1
|
Eckhart L, Holthaus KB, Sachslehner AP. Cell differentiation in the embryonic periderm and in scaffolding epithelia of skin appendages. Dev Biol 2024; 515:60-66. [PMID: 38964706 DOI: 10.1016/j.ydbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in the embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
2
|
Cao L, Liao W, Yuan L, Sun Y, Yan C. Adaptation of skin structures to environmental variations in anurans from southern and southwestern China. Integr Zool 2024. [PMID: 39415347 DOI: 10.1111/1749-4877.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Variations in skin structures can possibly reflect local adaptation to distinct environmental factors. As the primary interface with the surrounding environment, amphibian skin undergoes phenotypic innovations that play a key role in protection, water absorption, and respiration. However, the effects of environmental factors on skin structures have been examined in only a limited number of species. Here, we conducted a comparative analysis of the skin structures of 102 Chinese anuran species across varying geographical distributions and habitat types. Our results revealed that the total volume of granular glands and capillary density in the dorsal skin significantly increased with increasing latitude. We also found that the thickness of calcified layers in both dorsal and ventral skin was positively correlated with annual temperature and negatively correlated with humidity. Additionally, terrestrial species exhibited the largest dorsal granular gland, whereas arboreal species had the smallest one. Likewise, the largest dorsal mucous gland was observed in aquatic species, while the smallest was found in terrestrial species. These results highlighted the importance of understanding the relationship between skin phenotypes and environmental variables and thus providing conservation strategies based on the evolutionary adaptations in anurans. Our study can contribute to the broader knowledge of evolutionary biology in anurans by demonstrating how specific skin traits are linked to survival and fitness across various ecological contexts.
Collapse
Affiliation(s)
- Lingsen Cao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
- College of Panda, China West Normal University, Nanchong, Sichuan, China
| | - Lianju Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| | - Yanbo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan University, Kunming, Yunnan, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
- College of Panda, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Holthaus KB, Sachslehner AP, Steinbinder J, Eckhart L. Epidermal Differentiation Genes of the Common Wall Lizard Encode Proteins with Extremely Biased Amino Acid Contents. Genes (Basel) 2024; 15:1136. [PMID: 39336727 PMCID: PMC11431283 DOI: 10.3390/genes15091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that code for protein components of cornified cells on the skin surface of amniotes. Squamates are the most species-rich clade of reptiles with skin adaptations to many different environments. As the genetic regulation of the skin epidermis and its evolution has been characterized for only a few species so far, we aimed to determine the organization of the EDC in a model species of squamates, the common wall lizard (Podarcis muralis). By comparative genomics, we identified EDC genes of the wall lizard and compared them with homologs in other amniotes. We found that the EDC of the wall lizard has undergone a major rearrangement leading to a unique order of three ancestral EDC segments. Several subfamilies of EDC genes, such as those encoding epidermal differentiation proteins containing PCCC motifs (EDPCCC) and loricrins, have expanded by gene duplications. Most of the EDPCCC proteins have cysteine contents higher than 50%, whereas glycine constitutes more than 50% of the amino acid residues of loricrin 1. The extremely biased amino acid compositions indicate unique structural properties of these EDC proteins. This study demonstrates that cornification proteins of the common wall lizard differ from homologous proteins of other reptiles, illustrating the evolutionary dynamics of diversifying evolution in squamates.
Collapse
Affiliation(s)
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
5
|
Tam EA, Robb FE, Champagne AM. Lipids in the American Alligator stratum corneum provide insights into the evolution of vertebrate skin. Comp Biochem Physiol A Mol Integr Physiol 2024; 292:111620. [PMID: 38452971 DOI: 10.1016/j.cbpa.2024.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
In terrestrial vertebrates, the outermost layer of the skin, the stratum corneum (SC), provides a durable and flexible interface with the environment and is comprised of corneocytes embedded in lipids. However, the morphology and lipid composition of the SC varies throughout evolutionary history. Because crocodilians and birds phylogenetically bracket the Archosaurian clade, lipid composition in crocodilian SC may be compared with that of birds and other vertebrates to make inferences about broader phylogenetic patterns within Archosaurs while highlighting adaptations in vertebrate skin. We identified and quantified lipid classes in the SC of the American Alligator (Alligator mississippiensis) from three skin regions varying in mobility. Our results find similarities in lipid composition between alligator and avian SC, including a high percentage of cerebrosides, a polar lipid previously found only in the SC of birds and bats. Furthermore, polar lipids were more abundant in the most mobile region of the SC. Because polar lipids bind with water to increase skin hydration and therefore its pliability under physical stress, we hypothesize that selection for lipids in Archosaurian SC was driven by the unique distribution of proteins in the SC of this clade, and cerebrosides may have served as pre-adaptations for flight.
Collapse
Affiliation(s)
- Elissa A Tam
- Biology Department, University of Southern Indiana, Evansville, IN 47712, USA
| | - Frank E Robb
- Environmental Education Awareness Research Support and Services, Sharpes, FL 32959, USA
| | - Alex M Champagne
- Biology Department, University of Southern Indiana, Evansville, IN 47712, USA.
| |
Collapse
|
6
|
Alibardi L. Immunolabeling for filaggrin and acidic keratins in the granular layer of mammalian epidermis indicates that an acidic-basic interaction is involved in cornification. Tissue Cell 2024; 88:102397. [PMID: 38677234 DOI: 10.1016/j.tice.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The soft epidermis of mammals derives from the accumulation of keratohyaline granules in the granular layer, before maturing into corneocytes. Main proteins accumulated in the granular layer are pro-filaggrin and filaggrin that determine keratin clumping and later moisturization of the stratum corneum that remains flexible. This soft epidermis allows the high sensitivity of mammalian skin. Presence and thickness of the stratum granulosum varies among different species of mammals and even between different body regions of the same animal, from discontinuous to multilayered. These variations are evident using antibodies for filaggrin, a large protein that share common epitopes among placentals. Here we have utilized filaggrin antibodies (8959 and 466) and an acidic keratin antibody (AK2) for labeling placental, marsupial and monotreme epidermis. AK2 labeling appears mainly to detect K24 keratin, and less likely other acidic keratins. Immunoreactivity for filaggrin is absent in platypus, discontinuous in Echidna and in the tested marsupials. In placentals, it is inconstantly or hardly detected in the thin epidermis of bat, rodents, and lagomorphs with a narrow, mono-stratified and/or discontinuous granular layer. In contrast, where the granular layer is continuous or even stratified, both filaggrin and AK2 antibodies decorate granular cells. The ultrastructural analysis using the AK2 antibody on human epidermis reveals that a weak labeling is associated with keratohyalin granules and filamentous keratins of transitional keratinocytes and corneocytes. This observation suggests that basophilic filaggrin interacts with acidic keratins like K24 and determines keratin condensation into corneocytes of the stratum corneum.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Italy.
