutches over 14 years to assess the occurrence of individual variability in thermal tolerance among females. We found an effect of temperature, year, and the interaction between female identity and nest temperature on hatching success, indicating that clutches laid by different females exhibited different levels of vulnerability to high temperatures. If thermal tolerance is a heritable trait, individuals with higher thermal tolerances could have greater chances of passing their genes to following generations, increasing their frequency in the population. However, the high rate of failure of clutches at temperatures above 32°C suggests that leatherback turtles are already experiencing extreme heat stress. A proper understanding of mechanisms of adaptation in populations to counteract changes in climate could greatly contribute to future conservation of endangered populations in a rapidly changing world.
Collapse
Affiliation(s)
- Camille Kynoch
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Frank V Paladino
- The Leatherback Trust, Goldring-Gund Marine Biology Station, Playa Grande, Costa Rica
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - James R Spotila
- The Leatherback Trust, Goldring-Gund Marine Biology Station, Playa Grande, Costa Rica
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Pilar Santidrián Tomillo
- Centre Oceanogràfic de les Balears, Instituto Español de Oceanografía (IEO, CSIC), Palma de Mallorca, Spain
| |
Collapse
|
7
|
Hinostroza F, Araya-Duran I, Piñeiro A, Lobos I, Pastenes L. Transcription factor roles in the local adaptation to temperature in the Andean Spiny Toad Rhinella spinulosa. Sci Rep 2024; 14:15158. [PMID: 38956427 PMCID: PMC11220030 DOI: 10.1038/s41598-024-66127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Environmental temperature strongly influences the adaptation dynamics of amphibians, whose limited regulation capabilities render them susceptible to thermal oscillations. A central element of the adaptive strategies is the transcription factors (TFs), which act as master regulators that orchestrate stress responses, enabling species to navigate the fluctuations of their environment skillfully. Our study delves into the intricate relationship between TF expression and thermal adaptation mechanisms in the Rhinella spinulosa populations. We sought to elucidate the dynamic modulations of TF expression in prometamorphic and metamorphic tadpoles that inhabit two thermally contrasting environments (Catarpe and El Tatio Geyser, Chile) and which were exposed to two thermal treatments (25 °C vs. 20 °C). Our findings unravel an intriguing dichotomy in response strategies between these populations. First, results evidence the expression of 1374 transcription factors. Regarding the temperature shift, the Catarpe tadpoles show a multifaceted approach by up-regulating crucial TFs, including fosB, atf7, and the androgen receptor. These dynamic regulatory responses likely underpin the population's ability to navigate thermal fluctuations effectively. In stark contrast, the El Tatio tadpoles exhibit a more targeted response, primarily up-regulating foxc1. This differential expression suggests a distinct focus on specific TFs to mitigate the effects of temperature variations. Our study contributes to understanding the molecular mechanisms governing thermal adaptation responses and highlights the resilience and adaptability of amphibians in the face of ever-changing environmental conditions.
Collapse
Affiliation(s)
- Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Centro Para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro Piñeiro
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Isabel Lobos
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Luis Pastenes
- Laboratorio de Genética y Microevolución, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
8
|
Cabanzo-Olarte LC, Cardoso Bícego K, Navas Iannini CA. Behavioral responses during sickness in amphibians and reptiles: Concepts, experimental design, and implications for field studies. J Therm Biol 2024; 123:103889. [PMID: 38897001 DOI: 10.1016/j.jtherbio.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In ectothermic vertebrates, behavioral fever, where an individual actively seeks warmer areas, seems to be a primary response to pathogens. This is considered a broad and evolutionarily conserved response among vertebrates. Recent population declines in amphibians are associated with an increase of infectious disease driven largely by climate change, habitat degradation, and pollution. Immediate action through research is required to better understand and inform conservation efforts. The literature available, does not provide unifying concepts that can guide adequate experimental protocols and interpretation of data, especially when studying animals in the field. The aim of this review is to promote common understanding of terminology and facilitating improved comprehension and application of key concepts about the occurrence of both sickness behavior or behavioral fever in ectothermic vertebrates. We start with a conceptual synthesis of sickness behavior and behavioral fever, with examples in different taxa. Through this discussion we present possible paths to standardize terminology, starting from original use in endothermic tetrapods which was expanded to ectothermic vertebrates, particularly amphibians and reptiles. This conceptual expansion from humans (endothermic vertebrates) and then to ectothermic counterparts, gravitates around the concept of 'normality'. Thus, following this discussion, we highlight caveats with experimental protocols and state the need of a reference value considered normal (RVCN), which is different from experimental control and make recommendations regarding experimental procedures and stress the value of detailed documentation of behavioral responses. We also propose some future directions that could enhance interaction among disciplines, emphasizing relationships at different levels of biological organization. This is crucial given the increasing convergence of fields such as thermal physiology, immunology, and animal behavior due to emerging diseases and other global crises impacting biodiversity.
Collapse
Affiliation(s)
- Laura Camila Cabanzo-Olarte
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Arturo Navas Iannini
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Azzolini JL, Pratt SC, DeNardo DF. Hydration state does not affect selected body temperature during gravidity or gravidity duration in pythons (Antaresia childreni). Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111624. [PMID: 38462029 DOI: 10.1016/j.cbpa.2024.111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The embryonic development of many ectothermic species are highly sensitive to temperature and typically have a higher thermal optima than do most other physiological processes. Thus, female ectotherms often maintain a higher and more carefully controlled body temperature when she is supporting developing embryos (early development in oviparous species, throughout development in viviparous species). Considering the positive correlation between body temperature and evaporative water loss, this response could potentially exacerbate female water imbalance in water-limited environments, suggesting that female water balance and egg development may be in conflict. Using Children's pythons (Antaresia childreni), we hypothesized that water deprivation reduces thermophily during gravidity. We split reproductive females into two thermal treatments: those provided with a continuously available thermal gradient of 25-45 °C and those kept at a constant 31 °C. We also had seven non-reproductive females that were provided a thermal gradient. Within each thermal treatment group, we alternatingly assigned females to either have or not have water throughout gravidity. We found that reproduction increased female body temperature, but this increase was not affected by water regime. Reproduction also increased plasma osmolality, and lack of water during gravidity exacerbated this effect. We also found that thermal treatment, but not water regime, significantly influenced gravidity duration, with females given a thermogradient having a shorter gravidity duration, likely as a result of having a higher average body temperature than did the females provided constant heat. Finally, we found that females provided water throughout gravidity had greater clutch masses than did females without water. Further research is needed to improve scientific understanding of the interactions among water balance, body temperature, and various physiological performances.
Collapse
Affiliation(s)
- Jill L Azzolini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA.
| | - Stephen C Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| |
Collapse
|
10
|
Plasman M, Gonzalez-Voyer A, Bautista A, Díaz DE LA Vega-Pérez AH. Flexibility in thermal requirements: a comparative analysis of the wide-spread lizard genus Sceloporus. Integr Zool 2024. [PMID: 38880782 DOI: 10.1111/1749-4877.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Adaptation or acclimation of thermal requirements to environmental conditions can reduce thermoregulation costs and increase fitness, especially in ectotherms, which rely heavily on environmental temperatures for thermoregulation. Insight into how thermal niches have shaped thermal requirements across evolutionary history may help predict the survival of species during climate change. The lizard genus Sceloporus has a widespread distribution and inhabits an ample variety of habitats. We evaluated the effects of geographical gradients (i.e. elevation and latitude) and local environmental temperatures on thermal requirements (i.e. preferred body temperature, active body temperature in the field, and critical thermal limits) of Sceloporus species using published and field-collected data and performing phylogenetic comparative analyses. To contrast macro- and micro-evolutional patterns, we also performed intra-specific analyses when sufficient reports existed for a species. We found that preferred body temperature increased with elevation, whereas body temperature in the field decreased with elevation and increased with local environmental temperatures. Critical thermal limits were not related to the geographic gradient or environmental temperatures. The apparent lack of relation of thermal requirements to geographic gradient may increase vulnerability to extinction due to climate change. However, local and temporal variations in thermal landscape determine thermoregulation opportunities and may not be well represented by geographic gradient and mean environmental temperatures. Results showed that Sceloporus lizards are excellent thermoregulators, have wide thermal tolerance ranges, and the preferred temperature was labile. Our results suggest that Sceloporus lizards can adjust to different thermal landscapes, highlighting opportunities for continuous survival in changing thermal environments.
