1
|
De Baets K. Evolution: Morphological complexity fuels rapid species turnover. Curr Biol 2024; 34:R1235-R1237. [PMID: 39689692 DOI: 10.1016/j.cub.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Some animal lineages, such as mammals or trilobites, show particularly high rates of evolution - that is, of species origination and extinction. What makes such lineages special is not clear. A new study shows that, in fossil ammonoid cephalopods, more complex shell ornaments are associated with higher evolutionary rates.
Collapse
Affiliation(s)
- Kenneth De Baets
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
2
|
Moulton DE, Aubert-Kato N, Almet AA, Sato A. A multiscale computational framework for the development of spines in molluscan shells. PLoS Comput Biol 2024; 20:e1011835. [PMID: 38427695 PMCID: PMC10936779 DOI: 10.1371/journal.pcbi.1011835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 03/13/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
From mathematical models of growth to computer simulations of pigmentation, the study of shell formation has given rise to an abundant number of models, working at various scales. Yet, attempts to combine those models have remained sparse, due to the challenge of combining categorically different approaches. In this paper, we propose a framework to streamline the process of combining the molecular and tissue scales of shell formation. We choose these levels as a proxy to link the genotype level, which is better described by molecular models, and the phenotype level, which is better described by tissue-level mechanics. We also show how to connect observations on shell populations to the approach, resulting in collections of molecular parameters that may be associated with different populations of real shell specimens. The approach is as follows: we use a Quality-Diversity algorithm, a type of black-box optimization algorithm, to explore the range of concentration profiles emerging as solutions of a molecular model, and that define growth patterns for the mechanical model. At the same time, the mechanical model is simulated over a wide range of growth patterns, resulting in a variety of spine shapes. While time-consuming, these steps only need to be performed once and then function as look-up tables. Actual pictures of shell spines can then be matched against the list of existing spine shapes, yielding a potential growth pattern which, in turn, gives us matching molecular parameters. The framework is modular, such that models can be easily swapped without changing the overall working of the method. As a demonstration of the approach, we solve specific molecular and mechanical models, adapted from available theoretical studies on molluscan shells, and apply the multiscale framework to evaluate the characteristics of spines from three distinct populations of Turbo sazae.
Collapse
Affiliation(s)
- Derek E. Moulton
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | - Axel A. Almet
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- Department of Mathematics, University of California, Irvine, California, United States of America
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
3
|
Lemanis R, Zlotnikov I. Fractal-like geometry as an evolutionary response to predation? SCIENCE ADVANCES 2023; 9:eadh0480. [PMID: 37494450 PMCID: PMC10371019 DOI: 10.1126/sciadv.adh0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Fractal-like, intricate morphologies are known to exhibit beneficial mechanical behavior in various engineering and technological domains. The evolution of fractal-like, internal walls of ammonoid cephalopod shells represent one of the most clear evolutionary trends toward complexity in biology, but the driver behind their iterative evolution has remained unanswered since the first hypotheses introduced in the early 1800s. We show a clear correlation between the fractal-like morphology and structural stability. Using linear and nonlinear computational mechanical simulations, we demonstrate that the increase in the complexity of septal geometry leads to a substantial increase in the mechanical stability of the entire shell. We hypothesize that the observed tendency is a driving force toward the evolution of the higher complexity of ammonoid septa, providing the animals with superior structural support and protection against predation. Resolving the adaptational value of this unique trait is vital to fully comprehend the intricate evolutionary trends between morphology, ecological shifts, and mass extinctions through Earth's history.