| |
Collapse
|
7
|
Aman AJ, Parichy DM. Anatomy, development and regeneration of zebrafish elasmoid scales. Dev Biol 2024; 510:1-7. [PMID: 38458375 PMCID: PMC11015963 DOI: 10.1016/j.ydbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Vertebrate skin appendages - particularly avian feathers and mammalian hairs, glands and teeth - are perennially useful systems for investigating fundamental mechanisms of development. The most common type of skin appendage in teleost fishes is the elasmoid scale, yet this structure has received much less attention than the skin appendages of tetrapods. Elasmoid scales are thin, overlapping plates of partially mineralized extracellular matrices, deposited in the skin in a hexagonal pattern by a specialized population of dermal cells in cooperation with the overlying epidermis. Recent years have seen rapid progress in our understanding of elasmoid scale development and regeneration, driven by the deployment of developmental genetics, live imaging and transcriptomics in larval and adult zebrafish. These findings are reviewed together with histological and ultrastructural approaches to understanding scale development and regeneration.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
8
|
Sachslehner AP, Surbek M, Holthaus KB, Steinbinder J, Golabi B, Hess C, Eckhart L. The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates. Mol Biol Evol 2024; 41:msae100. [PMID: 38781495 DOI: 10.1093/molbev/msae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.
Collapse
Affiliation(s)
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Yang Z, Jiang B, Xu J, McNamara ME. Cellular structure of dinosaur scales reveals retention of reptile-type skin during the evolutionary transition to feathers. Nat Commun 2024; 15:4063. [PMID: 38773066 PMCID: PMC11109146 DOI: 10.1038/s41467-024-48400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.
Collapse
Affiliation(s)
- Zixiao Yang
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Jiaxin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Fukuda K, Ito Y, Furuichi Y, Matsui T, Horikawa H, Miyano T, Okada T, van Logtestijn M, Tanaka RJ, Miyawaki A, Amagai M. Three stepwise pH progressions in stratum corneum for homeostatic maintenance of the skin. Nat Commun 2024; 15:4062. [PMID: 38750035 PMCID: PMC11096370 DOI: 10.1038/s41467-024-48226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The stratum corneum is the outermost skin layer with a vital role in skin barrier function. It is comprised of dead keratinocytes (corneocytes) and is known to maintain its thickness by shedding cells, although, the precise mechanisms that safeguard stratum corneum maturation and homeostasis remain unclear. Previous ex vivo studies have suggested a neutral-to-acidic pH gradient in the stratum corneum. Here, we use intravital pH imaging at single-corneocyte resolution to demonstrate that corneocytes actually undergo differentiation to develop three distinct zones in the stratum corneum, each with a distinct pH value. We identified a moderately acidic lower, an acidic middle, and a pH-neutral upper layer in the stratum corneum, with tight junctions playing a key role in their development. The upper pH neutral zone can adjust its pH according to the external environment and has a neutral pH under steady-state conditions owing to the influence of skin microbiota. The middle acidic pH zone provides a defensive barrier against pathogens. With mathematical modeling, we demonstrate the controlled protease activation of kallikrein-related peptidases on the stratum corneum surface that results in proper corneocyte shedding in desquamation. This work adds crucial information to our understanding of how stratum corneum homeostasis is maintained.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Furuichi
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Hiroto Horikawa
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Miyano
- Department of Bioengineering, Imperial College London, London, UK
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | | | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Steinbinder J, Sachslehner AP, Holthaus KB, Eckhart L. Comparative genomics of sirenians reveals evolution of filaggrin and caspase-14 upon adaptation of the epidermis to aquatic life. Sci Rep 2024; 14:9278. [PMID: 38653760 PMCID: PMC11039687 DOI: 10.1038/s41598-024-60099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The mammalian epidermis has evolved to protect the body in a dry environment. Genes of the epidermal differentiation complex (EDC), such as FLG (filaggrin), are implicated in the barrier function of the epidermis. Here, we investigated the molecular evolution of the EDC in sirenians (manatees and dugong), which have adapted to fully aquatic life, in comparison to the EDC of terrestrial mammals and aquatic mammals of the clade Cetacea (whales and dolphins). We show that the main subtypes of EDC genes are conserved or even duplicated, like late cornified envelope (LCE) genes of the dugong, whereas specific EDC genes have undergone inactivating mutations in sirenians. FLG contains premature stop codons in the dugong, and the ortholog of human CASP14 (caspase-14), which proteolytically processes filaggrin, is pseudogenized in the same species. As FLG and CASP14 have also been lost in whales, these mutations represent convergent evolution of skin barrier genes in different lineages of aquatic mammals. In contrast to the dugong, the manatee has retained functional FLG and CASP14 genes. FLG2 (filaggrin 2) is truncated in both species of sirenians investigated. We conclude that the land-to-water transition of sirenians was associated with modifications of the epidermal barrier at the molecular level.
Collapse
Affiliation(s)
- Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Davis CG, Weaver SJ, Taylor EN. Cutaneous Evaporative Water Loss in Lizards Changes Immediately with Temperature. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:118-128. [PMID: 38728691 DOI: 10.1086/730423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractCutaneous evaporative water loss (CEWL) makes up a significant portion of total evaporative water loss in many terrestrial vertebrates. CEWL changes on evolutionary and acclimatory timescales in response to temperature and humidity. However, the lability of CEWL on acute timescales is unknown. To examine this, we increased or decreased body temperatures of western fence lizards (Sceloporus occidentalis) over a 15-min period while continuously recording CEWL with a handheld evaporimeter. CEWL increased in response to heating and decreased in response to cooling on the order of seconds. However, CEWL was different between heating and cooling groups at a common body temperature. We observed the same positive relationship between CEWL and body temperature, as well as the difference in CEWL between treatments, for deceased lizards that we opportunistically measured. However, deceased lizards had more extreme CEWL values for any given body temperature and treatment. Overall, our results suggest that both structural traits and active physiological processes likely influence the rates and plasticity of CEWL.