Collapse
Affiliation(s)
- Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H Díaz DE LA Vega-Pérez
- Consejo Nacional de Humanidades, Ciencias, y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
11
|
Alves-Ferreira G, Fortunato DS, Katzenberger M, Fava FG, Solé M. Effects of temperature on growth, development, and survival of amphibian larvae: macroecological and evolutionary patterns. AN ACAD BRAS CIENC 2024; 96:e20230671. [PMID: 38747789 DOI: 10.1590/0001-3765202420230671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
Temperature affects the rate of biochemical and physiological processes in amphibians, influencing metamorphic traits. Temperature patterns, as those observed in latitudinal and altitudinal clines, may impose different challenges on amphibians depending on how species are geographically distributed. Moreover, species' response to environmental temperatures may also be phylogenetically constrained. Here, we explore the effects of acclimation to higher temperatures on tadpole survival, development, and growth, using a meta-analytical approach. We also evaluate whether the latitude and climatic variables at each collection site can explain differences in species' response to increasing temperature and whether these responses are phylogenetically conserved. Our results show that species that develop at relatively higher temperatures reach metamorphosis faster. Furthermore, absolute latitude at each collection site may partially explain heterogeneity in larval growth rate. Phylogenetic signal of traits in response to temperature indicates a non-random process in which related species resemble each other less than expected under Brownian motion evolution (BM) in all traits, except survival. The integration of studies in a meta-analytic framework allowed us to explore macroecological and macroevolutionary patterns and provided a better understanding of the effects of climate change on amphibians.
Collapse
Affiliation(s)
- Gabriela Alves-Ferreira
- Universidade Estadual de Santa Cruz, Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Danilo S Fortunato
- Universidade Federal de Goiás, DTI Program, Instituto Nacional de Ciência Tecnologia (EECBio), Instituto de Ciências Biológicas, Campus II (Samambaia), 74690-900 Goiânia, GO, Brazil
| | - Marco Katzenberger
- Universidade Federal de Pernambuco, Laboratório de Bioinformática e Biologia Evolutiva, Departamento de Genética, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Fernanda G Fava
- Universidade Estadual de Santa Cruz, Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Mirco Solé
- Universidade Estadual de Santa Cruz, Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Ruthsatz K, Dahlke F, Alter K, Wohlrab S, Eterovick PC, Lyra ML, Gippner S, Cooke SJ, Peck MA. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. GLOBAL CHANGE BIOLOGY 2024; 30:e17318. [PMID: 38771091 DOI: 10.1111/gcb.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Flemming Dahlke
- Ecology of Living Marine Resources, Universität Hamburg, Hamburg, Germany
| | - Katharina Alter
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sylke Wohlrab
- Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mariana L Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Research on Biodiversity Dynamics and Climate Change, State University of São Paulo-UNESP, Rio Claro, Brazil
| | - Sven Gippner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
13
|
Amer A, Spears S, Vaughn PL, Colwell C, Livingston EH, McQueen W, Schill A, Reichard DG, Gangloff EJ, Brock KM. Physiological phenotypes differ among color morphs in introduced common wall lizards (Podarcis muralis). Integr Zool 2024; 19:505-523. [PMID: 37884464 DOI: 10.1111/1749-4877.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits of Podarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co-occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph-dependent manner-the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white-yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.
Collapse
Affiliation(s)
- Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Anna Schill
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Biology, Idaho State University, Pocatello, Idaho, USA
| | - Dustin G Reichard
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, USA
| |
Collapse
|
14
|
Souza-Oliveira AF, Zuquim G, Martins LF, Bandeira LN, Diele-Viegas LM, Cavalcante VH, Baccaro F, Colli GR, Tuomisto H, Werneck FP. The role of environmental gradients and microclimates in structuring communities and functional groups of lizards in a rainforest-savanna transition area. PeerJ 2024; 12:e16986. [PMID: 38685936 PMCID: PMC11057429 DOI: 10.7717/peerj.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2024] [Indexed: 05/02/2024] Open
Abstract
Environmental heterogeneity poses a significant influence on the functional characteristics of species and communities at local scales. Environmental transition zones, such as at the savanna-forest borders, can act as regions of ecological tension when subjected to sharp variations in the microclimate. For ectothermic organisms, such as lizards, environmental temperatures directly influence physiological capabilities, and some species use different thermoregulation strategies that produce varied responses to local climatic conditions, which in turn affect species occurrence and community dynamics. In the context of global warming, these various strategies confer different types of vulnerability as well as risks of extinction. To assess the vulnerability of a species and understand the relationships between environmental variations, thermal tolerance of a species and community structure, lizard communities in forest-savanna transition areas of two national parks in the southwestern Amazon were sampled and their thermal functional traits were characterized. Then, we investigated how community structure and functional thermal variation were shaped by two environmental predictors (i.e., microclimates estimated locally and vegetation structure estimated from remote sensing). It was found that the community structure was more strongly predicted by the canopy surface reflectance values obtained via remote sensing than by microclimate variables. Environmental temperatures were not the most important factor affecting the occurrence of species, and the variations in ecothermal traits demonstrated a pattern within the taxonomic hierarchy at the family level. This pattern may indicate a tendency for evolutionary history to indirectly influence these functional features. Considering the estimates of the thermal tolerance range and warming tolerance, thermoconformer lizards are likely to be more vulnerable and at greater risk of extinction due to global warming than thermoregulators. The latter, more associated with open environments, seem to take advantage of their lower vulnerability and occur in both habitat types across the transition, potentially out-competing and further increasing the risk of extinction and vulnerability of forest-adapted thermoconformer lizards in these transitional areas.
Collapse
Affiliation(s)
- Alan F. Souza-Oliveira
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| | - Gabriela Zuquim
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Biology, University of Turku, Turku, Finland
| | - Lidia F. Martins
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| | - Lucas N. Bandeira
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| | | | | | - Fabricio Baccaro
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Hanna Tuomisto
- Department of Biology, University of Turku, Turku, Finland
| | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| |
Collapse
|
15
|
Giacometti D, Palaoro AV, Leal LC, de Barros FC. How seasonality influences the thermal biology of lizards with different thermoregulatory strategies: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:409-429. [PMID: 37872698 DOI: 10.1111/brv.13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Ectotherms that maintain thermal balance in the face of varying climates should be able to colonise a wide range of habitats. In lizards, thermoregulation usually appears as a variety of behaviours that buffer external influences over physiology. Basking species rely on solar radiation to raise body temperatures and usually show high thermoregulatory precision. By contrast, species that do not bask are often constrained by climatic conditions in their habitats, thus having lower thermoregulatory precision. While much focus has been given to the effects of mean habitat temperatures, relatively less is known about how seasonality affects the thermal biology of lizards on a macroecological scale. Considering the current climate crisis, assessing how lizards cope with temporal variations in environmental temperature is essential to understand better how these organisms will fare under climate change. Activity body temperatures (Tb ) represent the internal temperature of an animal measured in nature during its active period (i.e. realised thermal niche), and preferred body temperatures (Tpref ) are those selected by an animal in a laboratory thermal gradient that lacks thermoregulatory costs (i.e. fundamental thermal niche). Both traits form the bulk of thermal ecology research and are often studied in the context of seasonality. In this study, we used a meta-analysis to test how environmental temperature seasonality influences the seasonal variation in the Tb and Tpref of lizards that differ in thermoregulatory strategy (basking versus non-basking). Based on 333 effect sizes from 137 species, we found that Tb varied over a greater magnitude than Tpref across seasons. Variations in Tb were not influenced by environmental temperature seasonality; however, body size and thermoregulatory strategy mediated Tb responses. Specifically, larger species were subjected to greater seasonal variations in Tb , and basking species endured greater seasonal variations in Tb compared to non-basking species. On the other hand, the seasonal variation in Tpref increased with environmental temperature seasonality regardless of body size. Thermoregulatory strategy also influenced Tpref , suggesting that behaviour has an important role in mediating Tpref responses to seasonal variations in the thermal landscape. After controlling for phylogenetic effects, we showed that Tb and Tpref varied significantly across lizard families. Taken together, our results support the notion that the relationship between thermal biology responses and climatic parameters can be taxon and trait dependent. Our results also showcase the importance of considering ecological and behavioural aspects in macroecological studies. We further highlight current systematic, geographical, and knowledge gaps in thermal ecology research. Our work should benefit those who aim to understand more fully how seasonality shapes thermal biology in lizards, ultimately contributing to the goal of elucidating the evolution of temperature-sensitive traits in ectotherms.