Collapse
Affiliation(s)
- Robert Lemanis
- />BCUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Igor Zlotnikov
- />BCUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
4
|
Vermeij GJ, Thomson TJ. Imbricated shell sculpture in benthic bivalves. J Morphol 2023; 284:e21564. [PMID: 36719275 DOI: 10.1002/jmor.21564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Molluscan shells display a high diversity of external sculpture. Sculptural elements may be symmetrical, where both edges of an element are morphologically similar, or asymmetrical, where one edge is steeper than the other. Asymmetrical sculpture can be ratcheted, with the leading edges (those in the direction of locomotion or growth) less steep than the trailing edges, or imbricated (leading edges steeper than trailing edges). While the ratcheted sculpture is better known, the diversity of imbricated sculpture has remained largely unexplored. In a survey of extant benthic shell-bearing molluscs, we document imbricated sculpture primarily in epifaunal bivalves or on the exposed sectors of shells of semi-infaunal bivalves. Imbricated sculpture is particularly widespread in pteriomorphian bivalves, but it is absent in the subclade Mytiloidea as well as in highly mobile Pectinidae. It also occurs in many carditid bivalves (Archiheterodonta) and in phylogenetically scattered euheterodonts. In several infaunal bivalves including species of Cardites (Carditidae), Hecuba (Donacidae), and Chione (Veneridae), comarginal elements on the posterior sector are imbricated whereas anterior comarginal ridges are ratcheted. Imbricated sculpture in bivalves tends to be concentrated on the upper (left) valves of pectinids or on the posterior sector of both valves in archiheterodonts and euheterodonts. Imbricated sculpture is uncommon in gastropods, even in epifaunal species, but does occur in the collabral ridges in some Vasidae and a few other groups. Expression of imbricated sculpture does not depend on shell mineral composition or microstructure. The ecological distribution and within-shell pattern of expression of imbricated sculpture point to the likelihood that this type of asymmetrical sculpture is both widespread and potentially functional. Additionally, we present a potential methodology whereby shell sculpture categories (symmetrical, ratcheted, and imbricated) may be quantified by comparing the lengths of corresponding leading and trailing edges across the shell surface.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, California, USA
| | - Tracy J Thomson
- Department of Earth and Planetary Sciences, University of California, Davis, California, USA
| |
Collapse
|
5
|
Variations in microanatomy of the human modiolus require individualized cochlear implantation. Sci Rep 2022; 12:5047. [PMID: 35322066 PMCID: PMC8943032 DOI: 10.1038/s41598-022-08731-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Cochlear variability is of key importance for the clinical use of cochlear implants, the most successful neuroprosthetic device that is surgically placed into the cochlear scala tympani. Despite extensive literature on human cochlear variability, few information is available on the variability of the modiolar wall. In the present study, we analyzed 108 corrosion casts, 95 clinical cone beam computer tomographies (CTs) and 15 µCTs of human cochleae and observed modiolar variability of similar and larger extent than the lateral wall variability. Lateral wall measures correlated with modiolar wall measures significantly. ~ 49% of the variability had a common cause. Based on these data we developed a model of the modiolar wall variations and related the model to the design of cochlear implants aimed for perimodiolar locations. The data demonstrate that both the insertion limits relevant for lateral wall damage (approximate range of 4–9 mm) as well as the dimensions required for optimal perimodiolar placement of the electrode (the point of release from the straightener; approximate range of 2–5mm) are highly interindividually variable. The data demonstrate that tip fold-overs of preformed implants likely result from the morphology of the modiolus (with radius changing from base to apex), and that optimal cochlear implantation of perimodiolar arrays cannot be guaranteed without an individualized surgical technique.
Collapse
|
6
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
7
|
The physical basis of mollusk shell chiral coiling. Proc Natl Acad Sci U S A 2021; 118:2109210118. [PMID: 34810260 DOI: 10.1073/pnas.2109210118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Snails are model organisms for studying the genetic, molecular, and developmental bases of left-right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.
Collapse
|
8
|
Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells. Proc Natl Acad Sci U S A 2019; 117:43-51. [PMID: 31843921 DOI: 10.1073/pnas.1916520116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brachiopods and mollusks are 2 shell-bearing phyla that diverged from a common shell-less ancestor more than 540 million years ago. Brachiopods and bivalve mollusks have also convergently evolved a bivalved shell that displays an apparently mundane, yet striking feature from a developmental point of view: When the shell is closed, the 2 valve edges meet each other in a commissure that forms a continuum with no gaps or overlaps despite the fact that each valve, secreted by 2 mantle lobes, may present antisymmetric ornamental patterns of varying regularity and size. Interlocking is maintained throughout the entirety of development, even when the shell edge exhibits significant irregularity due to injury or other environmental influences, which suggests a dynamic physical process of pattern formation that cannot be genetically specified. Here, we derive a mathematical framework, based on the physics of shell growth, to explain how this interlocking pattern is created and regulated by mechanical instabilities. By close consideration of the geometry and mechanics of 2 lobes of the mantle, constrained both by the rigid shell that they secrete and by each other, we uncover the mechanistic basis for the interlocking pattern. Our modeling framework recovers and explains a large diversity of shell forms and highlights how parametric variations in the growth process result in morphological variation. Beyond the basic interlocking mechanism, we also consider the intricate and striking multiscale-patterned edge in certain brachiopods. We show that this pattern can be explained as a secondary instability that matches morphological trends and data.