Collapse
|
13
|
Mooney ED, Maho T, Philp RP, Bevitt JJ, Reisz RR. Paleozoic cave system preserves oldest-known evidence of amniote skin. Curr Biol 2024; 34:417-426.e4. [PMID: 38215745 DOI: 10.1016/j.cub.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
The richest and most diverse assemblage of early terrestrial tetrapods is preserved within the infilled cave system of Richards Spur, Oklahoma (289-286 Mya1). Some of the oldest-known terrestrial amniotes2,3 are exquisitely preserved here because of early impregnation and encasement of organic material by oil-seep hydrocarbons within rapidly deposited clay-rich cave sediments under toxic anoxic conditions.4 This phenomenon has also afforded the preservation of exceedingly rare integumentary soft tissues, reported here, providing critical first evidence into the anatomical changes marking the transition from the aquatic and semiaquatic lifestyles of anamniotes to the fully terrestrial lifestyles of early amniotes. This is the first record of a skin-cast fossil (3D carbonization of the skin proper) from the Paleozoic Era and the earliest known occurrence of epidermal integumentary structures. We also report on several compression fossils (carbonized skin impressions), all demonstrating similar external morphologies to extant crocodiles. A variety of previously unknown ossifications, as well as what are likely palpebral ossifications of the deeper dermis layer of the skin, are also documented. These fossils also serve as invaluable references for paleontological reconstructions. Chromatographic analysis of extractable hydrocarbons from bone and cave samples indicates that the source rock is the Devonian age Woodford Shale. Hydrocarbons derived from ancient marine organisms interacting with geologically younger terrestrial vertebrates have therefore resulted in the oldest-known preservation of amniote skin proper.
Collapse
Affiliation(s)
- Ethan D Mooney
- Dinosaur Evolution Research Center, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, Jilin Province 130012, China; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga L5L1C6, Ontario, Canada.
| | - Tea Maho
- Dinosaur Evolution Research Center, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, Jilin Province 130012, China; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga L5L1C6, Ontario, Canada.
| | - R Paul Philp
- School of Geosciences, University of Oklahoma, 1000 Asp Avenue, Norman 73019, Oklahoma, USA
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Rd., Lucas Heights 2234, New South Wales, Australia
| | - Robert R Reisz
- Dinosaur Evolution Research Center, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, Jilin Province 130012, China; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga L5L1C6, Ontario, Canada.
| |
Collapse
|
14
|
Tahara U, Matsui T, Atsugi T, Fukuda K, Terooatea TW, Minoda A, Kubo A, Amagai M. Keratinocytes of the Upper Epidermis and Isthmus of Hair Follicles Express Hemoglobin mRNA and Protein. J Invest Dermatol 2023; 143:2346-2355.e10. [PMID: 37981423 DOI: 10.1016/j.jid.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 11/21/2023]
Abstract
The epidermis, the keratinized stratified squamous epithelium surrounding the body surface, offers a valuable framework to investigate how terrestrial animals overcome environmental stresses. However, the mechanisms underlying epidermal barrier function remain nebulous. In this study, we examined genes highly expressed in the human and mouse upper epidermis, the outer frontier that induces various barrier-related genes. Transcriptome analysis revealed that the messenger RNA level of hemoglobin α (HBA), an oxygen carrier in erythroid cells, was enriched in the upper epidermis compared with that in the whole epidermis. Immunostaining analysis confirmed HBA protein expression in human and mouse keratinocytes (KCs) of the stratum spinosum and stratum granulosum. HBA was also expressed in hair follicle KCs in the isthmus region; its expression levels were more prominent than those in interfollicular KCs. HBA expression was not observed in noncutaneous keratinized stratified squamous epithelia of mice, for example, the vagina, esophagus, and forestomach. HBA expression was upregulated in human epidermal KC cultures after UV irradiation, a major cause of skin-specific oxidative stress. Furthermore, HBA knockdown increased UV-induced production of ROS in primary KCs. Our findings suggest that epidermal HBA expression is induced by oxidative stress and acts as an antioxidant, contributing to skin barrier function.
Collapse
Affiliation(s)
- Umi Tahara
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Toru Atsugi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keitaro Fukuda
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Tommy W Terooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Matsui T. Epidermal Barrier Development via Corneoptosis: A Unique Form of Cell Death in Stratum Granulosum Cells. J Dev Biol 2023; 11:43. [PMID: 38132711 PMCID: PMC10744242 DOI: 10.3390/jdb11040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Epidermal development is responsible for the formation of the outermost layer of the skin, the epidermis. The establishment of the epidermal barrier is a critical aspect of mammalian development. Proper formation of the epidermis, which is composed of stratified squamous epithelial cells, is essential for the survival of terrestrial vertebrates because it acts as a crucial protective barrier against external threats such as pathogens, toxins, and physical trauma. In mammals, epidermal development begins from the embryonic surface ectoderm, which gives rise to the basal layer of the epidermis. This layer undergoes a series of complex processes that lead to the formation of subsequent layers, including the stratum intermedium, stratum spinosum, stratum granulosum, and stratum corneum. The stratum corneum, which is the topmost layer of the epidermis, is formed by corneoptosis, a specialized form of cell death. This process involves the transformation of epidermal keratinocytes in the granular layer into flattened dead cells, which constitute the protective barrier. In this review, we focus on the intricate mechanisms that drive the development and establishment of the mammalian epidermis to gain insight into the complex processes that govern this vital biological system.