Collapse
Affiliation(s)
- Danilo Giacometti
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S3A1, Canada
| | - Alexandre V Palaoro
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
- Department of Material Sciences and Engineering, 490 Sirrine Hall, Clemson University, 515 Calhoun Dr, Clemson, SC, 29634, USA
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, Rua do Matão Trav. 14, São Paulo, 05508-090, Brasil
- Departamento de Zoologia, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, Paraná, 82590-300, Brasil
| | - Laura C Leal
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
| | - Fábio C de Barros
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel 275, Diadema, São Paulo, 09972-270, Brasil
- Departamento de Biociências, Universidade do Estado de Minas Gerais, Avenida Juca Stockler 1130, Passos, Minas Gerais, 37900-106, Brasil
| |
Collapse
|
16
|
Spears S, Pettit C, Berkowitz S, Collier S, Colwell C, Livingston EH, McQueen W, Vaughn PL, Bodensteiner BL, Leos-Barajas V, Gangloff EJ. Lizards in the wind: The impact of wind on the thermoregulation of the common wall lizard. J Therm Biol 2024; 121:103855. [PMID: 38648702 DOI: 10.1016/j.jtherbio.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA.
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Sophie Berkowitz
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Simone Collier
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Vianey Leos-Barajas
- School of the Environment, University of Toronto, Toronto, Ontario, Canada; Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
17
|
Gilbert E, Žagar A, López-Darias M, Megía-Palma R, Lister KA, Jones MD, Carretero MA, Serén N, Beltran-Alvarez P, Valero KCW. Environmental factors influence cross-talk between a heat shock protein and an oxidative stress protein modification in the lizard Gallotia galloti. PLoS One 2024; 19:e0300111. [PMID: 38470891 DOI: 10.1371/journal.pone.0300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.
Collapse
Affiliation(s)
- Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, United Kingdom
| | - Anamarija Žagar
- National Institute of Biology, Ljubljana, Slovenia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
| | - Marta López-Darias
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- Universidad de Alcalá (UAH), Biomedicine and Biotechnology, Alcalá de Henares, Madrid, Spain
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Karen A Lister
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Max Dolton Jones
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nina Serén
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Katharina C Wollenberg Valero
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- School of Biology and Environmental Science, University College Dublin, Belfield Campus, Dublin, Ireland
| |
Collapse
|
18
|
Gunderson AR. Disentangling physiological and physical explanations for body size-dependent thermal tolerance. J Exp Biol 2024; 227:jeb245645. [PMID: 38426549 DOI: 10.1242/jeb.245645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The effects of climate change are often body size dependent. One contributing factor could be size-dependent thermal tolerance (SDTT), the propensity for heat and cold tolerance to vary with body size among species and among individuals within species. SDTT is hypothesized to be caused by size differences in the temperature dependence of underlying physiological processes that operate at the cellular and organ/system level (physiological SDTT). However, temperature-dependent physiology need not change with body size for SDTT to be observed. SDTT can also arise because of physical differences that affect the relative body temperature dynamics of large and small organisms (physical SDTT). In this Commentary, I outline how physical SDTT occurs, its mechanistic differences from physiological SDTT, and how physical and physiological SDTT make different predictions about organismal responses to thermal variation. I then describe how physical SDTT can influence the outcome of thermal tolerance experiments, present an experimental framework for disentangling physical and physiological SDTT, and provide examples of tests for physiological SDTT that control for physical effects using data from Anolis lizards. Finally, I discuss how physical SDTT can affect organisms in natural environments and influence their vulnerability to anthropogenic warming. Differentiating between physiological and physical SDTT is important because it has implications for how we design and interpret thermal tolerance experiments and our fundamental understanding of thermal ecology and thermal adaptation.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Avenue, Lindy Boggs Building Room 400, New Orleans, LA 70118-5698, USA
| |
Collapse
|
19
|
Couper LI, Farner JE, Lyberger KP, Lee AS, Mordecai EA. Mosquito thermal tolerance is remarkably constrained across a large climatic range. Proc Biol Sci 2024; 291:20232457. [PMID: 38264779 PMCID: PMC10806440 DOI: 10.1098/rspb.2023.2457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Johannah E. Farner
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kelsey P. Lyberger
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Alexandra S. Lee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Jiang S, Zhang C, Pan X, Storey KB, Zhang W. Distinct metabolic responses to thermal stress between invasive freshwater turtle Trachemys scripta elegans and native freshwater turtles in China. Integr Zool 2024. [PMID: 38169086 DOI: 10.1111/1749-4877.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Different responses or tolerance to thermal stress between invasive and native species can affect the outcome of interactions between climate change and biological invasion. However, knowledge about the physiological mechanisms that modulate the interspecific differences in thermal tolerance is limited. The present study analyzes the metabolic responses to thermal stress by the globally invasive turtle, Trachemys scripta elegans, as compared with two co-occurring native turtle species in China, Pelodiscus sinensis and Mauremys reevesii. Changes in metabolite contents and the expression or enzyme activities of genes involved in energy sensing, glucose metabolism, lipid metabolism, and tricarboxylic acid (TCA) cycle after exposure to gradient temperatures were assessed in turtle juveniles. Invasive and native turtles showed distinct metabolic responses to thermal stress. T. scripta elegans showed greater transcriptional regulation of energy sensors than the native turtles. Enhanced anaerobic metabolism was needed by all three species under extreme heat conditions, but phosphoenolpyruvate carboxykinase and lactate dehydrogenase in the invader showed stronger upregulation or stable responses than the native species, which showed inhibition by high temperatures. These contrasts were pronounced in the muscles of the three species. Regulation of lipid metabolism was observed in both T. scripta elegans and P. sinensis but not in M. reevesii under thermal stress. Thermal stress did not inhibit the TCA cycle in turtles. Different metabolic responses to thermal stress may contribute to interspecific differences in thermal tolerance. Overall, our study further suggested the potential role of physiological differences in mediating interactions between climate change and biological invasion.
Collapse
Affiliation(s)
- Shufen Jiang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Changyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xiao Pan
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Wenyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
21
|
Goerge TM, Miles DB. Behavioral plasticity during acute heat stress: heat hardening increases the expression of boldness. J Therm Biol 2024; 119:103778. [PMID: 38171068 DOI: 10.1016/j.jtherbio.2023.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Climate change is creating novel thermal environments via rising temperatures and increased frequency of severe weather events. Short-term phenotypic adjustments, i.e., phenotypic plasticity, may facilitate species persistence during adverse environmental conditions. A plastic response that increases thermal tolerance is heat hardening, which buffers organisms from extreme heat and may enhance short term survival. However, heat hardening responses may incur a cost with concomitant decreases in thermal preference and physiological performance. Thus, phenotypic shifts accompanying a hardening response may be maladaptive in warming climates. Understanding how heat hardening influences other traits associated with fitness and survival will clarify its potential as an adaptive response to altered thermal niches. Here, we studied the effects of heat hardening on boldness behavior in the color polymorphic tree lizard, Urosaurus ornatus. Boldness in lizards influences traits such as territory maintenance, mating success, and survivorship and is repeatable in U. ornatus. We found that when lizards underwent a heat hardening response, boldness expression significantly increased. This trend was driven by males. Bolder individuals also exhibited lower field active body temperatures. This behavioral response to heat hardening may increase resource holding potential and territoriality in stressful environments but may also increase predation risk. This study highlights the need to detail associated phenotypic shifts with stress responses to fully understand their adaptive potential in rapidly changing environments.