Collapse
|
9
|
Jattiot R, Fara E, Brayard A, Urdy S, Goudemand N. Learning from beautiful monsters: phylogenetic and morphogenetic implications of left-right asymmetry in ammonoid shells. BMC Evol Biol 2019; 19:210. [PMID: 31722660 PMCID: PMC6854895 DOI: 10.1186/s12862-019-1538-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Many pathologies that modify the shell geometry and ornamentation of ammonoids are known from the fossil record. Since they may reflect the developmental response of the organism to a perturbation (usually a sublethal injury), their study is essential for exploring the developmental mechanisms of these extinct animals. Ammonoid pathologies are also useful to assess the value of some morphological characters used in taxonomy, as well as to improve phylogenetic reconstructions and evolutionary scenarios. RESULTS We report on the discovery of an enigmatic pathological middle Toarcian (Lower Jurassic) ammonoid specimen from southern France, characterized by a pronounced left-right asymmetry in both ornamentation and suture lines. For each side independently, the taxonomic interpretations of ornamentation and suture lines are congruent, suggesting a Hildoceras semipolitum species assignment for the left side and a Brodieia primaria species assignment for the right side. The former exhibits a lateral groove whereas the second displays sinuous ribs. This specimen, together with the few analogous cases reported in the literature, lead us to erect a new forma-type pathology herein called "forma janusa" for specimens displaying a left-right asymmetry in the absence of any clear evidence of injury or parasitism, whereby the two sides match with the regular morphology of two distinct, known species. CONCLUSIONS Since "forma janusa" specimens reflect the underlying developmental plasticity of the ammonoid taxa, we hypothesize that such specimens may also indicate unsuspected phylogenetic closeness between the two displayed taxa and may even reveal a direct ancestor-descendant relationship. This hypothesis is not, as yet, contradicted by the stratigraphical data at hand: in all studied cases the two distinct taxa correspond to contemporaneous or sub-contemporaneous taxa. More generally, the newly described specimen suggests that a hitherto unidentified developmental link may exist between sinuous ribs and lateral grooves. Overall, we recommend an integrative approach for revisiting aberrant individuals that illustrate the intricate links among shell morphogenesis, developmental plasticity and phylogeny.
Collapse
Affiliation(s)
- Romain Jattiot
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Emmanuel Fara
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Arnaud Brayard
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Séverine Urdy
- Univ. Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
| | - Nicolas Goudemand
- Univ. Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, 46 allée d’Italie, F-69364 Lyon Cedex 07, France
| |
Collapse
|
10
|
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences University of Chicago Chicago Illinois
| |
Collapse
|
11
|
Rudraraju S, Moulton DE, Chirat R, Goriely A, Garikipati K. A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth. PLoS Comput Biol 2019; 15:e1007213. [PMID: 31356591 PMCID: PMC6687210 DOI: 10.1371/journal.pcbi.1007213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/08/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates’ exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell’s morphology. Connections are made to a range of complex shells ornamentations. Molluska are the second most diversified phylum of the animal kingdom, and their evolutionary success can be partly attributed to the hard shell that provides both protection and support to the soft body. The distinctive anatomical features of these hard shells are their rich pigmentation patterns and complex structural ornamentations. While the pigmentation patterns are primarily of biochemical origin, the ornamentations result from mechanical deformation of the mantle due to growth induced forces. This mechanical basis of “growth and form” has been previously investigated using simplified morpho-mechanical models, but restricted to reduced geometric representations. Here we propose a three-dimensional computational framework coupling morphology, incremental surface growth by accretion, and morpho-elastic volume growth, to enable an improved representation of the growth and structural parameters controlling the evolution of these ornamentations. We study the effects of growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and present a “phase diagram” of morphogenesis in molluskan shells. Our main motivation for focusing on generic physical processes involved in development is that they may shape living beings in a predictive way and partly determine the spectrum of forms that have been and could have been generated during evolution.
Collapse
Affiliation(s)
- Shiva Rudraraju
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Derek E. Moulton
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Régis Chirat
- UMR CNRS 5276 LGL-TPE, Université Lyon1, 69622 Villeurbanne Cedex, France
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Krishna Garikipati
- Departments of Mechanical Engineering and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Diogo R. Where is, in 2017, the evo in evo-devo (evolutionary developmental biology)? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:15-22. [DOI: 10.1002/jez.b.22791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington District of Columbia
| |
Collapse
|
13
|
Abstract
Stochasticity is harnessed by organisms to generate functionality. Randomness does not, therefore, necessarily imply lack of function or 'blind chance' at higher levels. In this respect, biology must resemble physics in generating order from disorder. This fact is contrary to Schrödinger's idea of biology generating phenotypic order from molecular-level order, which inspired the central dogma of molecular biology. The order originates at higher levels, which constrain the components at lower levels. We now know that this includes the genome, which is controlled by patterns of transcription factors and various epigenetic and reorganization mechanisms. These processes can occur in response to environmental stress, so that the genome becomes 'a highly sensitive organ of the cell' (McClintock). Organisms have evolved to be able to cope with many variations at the molecular level. Organisms also make use of physical processes in evolution and development when it is possible to arrive at functional development without the necessity to store all information in DNA sequences. This view of development and evolution differs radically from that of neo-Darwinism with its emphasis on blind chance as the origin of variation. Blind chance is necessary, but the origin of functional variation is not at the molecular level. These observations derive from and reinforce the principle of biological relativity, which holds that there is no privileged level of causation. They also have important implications for medical science.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|