Collapse
Affiliation(s)
- Takeshi Matsui
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura-cho, Tokyo 192-0982, Japan
| |
Collapse
|
16
|
Lemaire J. Using Crocodylians for monitoring mercury in the tropics. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:977-993. [PMID: 37815690 PMCID: PMC10622360 DOI: 10.1007/s10646-023-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Mercury contamination is a widespread phenomenon that impacts ecosystems worldwide. Artisanal Small Scale Gold Mining (ASGM) activities are responsible for more than a third of atmospheric Hg emission. Due to Hg toxicity and its broad and elevated prevalence in the environment resulting from ASGM activities in the tropics, its biomonitoring is essential to better understand the availability of its methylmercury (MeHg) form in the environment. The Minamata Convention was ratified with the objective to "protect human health and the environment from anthropogenic emissions and releases of mercury compounds". Biomagnification of MeHg occurs through the trophic food web, where it biomagnifies and bioaccumulates in top predators. To monitor environmental MeHg contamination, studies have evaluated the use of living organisms; however, reptiles are among the least documented vertebrates regarding MeHg exposure. In this review we evaluate the use of crocodylians for Hg biomonitoring in tropical ecosystems. We found that out of the 28 crocodiles species, only 10 have been evaluated regarding Hg contamination. The remaining challenges when using this taxon for Hg biomonitoring are inconsistencies in the applied methodology (e.g., wet versus dry weight, tissues used, quantification method). However, due to their life history traits, crocodylians are particularly relevant for monitoring MeHg contamination in regions where ASGM activities occur. In conclusion and given their ecological and socio-economic importance, crocodylians are at great risk of MeHg contamination and are excellent bioindicators for tropical ecosystems.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
17
|
Alibardi L. General aspects on skin development in vertebrates with emphasis on sauropsids epidermis. Dev Biol 2023; 501:60-73. [PMID: 37244375 DOI: 10.1016/j.ydbio.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
General cellular aspects of skin development in vertebrates are presented with emphasis on the epidermis of sauropsids. Anamniote skin develops into a multilayered mucogenic and soft keratinized epidermis made of Intermediate Filament Keratins (IFKs) that is reinforced in most fish and few anurans by dermal bony and fibrous scales. In amniotes, the developing epidermis in contact with the amniotic fluid initially transits through a mucogenic phase recalling that of their anamniotes progenitors. A new gene cluster termed EDC (Epidermal Differentiation Complex) evolved in amniotes contributing to the origin of the stratum corneum. The EDC contains numerous genes coding for over 100 types of corneous proteins (CPs). In sauropsids 2-8 layers of embryonic epidermis accumulate soft keratins (IFKs) but do not form a compact corneous layer. The embryonic epidermis of reptiles and birds produces small amount of other, poorly known proteins in addition to IFKs and mucins. In the following development, a resistant corneous layer is formed underneath the embryonic epidermis that is shed before hatching. The definitive corneous epidermis of sauropsids is mainly composed of CBPs (Corneous beta proteins, formerly indicated as beta-keratins) derived from the EDC. CBPs belong to a gene sub-family of CPs unique for sauropsids, contain an inner amino acid region formed by beta-sheets, are rich in cysteine and glycine, and make most of the protein composition of scales, claws, beaks and feathers. In mammalian epidermis CPs missing the beta-sheet region are instead produced, and include loricrin, involucrin, filaggrin and various cornulins. Small amount of CPs accumulate in the 2-3 layers of mammalian embryonic epidermis and their appendages, that is replaced with the definitive corneous layers before birth. Differently from sauropsids, mammals utilize KAPs (keratin associated proteins) rich in cysteine and glycine for making the hard corneous material of hairs, claws, hooves, horns, and occasionally also scales.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
18
|
Borel S, Origgi F. MULTISYSTEMIC EMPHYSEMA (GAS BUBBLE DISEASE)-ASSOCIATED ACUTE MASS MORTALITY IN A FREE-RANGING POPULATION OF COMMON FROG (RANA TEMPORARIA) IN SWITZERLAND. J Wildl Dis 2023; 59:442-452. [PMID: 37269297 DOI: 10.7589/jwd-d-22-00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/03/2023] [Indexed: 06/05/2023]
Abstract
In April 2020, nearly 5,000 free-ranging common frogs (Rana temporaria) were found dead on the surface of the water in a retention pond in the Swiss Alps. Macroscopic and microscopic lesions revealed multisystem emphysema, affecting multiple organs. The most severe lesions were seen in the skin, eyes, and blood vessels of internal organs and were secondary to the sudden massive distension of the skin and other affected organs. All frogs had similar lesions consistent with those described associated with gas bubble disease. No obvious pre-existing conditions potentially priming the occurrence of the observed lesions could be detected. All the examined frogs were negative by PCR for Batrachochytrium dendrobatidis, Ranavirus and Ranid Herpesvirus 3 (now Batravirus ranidallo 3). The proposed etiology is considered to be an undetermined physical event, leading to an abrupt change in the molecular or physical characteristics of the water (namely pressure and oxygen or other gas supersaturation), resulting in the occurrence of the observed lesions in the frogs. No obvious pumping system malfunction was recorded in the Mägisalp ponds before the mass mortality, but a sudden and temporary undetected change in the water flow, which then quickly rebalanced, cannot be excluded. Other hypotheses include weather conditions, such as lightning strikes in the water, or a device detonating in the water.
Collapse
Affiliation(s)
- Stéphanie Borel
- Institute for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Francesco Origgi
- Institute for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
- Institute of Infectious Diseases, College of Veterinary Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| |
Collapse
|
19
|
Yenmiş M, Ayaz D. The Story of the Finest Armor: Developmental Aspects of Reptile Skin. J Dev Biol 2023; 11:jdb11010005. [PMID: 36810457 PMCID: PMC9944452 DOI: 10.3390/jdb11010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
The reptile skin is a barrier against water loss and pathogens and an armor for mechanical damages. The integument of reptiles consists of two main layers: the epidermis and the dermis. The epidermis, the hard cover of the body which has an armor-like role, varies among extant reptiles in terms of structural aspects such as thickness, hardness or the kinds of appendages it constitutes. The reptile epithelial cells of the epidermis (keratinocytes) are composed of two main proteins: intermediate filament keratins (IFKs) and corneous beta proteins (CBPs). The outer horny layer of the epidermis, stratum corneum, is constituted of keratinocytes by means of terminal differentiation or cornification which is a result of the protein interactions where CBPs associate with and coat the initial scaffold of IFKs. Reptiles were able to colonize the terrestrial environment due to the changes in these epidermal structures, which led to various cornified epidermal appendages such as scales and scutes, a beak, claws or setae. Developmental and structural aspects of the epidermal CBPs as well as their shared chromosomal locus (EDC) indicate an ancestral origin that gave rise to the finest armor of reptilians.
Collapse
|
20
|
De La Garza RG, Madsen H, Sjövall P, Osbӕck F, Zheng W, Jarenmark M, Schweitzer MH, Engdahl A, Uvdal P, Eriksson ME, Lindgren J. An ancestral hard-shelled sea turtle with a mosaic of soft skin and scutes. Sci Rep 2022; 12:22655. [PMID: 36587051 PMCID: PMC9805447 DOI: 10.1038/s41598-022-26941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
The transition from terrestrial to marine environments by secondarily aquatic tetrapods necessitates a suite of adaptive changes associated with life in the sea, e.g., the scaleless skin in adult individuals of the extant leatherback turtle. A partial, yet exceptionally preserved hard-shelled (Pan-Cheloniidae) sea turtle with extensive soft-tissue remains, including epidermal scutes and a virtually complete flipper outline, was recently recovered from the Eocene Fur Formation of Denmark. Examination of the fossilized limb tissue revealed an originally soft, wrinkly skin devoid of scales, together with organic residues that contain remnant eumelanin pigment and inferred epidermal transformation products. Notably, this stem cheloniid-unlike its scaly living descendants-combined scaleless limbs with a bony carapace covered in scutes. Our findings show that the adaptive transition to neritic waters by the ancestral pan-chelonioids was more complex than hitherto appreciated, and included at least one evolutionary lineage with a mosaic of integumental features not seen in any living turtle.