Collapse
Affiliation(s)
- Tyler M Goerge
- Department of Biological Sciences, Ohio University, 7 Irvine Hall, Athens, OH 45701, USA.
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, 7 Irvine Hall, Athens, OH 45701, USA.
| |
Collapse
|
22
|
Souchet J, Josserand A, Darnet E, Le Chevalier H, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Guillaume O, Mossoll-Torres M, Pottier G, Philippe H, Aubret F, Gangloff EJ. Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1102-1115. [PMID: 37723946 DOI: 10.1002/jez.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Alicia Josserand
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique (UMR CNRS 5174), Université de Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
23
|
Tsukada E, Rodrigues CC, Jacintho JC, Franco-Belussi L, Jones-Costa M, Abdalla FC, Rocha TL, Salla RF. The amphibian's spleen as a source of biomarkers for ecotoxicity assessment: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165915. [PMID: 37532037 DOI: 10.1016/j.scitotenv.2023.165915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Amphibians are very sensitive to many environmental changes, so these animals are considered good bioindicator models for ecotoxicology. Given the importance of the amphibian spleen for hematopoietic and immune responses, this can be a key organ for the evaluation of biomarkers to monitor the health of individuals in nature or in captivity. In this systematic review, we searched databases and summarized the main findings concerning the amphibian spleen as a source of possible biomarkers applied in different scientific fields. The searches resulted in 83 articles published from 1923 to 2022, which applied the use of splenic samples to evaluate the effects of distinct stressors on amphibians. Articles were distributed in more than twenty countries, with USA, Europe, and Brazil, standing out among them. Publications focused mainly on anatomical and histomorphological characterization of the spleen, its physiology, and development. Recently, the use of splenic biomarkers in pathology and ecotoxicology began to grow but many gaps still need to be addressed in herpetological research. About 85 % of the splenic biomarkers showed responses to various stressors, which indicates that the spleen can provide numerous biomarkers to be used in many study fields. The limited amount of information on morphological description and splenic anatomy in amphibians may be a contributing factor to the underestimated use of splenic biomarkers in herpetological research around the world. We hope that this unprecedented review can instigate researchers to refine herpetological experimentation, using the spleen as a versatile and alternative source for biomarkers in ecotoxicology.
Collapse
Affiliation(s)
- Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Cândido C Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lilian Franco-Belussi
- Departament of Biological Sciences, São Paulo State University, campus São José do Rio Preto, São Paulo, Brazil; Laboratory of Experimental Pathology (LAPex), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Monica Jones-Costa
- Department of Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fábio Camargo Abdalla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Structural and Functional Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Raquel F Salla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
24
|
Weaver SJ, McIntyre T, van Rossum T, Telemeco RS, Taylor EN. Hydration and evaporative water loss of lizards change in response to temperature and humidity acclimation. J Exp Biol 2023; 226:jeb246459. [PMID: 37767755 DOI: 10.1242/jeb.246459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Testing acclimation plasticity informs our understanding of organismal physiology and applies to conservation management amidst our rapidly changing climate. Although there is a wealth of research on the plasticity of thermal and hydric physiology in response to temperature acclimation, there is a comparative gap for research on acclimation to different hydric regimes, as well as the interaction between water and temperature. We sought to fill this gap by acclimating western fence lizards (Sceloporus occidentalis) to experimental climate conditions (crossed design of hot or cool, dry or humid) for 8 days, and measuring cutaneous evaporative water loss (CEWL), plasma osmolality, hematocrit and body mass before and after acclimation. CEWL changed plastically in response to the different climates, with lizards acclimated to hot humid conditions experiencing the greatest increase in CEWL. Change in CEWL among individuals was negatively related to treatment vapor pressure deficit and positively related to treatment water vapor pressure. Plasma osmolality, hematocrit and body mass all showed greater changes in response to temperature than to humidity or vapor pressure deficit. CEWL and plasma osmolality were positively related across treatment groups before acclimation and within treatment groups after acclimation, but the two variables showed different responses to acclimation, suggesting that they are interrelated but governed by different mechanisms. This study is among few that assess more than one metric of hydric physiology and that test the interactive effects of temperature and humidity. Such measurements will be essential for predictive models of activity and survival for animals under climate change.
Collapse
Affiliation(s)
- Savannah J Weaver
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Tess McIntyre
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Taylor van Rossum
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Rory S Telemeco
- Department of Conservation Science, Fresno Chaffee Zoo, Fresno, CA 93728, USA
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 93740, USA
| | - Emily N Taylor
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
25
|
Anderson RO, Tingley R, Hoskin CJ, White CR, Chapple DG. Linking physiology and climate to infer species distributions in Australian skinks. J Anim Ecol 2023; 92:2094-2108. [PMID: 37661659 DOI: 10.1111/1365-2656.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.
Collapse
Affiliation(s)
- Rodolfo O Anderson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
27
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
28
|
Alster CJ, van de Laar A, Goodrich JP, Arcus VL, Deslippe JR, Marshall AJ, Schipper LA. Quantifying thermal adaptation of soil microbial respiration. Nat Commun 2023; 14:5459. [PMID: 37673868 PMCID: PMC10482979 DOI: 10.1038/s41467-023-41096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Quantifying the rate of thermal adaptation of soil microbial respiration is essential in determining potential for carbon cycle feedbacks under a warming climate. Uncertainty surrounding this topic stems in part from persistent methodological issues and difficulties isolating the interacting effects of changes in microbial community responses from changes in soil carbon availability. Here, we constructed a series of temperature response curves of microbial respiration (given unlimited substrate) using soils sampled from around New Zealand, including from a natural geothermal gradient, as a proxy for global warming. We estimated the temperature optima ([Formula: see text]) and inflection point ([Formula: see text]) of each curve and found that adaptation of microbial respiration occurred at a rate of 0.29 °C ± 0.04 1SE for [Formula: see text] and 0.27 °C ± 0.05 1SE for [Formula: see text] per degree of warming. Our results bolster previous findings indicating thermal adaptation is demonstrably offset from warming, and may help quantifying the potential for both limitation and acceleration of soil C losses depending on specific soil temperatures.
Collapse
Affiliation(s)
- Charlotte J Alster
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand.
- Department of Soil & Physical Sciences, Faculty of Agricultural & Life Sciences, Lincoln University, Lincoln, 7647, Aotearoa New Zealand.
| | - Allycia van de Laar
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
- Manaaki Whenua-LandcareResearch, Hamilton, 3216, Aotearoa New Zealand
| | - Jordan P Goodrich
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
- Ministry for the Environment, Wellington, 6143, Aotearoa New Zealand
| | - Vickery L Arcus
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, Aotearoa New Zealand
| | - Alexis J Marshall
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Louis A Schipper
- Te Aka Mātuatua School of Science, The University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| |
Collapse
|
29
|
Marshall DJ, Mustapha N, Monaco CJ. Conservation of thermal physiology in tropical intertidal snails following an evolutionary transition to a cooler ecosystem: climate change implications. CONSERVATION PHYSIOLOGY 2023; 11:coad056. [PMID: 37533818 PMCID: PMC10393397 DOI: 10.1093/conphys/coad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Predictions for animal responses to climate warming usually assume that thermal physiology is adapted to present-day environments, and seldom consider the influence of evolutionary background. Little is known about the conservation of warm-adapted physiology following an evolutionary transition to a cooler environment. We used cardiac thermal performance curves (cTPCs) of six neritid gastropod species to study physiological thermal trait variation associated with a lineage transition from warmer rocky shores to cooler mangroves. We distinguished between functional thermal performance traits, related to energy homeostasis (slope gradient, slope curvature, HRmax, maximum cardiac activity and Topt, the temperature that maximizes cardiac activity) and a trait that limits performance (ULT, the upper lethal temperature). Considering the theory of optimal thermal performance, we predicted that the functional traits should be under greater selective pressure to change directionally and in magnitude than the thermal limit, which is redundant in the cooler environment. We found little variation in all traits across species, habitats and ecosystems, despite a ~20°C reduction in maximum habitat temperature in the mangrove species over 50 million years. While slope gradient was significantly lowered in the mangrove species, the effect difference was negated by greater thermal plasticity in the rocky shore species. ULT showed the least variation and suggested thermal specialization in the warmest habitat studied. The observed muted variation of the functional traits among the species may be explained by their limited role in energy acquisition and rather their association with heat tolerance adaptation, which is redundant in the mangrove species. These findings have implications for the conservation of habitat of intertidal gastropods that transition to cooler environments. Furthermore, they highlight the significance of evolutionary history and physiological conservation when predicting species responses to climate change.