Collapse
Affiliation(s)
| | | | - Peter Sjövall
- grid.450998.90000 0004 0438 1242Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
| | - Frank Osbӕck
- grid.502431.10000 0004 4914 0813Museum Salling, Fur Museum, Skive, Denmark
| | - Wenxia Zheng
- grid.40803.3f0000 0001 2173 6074Department of Biological Sciences, North Carolina State University, Raleigh, NC USA
| | - Martin Jarenmark
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| | - Mary H. Schweitzer
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden ,grid.40803.3f0000 0001 2173 6074Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ,grid.421582.80000 0001 2226 059XNorth Carolina Museum of Natural Sciences, Raleigh, NC USA
| | - Anders Engdahl
- grid.4514.40000 0001 0930 2361Medical Microspectroscopy, Biomedical Center, Lund University, Lund, Sweden
| | - Per Uvdal
- grid.4514.40000 0001 0930 2361Department of Chemistry, Lund University, Lund, Sweden
| | - Mats E. Eriksson
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| | - Johan Lindgren
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Humphries M, Myburgh J, Campbell R, Combrink X. High lead exposure and clinical signs of toxicosis in wild Nile crocodiles (Crocodylus niloticus) from a World Heritage site: Lake St Lucia estuarine system, South Africa. CHEMOSPHERE 2022; 303:134977. [PMID: 35595117 DOI: 10.1016/j.chemosphere.2022.134977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) exposure is a widespread wildlife conservation threat, but impacts on reptile populations remain poorly documented. In this study, we examined Pb exposure and accumulation in a wild population of Nile crocodiles (Crocodylus niloticus) at Lake St Lucia, South Africa. Recreational angling has occurred in the area since the 1930s and incidental ingestion of Pb fishing weights has previously been identified as a major source of Pb poisoning in the local crocodile population. In 2019, we sampled blood and tail fat tissues from wild (n = 22) and captive (n = 3) crocodiles at Lake St Lucia to investigate potential impacts of chronic Pb exposure on crocodilian health. Lead was detected in blood samples of all wild crocodiles, although concentrations varied widely between individuals (86-13,100 ng ml-1). The incidence of Pb poisoning was higher in male crocodiles, with mean blood lead (BPb) concentrations in males (3780 ± 4690 ng ml-1) significantly (p < 0.001) higher compared to females (266 ± 230 ng ml-1). Blood Pb concentrations were correlated with concentrations measured in tail fat tissue (n.d - 4175 ng g-1 wet wt.). Although most of the crocodiles sampled appeared to be in good physical condition, highly elevated BPb concentrations (>6000 ng ml-1) were associated with markedly suppressed packed cell volumes (4.6-10.8%) and severe deterioration in tooth condition. These findings suggest that anaemia and tooth loss may be clinical signs of long-term environmental exposure to Pb. Although previously undocumented in crocodilians, these symptoms are consistent with Pb poisoning observed in birds and mammals, and suggest that crocodilians may be more susceptible to the long-term toxic effects of Pb than previously thought. In light of these findings, we suggest that the impact of accumulated Pb on crocodilian fitness, reproduction and mortality requires urgent attention.
Collapse
Affiliation(s)
- Marc Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Robert Campbell
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
| | - Xander Combrink
- Department of Nature Conservation, Tshwane University of Technology, South Africa
| |
Collapse
|
22
|
Evolutionary diversification of epidermal barrier genes in amphibians. Sci Rep 2022; 12:13634. [PMID: 35948609 PMCID: PMC9365767 DOI: 10.1038/s41598-022-18053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes encoding components of the skin barrier in terrestrial vertebrates. EDC genes can be categorized as S100 fused-type protein (SFTP) genes such as filaggrin, which contain two coding exons, and single-coding-exon EDC (SEDC) genes such as loricrin. SFTPs are known to be present in amniotes (mammals, reptiles and birds) and amphibians, whereas SEDCs have not yet been reported in amphibians. Here, we show that caecilians (Amphibia: Gymnophiona) have both SFTP and SEDC genes. Two to four SEDC genes were identified in the genomes of Rhinatrema bivittatum, Microcaecilia unicolor and Geotrypetes seraphini. Comparative analysis of tissue transcriptomes indicated predominant expression of SEDC genes in the skin of caecilians. The proteins encoded by caecilian SEDC genes resemble human SEDC proteins, such as involucrin and small proline-rich proteins, with regard to low sequence complexity and high contents of proline, glutamine and lysine. Our data reveal diversification of EDC genes in amphibians and suggest that SEDC-type skin barrier genes have originated either in a common ancestor of tetrapods followed by loss in Batrachia (frogs and salamanders) or, by convergent evolution, in caecilians and amniotes.
Collapse
|
23
|
Alibardi L. Cell adhesion and junctional proteins in the developing skin of snakes indicate they coordinate the differentiation of the epidermis. PROTOPLASMA 2022; 259:981-998. [PMID: 34697661 DOI: 10.1007/s00709-021-01711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The development of scales and the sequence of epidermal layers during snake embryogenesis has been studied by immunofluorescence for the localization of cell adhesion, adherens, and communicating cell junctional proteins. At about 2nd/3rd of embryonic development in snakes the epidermis forms symmetric bumps at the beginning of scale formation, and they rapidly become asymmetric and elongate forming outer and inner surfaces of the very overlapped scales seen at hatching. The dermis separates a superficial loose from a deeper dense part; the latter is joined to segmental muscles and nerves, likely acting on scale orientation during snake movements. N-cam is present in the differentiating epidermis and mesenchyme of forming scales while L-cam is only/mainly detected in the periderm and epidermis. Mesenchymal N-cam is associated with the epidermis of the elongating dorsal scale surface and with the beta-differentiation that occurs in the overlapping outer surface of scales. Beta-catenin and Connexin-43 show a similar distribution, and they are mainly present in the periderm and differentiating suprabasal keratinocytes likely forming an intense connectivity during epidermal differentiation. Beta-catenin also shows nuclear localization in differentiating cells of the shedding and beta-layers at late stages of scale morphogenesis, before hatching. The study suggests that intensification of adhesion and gap junctions allows synchronization of the differentiation of suprabasal cells to produce the ordered sequence of epidermal layers of snake scales, starting from the shedding complex and the beta-layer.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab, Padua, Italy.