Collapse
Affiliation(s)
- David J Marshall
- Corresponding author: Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong, Universiti Brunei Darussalam, BE1410, Brunei Darussalam. E-mail:
| | - Nurshahida Mustapha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Cristián J Monaco
- IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, Tahiti, Polynésie française, EIO, F-98725 Taravao, France
| |
Collapse
|
30
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
31
|
Llanos-Garrido A, Santos T, Díaz JA. Negative effects of the spatial clumping of thermal resources on lizard thermoregulation in a fragmented habitat. J Therm Biol 2023; 115:103604. [PMID: 37421838 DOI: 10.1016/j.jtherbio.2023.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/10/2023]
Abstract
In ecosystems threatened by the expansion of croplands, habitat fragmentation and climate change, two of the main extinction drivers, may have thermoregulation-mediated interacting effects on demographic trends of terrestrial ectotherms. We studied the thermal biology of a metapopulation of the widespread Mediterranean lacertid Psammodromus algirus in ten fragments of evergreen or deciduous oak forests interspersed among cereal fields. We obtained thermoregulation statistics (selected temperature range, body and operative temperatures, thermal quality of the habitat, and precision, accuracy, and effectiveness of thermoregulation) that could be compared among fragments and with conspecific populations living in unfragmented habitat. We also measured the selection (use vs. availability) and spatial distribution of sunlit and shaded patches used for behavioral thermoregulation in fragments, and we estimated operative temperatures and thermal habitat quality in the agricultural matrix surrounding the fragments. Variation of the thermal environment was much larger within fragments than among them, and thermoregulation was accurate, precise, and efficient throughout the fragmented landscape; its effectiveness was similar to that of previously studied unfragmented populations. The average distance between sunlit and shaded patches was shorter in deciduous than in evergreen fragments, producing a more clumped distribution of the mosaic of thermal resources. Consequently, in evergreen habitat the cost of thermoregulation was higher, because lizards were more selective in their choice of sunlit sites (i.e. they used sunlit patches closer to shade and refuge than expected at random, and the extent of such selection was larger than at deciduous habitat). Temperatures available in croplands were too high to allow lizard dispersal, at least in the post-breeding season. This result confirms the role of croplands as a thermal barrier that promotes inbreeding and associated fitness losses in isolated fragments, and it forecasts a dark future for populations of forest lizards in agricultural landscapes under the combined effects of habitat fragmentation and global warming.
Collapse
Affiliation(s)
- Alejandro Llanos-Garrido
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| | - Tomás Santos
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José A Díaz
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Gleason GS, Starr K, Sanger TJ, Gunderson AR. Rapid heat hardening in embryos of the lizard Anolis sagrei. Biol Lett 2023; 19:20230174. [PMID: 37433329 PMCID: PMC10335855 DOI: 10.1098/rsbl.2023.0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Adaptive thermal tolerance plasticity can dampen the negative effects of warming. However, our knowledge of tolerance plasticity is lacking for embryonic stages that are relatively immobile and may benefit the most from an adaptive plastic response. We tested for heat hardening capacity (a rapid increase in thermal tolerance that manifests in minutes to hours) in embryos of the lizard Anolis sagrei. We compared the survival of a lethal temperature exposure between embryos that either did (hardened) or did not (not hardened) receive a high but non-lethal temperature pre-treatment. We also measured heart rates (HRs) at common garden temperatures before and after heat exposures to assess metabolic consequences. 'Hardened' embryos had significantly greater survival after lethal heat exposure relative to 'not hardened' embryos. That said, heat pre-treatment led to a subsequent increase in embryo HR that did not occur in embryos that did not receive pre-treatment, indicative of an energetic cost of mounting the heat hardening response. Our results are not only consistent with adaptive thermal tolerance plasticity in these embryos (greater heat survival after heat exposure), but also highlight associated costs. Thermal tolerance plasticity may be an important mechanism by which embryos respond to warming that warrants greater consideration.
Collapse
Affiliation(s)
- Grace S. Gleason
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118-5665, USA
| | - Katherine Starr
- Department of Biology, Loyola University Chicago, Chicago, IL 60611-2001, USA
| | - Thomas J. Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL 60611-2001, USA
| | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118-5665, USA
| |
Collapse
|
33
|
Padilla P, Herrel A, Denoël M. May future climate change promote the invasion of the marsh frog? An integrative thermo-physiological study. Oecologia 2023:10.1007/s00442-023-05402-0. [PMID: 37351628 DOI: 10.1007/s00442-023-05402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Climate change and invasive species are two major drivers of biodiversity loss and their interaction may lead to unprecedented further loss. Invasive ectotherms can be expected to tolerate temperature variation because of a broad thermal tolerance and may even benefit from warmer temperatures in their new ranges that better match their thermal preference. Multi-trait studies provide a valuable approach to elucidate the influence of temperature on the invasion process and offer insights into how climatic factors may facilitate or hinder the spread of invasive ectotherms. We here used marsh frogs, Pelophylax ridibundus, a species that is invading large areas of Western Europe but whose invasive potential has been underestimated. We measured the maximal and minimal temperatures to sustain physical activity, the preferred temperature, and the thermal dependence of their stamina and jumping performance in relation to the environmental temperatures observed in their invasive range. Our results showed that marsh frogs can withstand body temperatures that cover 100% of the annual temperature variation in the pond they live in and 77% of the observed current annual air temperature variation. Their preferred body temperature and performance optima were higher than the average temperature in their pond and the average air temperature experienced under the shade. These data suggest that invasive marsh frogs may benefit from a warmer climate. Broad thermal tolerances, combined with high thermal preferences and traits maximised at high temperatures, may allow this species to expand their activity period and colonise underexploited shaded habitat, thereby promoting their invasion success.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium.
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France.
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
34
|
Cicchino AS, Ghalambor CK, Funk WC. Linking critical thermal maximum to mortality from thermal stress in a cold-water frog. Biol Lett 2023; 19:20230106. [PMID: 37311548 PMCID: PMC10264101 DOI: 10.1098/rsbl.2023.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
Estimates of organismal thermal tolerance are frequently used to assess physiological risk from warming, yet the assumption that these estimates are predictive of mortality has been called into question. We tested this assumption in the cold-water-specialist frog, Ascaphus montanus. For seven populations, we used dynamic experimental assays to measure tadpole critical thermal maximum (CTmax) and measured mortality from chronic thermal stress for 3 days at different temperatures. We tested the relationship between previously estimated population CTmax and observed mortality, as well as the strength of CTmax as a predictor of mortality compared to local stream temperatures capturing varying timescales. Populations with higher CTmax experienced significantly less mortality in the warmest temperature treatment (25°C). We also found that population CTmax outperformed stream temperature metrics as the top predictor of observed mortality. These results demonstrate a clear link between CTmax and mortality from thermal stress, contributing evidence that CTmax is a relevant metric for physiological vulnerability assessments.
Collapse
Affiliation(s)
- Amanda S. Cicchino
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Cameron K. Ghalambor
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - W. Chris Funk
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
35
|
Zhang RY, Wild KH, Pottier P, Carrasco MI, Nakagawa S, Noble DWA. Developmental environments do not affect thermal physiological traits in reptiles: an experimental test and meta-analysis. Biol Lett 2023; 19:20230019. [PMID: 37161297 PMCID: PMC10170202 DOI: 10.1098/rsbl.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
On a global scale, organisms face significant challenges due to climate change and anthropogenic disturbance. In many ectotherms, developmental and physiological processes are sensitive to changes in temperature and resources. Developmental plasticity in thermal physiology may provide adaptive advantages to environmental extremes if early environmental conditions are predictive of late-life environments. Here, we conducted a laboratory experiment to test how developmental temperature and maternal resource investment influence thermal physiological traits (critical thermal maximum: CTmax and thermal preference: Tpref) in a common skink (Lampropholis delicata). We then compared our experimental findings more broadly across reptiles (snakes, lizards and turtles) using meta-analysis. In both our experimental study and meta-analysis, we did not find evidence that developmental environments influence CTmax or Tpref. Furthermore, the effects of developmental environments on thermal physiology did not vary by age, taxon or climate zone (temperate/tropical). Overall, the magnitude of developmental plasticity on thermal physiology appears to be limited across reptile taxa suggesting that behavioural or evolutionary processes may be more important. However, there is a paucity of information across most reptile taxa, and a broader focus on thermal performance curves themselves will be critical in understanding the impacts of changing thermal conditions on reptiles in the future.
Collapse
Affiliation(s)
- Rose Y. Zhang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Kristoffer H. Wild
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Patrice Pottier
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2050, Australia
| | - Maider Iglesias Carrasco
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
- Doñana Biological Station-Spanish Research Council CSIC, Seville, 41092, Spain
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2050, Australia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
36
|
Dallas J, Warne RW. Heat hardening of a larval amphibian is dependent on acclimation period and temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:339-345. [PMID: 36811331 DOI: 10.1002/jez.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Plasticity in heat tolerance provides ectotherms the ability to reduce overheating risk during thermal extremes. However, the tolerance-plasticity trade-off hypothesis states that individuals acclimated to warmer environments have a reduced plastic response, including hardening, limiting their ability to further adjust their thermal tolerance. Heat hardening describes the short-term increase in heat tolerance following a heat shock that remains understudied in larval amphibians. We sought to examine the potential trade-off between basal heat tolerance and hardening plasticity of a larval amphibian, Lithobates sylvaticus, in response to differing acclimation temperatures and periods. Lab-reared larvae were exposed to one of two acclimation temperatures (15°C and 25°C) for either 3 or 7 days, at which time heat tolerance was measured as critical thermal maximum (CTmax ). A hardening treatment (sub-critical temperature exposure) was applied 2 h before the CTmax assay for comparison to control groups. We found that heat-hardening effects were most pronounced in 15°C acclimated larvae, particularly after 7 days of acclimation. By contrast, larvae acclimated to 25°C exhibited only minor hardening responses, while basal heat tolerance was significantly increased as shown by elevated CTmax temperatures. These results are in line with the tolerance-plasticity trade-off hypothesis. Specifically, while exposure to elevated temperatures induces acclimation in basal heat tolerance, shifts towards upper thermal tolerance limits constrain the capacity for ectotherms to further respond to acute thermal stress.
Collapse
Affiliation(s)
- Jason Dallas
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Robin W Warne
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
37
|
Cardona-Botero VE, Lara-Reséndiz RA, Woolrich-Piña GA, Pineda E, Lira-Noriega A, Gadsden H. Seasonal and elevational variation in thermal ecology of the crevice-dwelling knob-scaled lizard Xenosaurus fractus from central-eastern Mexico. J Therm Biol 2023; 112:103432. [PMID: 36796888 DOI: 10.1016/j.jtherbio.2022.103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
There is strong covariation between the thermal physiology of ectothermic animals and their thermal environment. Spatial and temporal differences in the thermal environment across a species' range may result in changes in thermal preferences between populations of that species. Alternatively, thermoregulatory-based microhabitat selection can allow individuals to maintain similar body temperatures across a broad thermal gradient. Which strategy a species adopts is often dependent on taxon-specific levels of physiological conservatism or ecological context. Identifying which strategies species use in response to spatial and temporal variation in environmental temperatures requires empirical evidence, which then can support predictions as to how a species might respond to a changing climate. Here we present findings of our analyses of the thermal quality, thermoregulatory accuracy and efficiency for the lizard, Xenosaurus fractus, across an elevation-thermal gradient and over the temporal thermal variation associated with seasonal changes. Xenosaurus fractus is a strict crevice-dweller, a habitat that can buffer this lizard from extreme temperatures and is a thermal conformer (body temperatures reflect air and substrate temperatures). We found populations of this species differed in their thermal preferences along an elevation gradient and between seasons. Specifically, we found that habitat thermal quality, thermoregulatory accuracy and efficiency (all measures of how well the lizards' body temperatures compared to their preferred body temperatures) varied along thermal gradients and with season. Our findings indicate that this species has adapted to local conditions and shows seasonal flexibility in those spatial adaptations. Along with their strict crevice-dwelling habitat, these adaptations may provide some protection against a warming climate.
Collapse
Affiliation(s)
- Victoria E Cardona-Botero
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, Col. El Haya, CP 91073, Xalapa, Veracruz, Mexico.
| | - Rafael A Lara-Reséndiz
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada and Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal, Córdoba, Argentina; Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, Mexico
| | - Guillermo A Woolrich-Piña
- Tecnológico Nacional de México campus Zacapoaxtla. Subdirección de Investigación y Posgrado, División de Biología, Carretera Acuaco-Zacapoaxtla Km. 8, Col. Totoltepec, C. P. 73680, Zacapoaxtla, Puebla, Mexico
| | - Eduardo Pineda
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, Col. El Haya, CP 91073, Xalapa, Veracruz, Mexico
| | - Andrés Lira-Noriega
- CONACYT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, Col. El Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Héctor Gadsden
- Instituto de Ecología, A. C.-Centro Regional del Bajío, Av. Lázaro Cárdenas 253, A. P. 386, C. P. 61600, Pátzcuaro, Michoacán, Mexico; Lindale St. s/n, Abbotsford, British Columbia, Canada
| |
Collapse
|
38
|
Palacios MG, Bronikowski AM, Amer A, Gangloff EJ. Transgenerational effects of maternal corticosterone across early life in a viviparous snake. Gen Comp Endocrinol 2023; 331:114162. [PMID: 36356645 DOI: 10.1016/j.ygcen.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Glucocorticoids (GCs) are central mediators of vertebrate responses to intrinsic and extrinsic stimuli. Among the sources of variation in circulating GCs are transgenerational effects mediated by mothers. Here we studied potential maternal effects mediated by GCs on offspring phenotype in a live-bearing reptile, the western terrestrial garter snake (Thamnophis elegans). We evaluated the association between baseline corticosterone (CORT) levels during gestation (i.e., preparturition) in field-captured mothers and 1) reproductive success and offspring sex ratios, 2) birth phenotypic traits of offspring born under common-garden laboratory conditions, and 3) neonate (age 3 months) and juvenile (age 12 months) traits of offspring raised under two thermal regimes ('warm' and 'cool') during their first year of life. Reproductive success and offspring sex ratios were not associated with preparturition maternal CORT, but pregnant snakes with higher CORT levels gave birth to smaller, lighter offspring, which tended to grow faster to age three months. Neonate baseline CORT varied with preparturition maternal CORT in a sex-specific manner (positive trend for females, negative for males). Maternal CORT effects on offspring phenotype were no longer detectable in juveniles at age one year. Instead, juvenile phenotypes were most influenced by rearing environment, with offspring raised under the cool regime showing higher baseline CORT and slower growth than those raised under warmer conditions. Our findings support the notion that offspring phenotype might be continuously adjusted in response to environmental cues -both pre- and post-natal- and that the strength of maternal CORT effects declines as offspring develop and experience unique environmental challenges. Our results contribute to a growing literature on transgenerational effects of hormones and help to fill a gap in our knowledge of these effects in ectothermic amniotes.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Centro Para el Estudio de Sistemas Marinos, CCT CONICET-CENPAT, Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina.