- Dipartimento Di Biologia, Universita Di Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
24
|
Mori G, Delfino D, Pibiri P, Rivetti C, Percudani R. Origin and significance of the human DNase repertoire. Sci Rep 2022; 12:10364. [PMID: 35725583 PMCID: PMC9208542 DOI: 10.1038/s41598-022-14133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The human genome contains four DNase1 and two DNase2 genes. The origin and functional specialization of this repertoire are not fully understood. Here we use genomics and transcriptomics data to infer the evolutionary history of DNases and investigate their biological significance. Both DNase1 and DNase2 families have expanded in vertebrates since ~ 650 million years ago before the divergence of jawless and jawed vertebrates. DNase1, DNase1L1, and DNase1L3 co-existed in jawless fish, whereas DNase1L2 originated in amniotes by tandem duplication of DNase1. Among the non-human DNases, DNase1L4 and newly identified DNase1L5 derived from early duplications that were lost in terrestrial vertebrates. The ancestral gene of the DNase2 family, DNase2b, has been conserved in synteny with the Uox gene across 700 million years of animal evolution,while DNase2 originated in jawless fish. DNase1L1 acquired a GPI-anchor for plasma membrane attachment in bony fishes, and DNase1L3 acquired a C-terminal basic peptide for the degradation of microparticle DNA in jawed vertebrates. The appearance of DNase1L2, with a distinct low pH optimum and skin localization, is among the amniote adaptations to life on land. The expansion of the DNase repertoire in vertebrates meets the diversified demand for DNA debris removal in complex multicellular organisms.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Danila Delfino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Paola Pibiri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
25
|
Skieresz-Szewczyk K, Jackowiak H, Skrzypski M. Alpha-Keratin, Keratin-Associated Proteins and Transglutaminase 1 Are Present in the Ortho- and Parakeratinized Epithelium of the Avian Tongue. Cells 2022; 11:1899. [PMID: 35741029 PMCID: PMC9221158 DOI: 10.3390/cells11121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The lingual mucosa in birds is covered with two specific types of multilayered epithelia, i.e., the para- and orthokeratinized epithelium, that differ structurally and functionally. Comprehensive information on proteins synthesized in keratinocyte during their cytodifferentiation in subsequent layers of multilayered epithelia in birds concerns only the epidermis and are missing the epithelia of the lingual mucosa. The aim of the present study was to perform an immunohistochemical (IHC) and molecular analysis (WB) of bird-specific alpha-keratin, keratin-associated proteins (KAPs), namely filaggrin and loricrin, as well as transglutaminase 1 in the para- and orthokeratinized epithelium covering the tongue in the domestic duck, goose, and turkey. The results reveal the presence of alpha-keratin and KAPs in both epithelia, which is a sign of the cornification process. In contrast to the epidermis, the main KAPs involved in the cornification process of the lingual epithelia in birds is loricrin. Stronger expression with KAPs and transglutaminase 1 in the orthokeratinized epithelium than in the parakeratinized epithelium may determine the formation of a more efficient protective mechanical barrier. The presence of alpha-keratin, KAPs, and transglutaminase 1 epitopes characteristic of epidermal cornification in both types of the lingual epithelia may prove that they are of ectodermal origin.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Hanna Jackowiak
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznan, Poland;
| |
Collapse
|
26
|
Loricrin at the Boundary between Inside and Outside. Biomolecules 2022; 12:biom12050673. [PMID: 35625601 PMCID: PMC9138667 DOI: 10.3390/biom12050673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cornification is a specialized mode of the cell-death program exclusively allowed for terrestrial amniotes. Recent investigations suggest that loricrin (LOR) is an important cornification effector. As the connotation of its name (“lorica” meaning an armor in Latin) suggests, the keratin-associated protein LOR promotes the maturation of the epidermal structure through organizing covalent cross-linkages, endowing the epidermis with the protection against oxidative injuries. By reviewing cornification mechanisms, we seek to classify ichthyosiform dermatoses based on their function, rather than clinical manifestations. We also reviewed recent mechanistic insights into the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in skin health and diseases, as LOR and NRF2 coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of cross-talking between keratinocytes and epidermal resident leukocytes, dissecting an LOR immunomodulatory function.
Collapse
|
27
|
Ascarrunz E, Sánchez-Villagra MR. The macroevolutionary and developmental evolution of the turtle carapacial scutes. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e76256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The scutes of the carapace of extant turtles exhibit common elements in a narrow range of topographical arrangements. The typical arrangement has remained constant since its origin in the clade Mesochelydia (Early Jurassic), after a period of apparent greater diversity in the Triassic. This contribution is a review of the development and evolutionary history of the scute patterns of the carapace, seen through the lens of recent developmental models. This yields insights on pattern variations in the fossil record. We reinterpret the “supracaudal” scute and propose that Proganochelys had five vertebral scutes. We discuss the relationship between supramarginal scutes and Turing processes, and we show how a simple change during embryogenesis could account for origin of the configuration of the caudal region of the carapace in mesochelydians. We also discuss the nature of the decrease in number of scutes over the course of evolution, and whether macroevolutionary trends can be discerned. We argue that turtles with complete loss of scutes (e.g., softshells) follow clade-specific macroevolutionary regimes, which are distinct from the majority of other turtles. Finally, we draw a parallel between the variation of scute patterns on the carapace of turtles and the scale patterns in the pileus region (roof of the head) of squamates. The size and numbers of scales in the pileus region can evolve over a wide range, but we recognized tentative evidence of convergence towards a typical configuration when the scales become larger and fewer. Thus, typical patterns could be a more general property of similar systems of integumentary appendages.
Collapse
|
28
|
Fuchs P, Drexler C, Ratajczyk S, Eckhart L. Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Sci Rep 2022; 12:1112. [PMID: 35064199 PMCID: PMC8782857 DOI: 10.1038/s41598-022-05087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The adaptation of vertebrates to different environments was associated with changes in the molecular composition and regulation of epithelia. Whales and dolphins, together forming the clade cetaceans, have lost multiple epithelial keratins during or after their evolutionary transition from life on land to life in water. It is unknown whether the changes in keratins were accompanied by gain or loss of cytoskeletal adapter proteins of the plakin family. Here we investigated whether plakin proteins are conserved in cetaceans and other vertebrates. Comparative analysis of genome sequences showed conservation of dystonin, microtubule actin crosslinking factor 1 (MACF1), plectin, desmoplakin, periplakin and envoplakin in cetaceans. By contrast, EPPK1 (epiplakin) was disrupted by inactivating mutations in all cetaceans investigated. Orthologs of EPPK1 are present in bony and cartilaginous fishes and tetrapods, indicating an evolutionary origin of EPPK1 in a common ancestor of jawed vertebrates (Gnathostomes). In many vertebrates, EPPK1 is flanked by an as-yet uncharacterized gene that encodes protein domains homologous to the carboxy-terminal segment of MACF1. We conclude that epiplakin, unlike other plakins, was lost in cetaceans.