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
39
|
Hoban S, Bruford MW, da Silva JM, Funk WC, Frankham R, Gill MJ, Grueber CE, Heuertz M, Hunter ME, Kershaw F, Lacy RC, Lees C, Lopes-Fernandes M, MacDonald AJ, Mastretta-Yanes A, McGowan PJK, Meek MH, Mergeay J, Millette KL, Mittan-Moreau CS, Navarro LM, O'Brien D, Ogden R, Segelbacher G, Paz-Vinas I, Vernesi C, Laikre L. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. CONSERV GENET 2023; 24:181-191. [PMID: 36683963 PMCID: PMC9841145 DOI: 10.1007/s10592-022-01492-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023]
Abstract
Genetic diversity among and within populations of all species is necessary for people and nature to survive and thrive in a changing world. Over the past three years, commitments for conserving genetic diversity have become more ambitious and specific under the Convention on Biological Diversity's (CBD) draft post-2020 global biodiversity framework (GBF). This Perspective article comments on how goals and targets of the GBF have evolved, the improvements that are still needed, lessons learned from this process, and connections between goals and targets and the actions and reporting that will be needed to maintain, protect, manage and monitor genetic diversity. It is possible and necessary that the GBF strives to maintain genetic diversity within and among populations of all species, to restore genetic connectivity, and to develop national genetic conservation strategies, and to report on these using proposed, feasible indicators.
Collapse
Affiliation(s)
- Sean Hoban
- The Morton Arboretum, Center for Tree Science, Lisle, USA.,The University of Chicago, Chicago, USA
| | | | - Jessica M da Silva
- South African National Biodiversity Institute, Pretoria, South Africa.,Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Michael J Gill
- NatureServe, Biodiversity Indicators Program, Arlington, USA
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, USA
| | - Francine Kershaw
- Oceans Division, Natural Resources Defense Council, NewYork, USA
| | - Robert C Lacy
- Chicago Zoological Society, Species Conservation Toolkit Initiative, Brookfield, USA
| | - Caroline Lees
- Conservation Planning Specialist Group, IUCN SSC, Auckland, New Zealand
| | | | - Anna J MacDonald
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Australia
| | - Alicia Mastretta-Yanes
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Mexico City, Mexico.,Consejo Nacional de Ciencia Y Tecnología (CONACYT), Mexico City, Mexico
| | - Philip J K McGowan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Mariah H Meek
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, AgBio Research, Lansing, USA
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Katie L Millette
- Group on Earth Observations Biodiversity Observation Network (GEO BON), McGill University, Montreal, Canada
| | - Cinnamon S Mittan-Moreau
- Kellogg Biological Station; Ecology and Evolutionary Biology, Michigan State University, Lansing, USA
| | | | | | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, EH25 9RG, Midlothian, United Kingdom
| | | | - Ivan Paz-Vinas
- Department of Biology, Colorado State University, Fort Collins, USA
| | | | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
40
|
Zhang L, Li N, Dayananda B, Wang L, Chen H, Cao Y. Genome-Wide Identification and Phylogenetic Analysis of TRP Gene Family Members in Saurian. Animals (Basel) 2022; 12:3593. [PMID: 36552513 PMCID: PMC9774356 DOI: 10.3390/ani12243593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The transient receptor potential plays a critical role in the sensory nervous systems of vertebrates in response to various mechanisms and stimuli, such as environmental temperature. We studied the physiological adaptive evolution of the TRP gene in the saurian family and performed a comprehensive analysis to identify the evolution of the thermo-TRPs channels. All 251 putative TRPs were divided into 6 subfamilies, except TRPN, from the 8 saurian genomes. Multiple characteristics of these genes were analyzed. The results showed that the most conserved proteins of TRP box 1 were located in motif 1, and those of TRP box 2 were located in motif 10. The TRPA and TRPV in saurian tend to be one cluster, as a sister cluster with TRPC, and the TRPM is the root of group I. The TRPM, TRPV, and TRPP were clustered into two clades, and TRPP were organized into TRP PKD1-like and PKD2-like. Segmental duplications mainly occurred in the TRPM subfamily, and tandem duplications only occurred in the TRPV subfamily. There were 15 sites to be under positive selection for TRPA1 and TRPV2 genes. In summary, gene structure, chromosomal location, gene duplication, synteny analysis, and selective pressure at the molecular level provided some new evidence for genetic adaptation to the environment. This result provides a basis for identifying and classifying TRP genes and contributes to further elucidating their potential function in thermal sensors.
Collapse
Affiliation(s)
- Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan 430223, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ning Li
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Huimin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
41
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
Teder T, Taits K, Kaasik A, Tammaru T. Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evol Lett 2022; 6:394-411. [PMID: 36579171 PMCID: PMC9783480 DOI: 10.1002/evl3.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature has a profound effect on the growth and development of ectothermic animals. However, the extent to which ecologically driven selection pressures can adjust thermal plastic responses in growth schedules is not well understood. Comparing temperature-induced plastic responses between sexes provides a promising but underexploited approach to evaluating the evolvability of thermal reaction norms: males and females share largely the same genes and immature environments but typically experience different ecological selection pressures. We proceed from the idea that substantial sex differences in plastic responses could be interpreted as resulting from sex-specific life-history optimization, whereas similarity among the sexes should rather be seen as evidence of an essential role of physiological constraints. In this study, we performed a meta-analysis of sex-specific thermal responses in insect development times, using data on 161 species with comprehensive phylogenetic and ecological coverage. As a reference for judging the magnitude of sex specificity in thermal plasticity, we compared the magnitude of sex differences in plastic responses to temperature with those in response to diet. We show that sex-specific responses of development times to temperature variation are broadly similar. We also found no strong evidence for sex specificity in thermal responses to depend on the magnitude or direction of sex differences in development time. Sex differences in temperature-induced plastic responses were systematically less pronounced than sex differences in responses induced by variations in larval diet. Our results point to the existence of substantial constraints on the evolvability of thermal reaction norms in insects as the most likely explanation. If confirmed, the low evolvability of thermal response is an essential aspect to consider in predicting evolutionary responses to climate warming.
Collapse
Affiliation(s)
- Tiit Teder
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
- Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague165 21Czech Republic
| | - Kristiina Taits
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Ants Kaasik
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| |
Collapse
|
43
|
Carilo Filho LM, Gomes L, Katzenberger M, Solé M, Orrico VGD. There and back again: A meta-analytical approach on the influence of acclimation and altitude in the upper thermal tolerance of amphibians and reptiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1017255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Realistic predictions about the impacts of climate change onbiodiversity requires gathering ecophysiological data and the critical thermal maxima (CTMax) is the most frequently used index to assess the thermal vulnerability of species. In the present study, we performed a systematic review to understand how acclimation and altitude affect CTMax estimates for amphibian and non-avian reptile species. We retrieved CTMax data for anurans, salamanders, lizards, snakes, and turtles/terrapins. Data allowed to perform a multilevel random effects meta-analysis to answer how acclimation temperature affect CTMax of Anura, Caudata, and Squamata and also meta-regressions to assess the influence of altitude on CTMax of frogs and lizards. Acclimation temperature influenced CTMax estimates of tadpoles, adult anurans, salamanders, and lizards, but not of froglets. In general, the increase in acclimation temperature led to higher CTMax values. Altitudinal bioclimatic gradient had an inverse effect for estimating the CTMax of lizards and anuran amphibians. For lizards, CTMax was positively influenced by the mean temperature of the wettest quarter. For anurans, the relationship is inverse; we recover a trend of decreasing CTMax when max temperature of warmest month and precipitation seasonality increase. There is an urgent need for studies to investigate the thermal tolerance of subsampled groups or even for which we do not have any information such as Gymnophiona, Serpentes, Amphisbaena, and Testudines. Broader phylogenetic coverage is mandatory for more accurate analyses of macroecological and evolutionary patterns for thermal tolerance indices as CTMax.
Collapse
|
44
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
45
|
Chabaud C, Berroneau M, Berroneau M, Dupoué A, Guillon M, Viton R, Gavira RSB, Clobert J, Lourdais O, Le Galliard JF. Climate aridity and habitat drive geographical variation in morphology and thermo-hydroregulation strategies of a widespread lizard species. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Thermo-hydroregulation strategies involve concurrent changes in functional traits related to energy, water balance and thermoregulation and play a key role in determining life-history traits and population demography of terrestrial ectotherms. Local thermal and hydric conditions should be important drivers of the geographical variation of thermo-hydroregulation strategies, but we lack studies that examine these changes across climatic gradients in different habitat types. Here, we investigated intraspecific variation of morphology and thermo-hydroregulation traits in the widespread European common lizard (Zootoca vivipara louislantzi) across a multidimensional environmental gradient involving independent variation in air temperature and rainfall and differences in habitat features (access to free-standing water and forest cover). We sampled adult males for morphology, resting metabolic rate, total and cutaneous evaporative water loss and thermal preferences in 15 populations from the rear to the leading edge of the distribution across an elevational gradient ranging from sea level to 1750 m. Besides a decrease in adult body size with increasing environmental temperatures, we found little effect of thermal conditions on thermo-hydroregulation strategies. In particular, relict lowland populations from the warm rear edge showed no specific ecophysiological adaptations. Instead, body mass, body condition and resting metabolic rate were positively associated with a rainfall gradient, while forest cover and water access in the habitat throughout the season also influenced cutaneous evaporative water loss. Our study emphasizes the importance of rainfall and habitat features rather than thermal conditions for geographical variation in lizard morphology and physiology.
Collapse
Affiliation(s)
- Chloé Chabaud
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
| | | | - Maud Berroneau
- Cistude Nature, Chemin du Moulinat , 33185 Le Haillan , France
| | - Andréaz Dupoué
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
| | - Michaël Guillon
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
- Cistude Nature, Chemin du Moulinat , 33185 Le Haillan , France
| | - Robin Viton
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Rodrigo S B Gavira
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale, CNRS , UMR 5321, Route du CNRS, Moulis , France
| | - Olivier Lourdais
- Centre d’Etudes Biologiques de Chizé, Université La Rochelle, CNRS , UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois , France
| | - Jean-François Le Galliard
- iEES Paris, Sorbonne Université, CNRS, UMR 7618, Faculté Sciences et Ingénierie , 4 place Jussieu, 75005 Paris , France
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance) , 78 rue du château, 77140 Saint-Pierre-lès-Nemours , France
| |
Collapse
|
46
|
De-Lima AKS, de Oliveira CH, Pic-Taylor A, Klaczko J. Effects of incubation temperature on development, morphology, and thermal physiology of the emerging Neotropical lizard model organism Tropidurus torquatus. Sci Rep 2022; 12:17153. [PMID: 36229624 PMCID: PMC9562357 DOI: 10.1038/s41598-022-21450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/27/2022] [Indexed: 01/04/2023] Open
Abstract
Incubation temperature is among the main phenotypic trait variation drivers studied since the developmental trajectory of oviparous animals is directly affected by environmental conditions. In the last decades, global warming predictions have aroused interest in understanding its impacts on biodiversity. It is predicted that the effects of direct warming will be exacerbated by other anthropogenic factors, such as microclimatic edge effects. Although the Brazilian Cerrado biome is one of the most affected by these issues, little is known about the aforementioned effects on its biodiversity. Therefore, the aim of our study is to investigate the influence of incubation temperature on developmental parameters, morphology and thermal physiology traits of the collared lizard (Tropidurus torquatus). Furthermore, we discuss our findings regarding lizard developmental biology and the climate change paradigm. Therefore, we incubated T. torquatus eggs under five temperature regimes ranging from artificial nest temperature (28.7 °C) to 35.0 °C. We found that elevated incubation temperatures affect several investigated traits: egg mass gain is positively affected, without any influence in newborn mass; incubation period is broadly reduced with temperature increase; survival rate is negatively affected by temperature, constant 35.0 °C regime is confirmed as a lethal incubation temperature, and the sex ratio is affected at 30.0 °C, with a prevailing outbreak of females. Increased incubation temperature also affects body and head size but has no effect on limb size. Newborn thermoregulation and the critical thermal maximum (CTmax) are not affected by incubation temperature. On the other hand, basal body temperature (Tbb) and the critical thermal minimum (CTmin) were positively affected. Thermal physiology was also affected by age, with newborns differing from adults for all analyzed thermal traits. Our findings indicate that future modifications in incubation temperature regimes at nesting sites caused by warming may affect several features of the development, morphology, and thermal physiology of newborns of this species. Laboratory experiments have pointed to possible drastic effects of warming on lizard survival rates, also affecting aspects of its natural history and population distribution. Moreover, in addition to being more vulnerable than adults in aspects such as predation and feeding, T. torquatus newborns are also more vulnerable regarding thermal physiological traits.
Collapse
Affiliation(s)
- Anderson Kennedy Soares De-Lima
- grid.7632.00000 0001 2238 5157Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil ,grid.7632.00000 0001 2238 5157Graduate Program in Zoology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil
| | - Carlos Henke de Oliveira
- grid.7632.00000 0001 2238 5157Laboratory of Applied Ecology, Department of Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil
| | - Aline Pic-Taylor
- grid.7632.00000 0001 2238 5157Laboratory of Embryology and Developmental Biology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil
| | - Julia Klaczko
- grid.7632.00000 0001 2238 5157Laboratory of Comparative Vertebrate Anatomy, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900 Brazil ,grid.35937.3b0000 0001 2270 9879Department of Life Sciences, Natural History Museum, London, SW7 5BD UK
| |
Collapse
|
47
|
Metabolic responses to increased temperatures in three semi-aquatic turtle species from the southeastern United States. J Therm Biol 2022; 109:103331. [DOI: 10.1016/j.jtherbio.2022.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
|
48
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Ginal P, Kruger N, Wagener C, Araspin L, Mokhatla M, Secondi J, Herrel A, Measey J, Rödder D. More time for aliens? Performance shifts lead to increased activity time budgets propelling invasion success. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the Grinnellian niche concept, the realized niche and potential distribution is characterized as an interplay among the fundamental niche, biotic interactions and geographic accessibility. Climate is one of the main drivers for this concept and is essential to predict a taxon’s distribution. Mechanistic approaches can be useful tools, which use fitness-related aspects like locomotor performance and critical thermal limits to predict the potential distribution of an organism. These mechanistic approaches allow the inclusion key ecological processes like local adaptation and can account for thermal performance traits of different life-history stages. The African Clawed Frog, Xenopus laevis, is a highly invasive species occurring on five continents. The French population is of special interest due to an ongoing expansion for 40 years and a broad base of knowledge. We hypothesize that (1) the French population exhibits increased activity time in the invasive European range that could be devoted to fitness-relevant activity and (2) tadpoles may have less activity time available than adult frogs from the same range. We investigate how thermal performance traits translate into activity time budgets and how local adaptation and differences in the thermal responses of life-history stages may boost the European Xenopus invasion. We use a mechanistic approach based on generalized additive mixed models, where thermal performance curves were used to predict the hours of activity and to compare the potential activity time budgets for two life-history stages of native and invasive populations. Our results show that adult French frogs have more activity time available in Europe compared to South African frogs, which might be an advantage in searching for prey or escaping from predators. However, French tadpoles do not have more activity time in Europe compared to the native South African populations suggesting that tadpoles do not suffer the same strong selective pressure as adult frogs.
Collapse
|
50
|
Welman S, Ibarzabal I. Thermal physiology of Tropical House Geckos ( Hemidactylus mabouia) in a cool temperate region of South Africa. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2022.2098393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- S Welman
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - I Ibarzabal
- Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|