Collapse
Affiliation(s)
- Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria.
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Yang C, Wang X, Zhang H, Kou Z, Gao Y, He Y, Liu B. Microscopical observations on the regenerating tail of tsinling dwarf skink (Scincella tsinlingensis). Micron 2022; 154:103215. [PMID: 35051802 DOI: 10.1016/j.micron.2022.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Although the key steps of tail regeneration in lizards are well understood, further investigations involving skinks can provide the field of regeneration research with additional information. In order to characterize the cytoarchitecture of tail regeneration in Scincella tsinlingensis, an endemic species in China, its histological events and growth trends are investigated. The rate of tail regeneration varies with the season: it proceeds faster in summer and autumn than it does in winter and spring. Tail regeneration of S. tsinlingensis is summarized as wound healing, blastema formation, cell differentiation and tail growth, which can be subdivided into seven stages. Wound healing following tail loss, begins with an obvious outgrowth undergoing re-epithelialization. Numerous proliferating mesenchymal-like cells aggregate near the distal end of the severed spinal cord to form the blastema. The expanding blastema is invaded by blood vessels, nerves and ependyma. A cartilaginous skeleton is formed around the ependymal tube and the muscle starts to differentiate. The keratinization of epidermis coincides with scale formation. Pigmentation eventually occurs in the regenerated tail. Tail regeneration in S. tsinlingensis is an epimorphic kind of regeneration that is also known as blastema-mediated. Structure and composition of the regenerated tail, including its cytoarchitecture, represent a conserved pattern of regeneration also known from other lizards.
Collapse
Affiliation(s)
- Chun Yang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China.
| | - Xin Wang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Huihui Zhang
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Zhaoting Kou
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Yanyan Gao
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Yijie He
- School of Life Sciences, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030031 Shanxi Province, PR China
| | - Bo Liu
- Department of Intensive Care Medicine, Hanzhong Central Hospital, Hanzhong, 723000 Shaanxi Province, PR China.
| |
Collapse
|
30
|
Lachner J, Ehrlich F, Wielscher M, Farlik M, Hermann M, Tschachler E, Eckhart L. Single-cell transcriptomics defines keratinocyte differentiation in avian scutate scales. Sci Rep 2022; 12:126. [PMID: 34997067 PMCID: PMC8742010 DOI: 10.1038/s41598-021-04082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.
Collapse
Affiliation(s)
- Julia Lachner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Hendrickx C, Bell PR, Pittman M, Milner ARC, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R. Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biol Rev Camb Philos Soc 2022; 97:960-1004. [PMID: 34991180 DOI: 10.1111/brv.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.
Collapse
Affiliation(s)
- Christophe Hendrickx
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, 251 Miguel Lillo, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Phil R Bell
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Department of Earth Sciences, University College London, WC1E 6BT, United Kingdom
| | - Andrew R C Milner
- St. George Dinosaur Discovery Site at Johnson Farm, 2180 East Riverside Drive, St. George, UT, U.S.A
| | - Elena Cuesta
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, Munich, 80333, Germany
| | - Jingmai O'Connor
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - Mark Loewen
- Department of Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 South 1460 East, Salt Lake City, UT, 84112, U.S.A.,Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT, 84108, U.S.A
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Octávio Mateus
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, 95 Rua João Luis de Moura, Lourinhã, 2530-158, Portugal
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Dr., Sierra Vista, AZ, 85650, U.S.A
| | - Rafael Delcourt
- Universidade Estadual de Campinas (UNICAMP), Instituto de Geociências, Cidade Universitária, Rua Carlos Gomes, 250, Campinas, SP, 13083-855, Brazil
| |
Collapse
|
32
|
Christophers E, Schröder JM. Evolution of innate defense in human skin. Exp Dermatol 2021; 31:304-311. [PMID: 34694661 DOI: 10.1111/exd.14482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
More often as compared to other barrier systems (gastrointestinal, urogenital, and respiratory linings) human skin over millions of years has been subject to fundamental changes in structure and function. When life on land started, the first changes consisted in the formation of a coherent impermeable stratum corneum. Two-legged locomotion was followed by loss of body hair and formation of sweat glands. Major changes took place after the agricultural revolution, investigating settlements with domestication of animals and plants. Living together after giving up nomadic life, hairless skin became a battlefield for pathogens, members of the skin microbiome, and arthropod visits. Human skin became exceptional in showing a boosted, highly developed immune system which is much more complex as compared to the "skins" of other species. A recently found skin disinfection system ("Cationic Intrinsically Disordered Antimicrobial Peptides, CIDAMPs") dates back to the origins of life and still is active in present-day integuments. As a skin-restricted and effective principle, keratinocyte- myeloid synergy (KMS) is recognized. As a consequence of such highly developed immune defense, the basic contributions of KMS - cells (keratinocytes, neutrophils, macrophages) in regulating innate immunity is emphasized. Antimicrobial peptides and chemokines became major keratinocyte products. The formation of impermeable str. corneum membrane has enabled KMS - cells to accumulate within upper skin levels and cause a special group of human skin diseases, pustular dermatoses.
Collapse
Affiliation(s)
- Enno Christophers
- Department of Dermatology, University-Hospital Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
33
|
Lin GW, Lai YC, Liang YC, Widelitz RB, Wu P, Chuong CM. Regional Specific Differentiation of Integumentary Organs: Regulation of Gene Clusters within the Avian Epidermal Differentiation Complex and Impacts of SATB2 Overexpression. Genes (Basel) 2021; 12:genes12081291. [PMID: 34440465 PMCID: PMC8394334 DOI: 10.3390/genes12081291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The epidermal differentiation complex (EDC) encodes a group of unique proteins expressed in late epidermal differentiation. The EDC gave integuments new physicochemical properties and is critical in evolution. Recently, we showed β-keratins, members of the EDC, undergo gene cluster switching with overexpression of SATB2 (Special AT-rich binding protein-2), considered a chromatin regulator. We wondered whether this unique regulatory mechanism is specific to β-keratins or may be derived from and common to EDC members. Here we explore (1) the systematic expression patterns of non-β-keratin EDC genes and their preferential expression in different skin appendages during development, (2) whether the expression of non-β-keratin EDC sub-clusters are also regulated in clusters by SATB2. We analyzed bulk RNA-seq and ChIP-seq data and also evaluated the disrupted expression patterns caused by overexpressing SATB2. The results show that the expression of whole EDDA and EDQM sub-clusters are possibly mediated by enhancers in E14-feathers. Overexpressing SATB2 down-regulates the enriched EDCRP sub-cluster in feathers and the EDCH sub-cluster in beaks. These results reveal the potential of complex epigenetic regulation activities within the avian EDC, implying transcriptional regulation of EDC members acting at the gene and/or gene cluster level in a temporal and skin regional-specific fashion, which may contribute to the evolution of diverse avian integuments.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.-W.L.); (Y.-C.L.); (Y.-C.L.); (R.B.W.); (P.W.)
- Correspondence:
| |
Collapse
|
34
|
Zacho CM, Bager MA, Margaryan A, Gravlund P, Galatius A, Rasmussen AR, Allentoft ME. Uncovering the genomic and metagenomic research potential in old ethanol-preserved snakes. PLoS One 2021; 16:e0256353. [PMID: 34424926 PMCID: PMC8382189 DOI: 10.1371/journal.pone.0256353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Natural history museum collections worldwide represent a tremendous resource of information on past and present biodiversity. Fish, reptiles, amphibians and many invertebrate collections have often been preserved in ethanol for decades or centuries and our knowledge on the genomic and metagenomic research potential of such material is limited. Here, we use ancient DNA protocols, combined with shotgun sequencing to test the molecular preservation in liver, skin and bone tissue from five old (1842 to 1964) museum specimens of the common garter snake (Thamnophis sirtalis). When mapping reads to a T. sirtalis reference genome, we find that the DNA molecules are highly damaged with short average sequence lengths (38-64 bp) and high C-T deamination, ranging from 9% to 21% at the first position. Despite this, the samples displayed relatively high endogenous DNA content, ranging from 26% to 56%, revealing that genome-scale analyses are indeed possible from all specimens and tissues included here. Of the three tested types of tissue, bone shows marginally but significantly higher DNA quality in these metrics. Though at least one of the snakes had been exposed to formalin, neither the concentration nor the quality of the obtained DNA was affected. Lastly, we demonstrate that these specimens display a diverse and tissue-specific microbial genetic profile, thus offering authentic metagenomic data despite being submerged in ethanol for many years. Our results emphasize that historical museum collections continue to offer an invaluable source of information in the era of genomics.
Collapse
Affiliation(s)
- Claus M. Zacho
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martina A. Bager
- Section for EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Section for EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Galatius
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Arne R. Rasmussen
- Institute of Conservation, Royal Danish Academy—Architecture, Design, Conservation, Copenhagen, Denmark
| | - Morten E. Allentoft
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| |
Collapse
|
35
|
Hlubeň M, Kratochvíl L, Gvoždík L, Starostová Z. Ontogeny, phylogeny and mechanisms of adaptive changes in evaporative water loss in geckos. J Evol Biol 2021; 34:1290-1301. [PMID: 34131979 DOI: 10.1111/jeb.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Body size dependence of metabolic rate, body surface and scale morphology complicate disentangling the contribution of these characteristics to adaptive changes in total evaporative water loss (TEWL) of reptiles. To separate adaptive changes from size-related dependence, we compared intra- and interspecific scaling of several candidate traits in eyelid geckos (Eublepharidae), a group exhibiting large variation in body size and TEWL. The intraspecific allometry of TEWL of a eublepharid species fits the geometric surface-mass relationship. However, evolutionary shifts to both higher and lower evaporation were strongly correlated with habitat aridity and cannot be explained by shifts in body size alone. The intraspecific allometry of standard metabolic rate is nearly the same as the interspecific allometry. Unlike for mammals and birds, this pattern rules out respiratory water loss as a driver of the adaptive changes in TEWL among eublepharids. Scale morphology was independent of TEWL variation as well, but the correlation between cutaneous water loss and TEWL suggests a crucial role of skin permeability in adaptation to habitat aridity. Our analyses demonstrate how powerful a comparison between intra- and interspecific allometries can be for detecting body size-dependent mechanisms of adaptive changes in ecophysiological traits correlated with body size.
Collapse
Affiliation(s)
- Martin Hlubeň
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
36
|
de Mello PLH, Hime PM, Glor RE. Transcriptomic Analysis of Skin Color in Anole Lizards. Genome Biol Evol 2021; 13:evab110. [PMID: 33988681 PMCID: PMC8290120 DOI: 10.1093/gbe/evab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
Color and color pattern are critical for animal camouflage, reproduction, and defense. Few studies, however, have attempted to identify candidate genes for color and color pattern in squamate reptiles, a colorful group with over 10,000 species. We used comparative transcriptomic analyses between white, orange, and yellow skin in a color-polymorphic species of anole lizard to 1) identify candidate color and color-pattern genes in squamates and 2) assess if squamates share an underlying genetic basis for color and color pattern variation with other vertebrates. Squamates have three types of chromatophores that determine color pattern: guanine-filled iridophores, carotenoid- or pteridine-filled xanthophores/erythrophores, and melanin-filled melanophores. We identified 13 best candidate squamate color and color-pattern genes shared with other vertebrates: six genes linked to pigment synthesis pathways, and seven genes linked to chromatophore development and maintenance. In comparisons of expression profiles between pigment-rich and white skin, pigment-rich skin upregulated the pteridine pathway as well as xanthophore/erythrophore development and maintenance genes; in comparisons between orange and yellow skin, orange skin upregulated the pteridine and carotenoid pathways as well as melanophore maintenance genes. Our results corroborate the predictions that squamates can produce similar colors using distinct color-reflecting molecules, and that both color and color-pattern genes are likely conserved across vertebrates. Furthermore, this study provides a concise list of candidate genes for future functional verification, representing a first step in determining the genetic basis of color and color pattern in anoles.
Collapse
Affiliation(s)
- Pietro Longo Hollanda de Mello
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
37
|
Alibardi L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Anat Rec (Hoboken) 2021; 305:333-358. [PMID: 34219408 DOI: 10.1002/ar.24705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The epidermis of vertebrates forms an extended organ to protect and exchange gas, water, and organic molecules with aquatic and terrestrial environments. Herein, the processes of keratinization and cornification in aquatic and terrestrial vertebrates were compared using immunohistochemistry. Keratins with low cysteine and glycine contents form the main bulk of proteins in the anamniote epidermis, which undergoes keratinization. In contrast, specialized keratins rich in cysteine-glycine and keratin associated corneous proteins rich in cysteine, glycine, and tyrosine form the bulk of proteins of amniote soft cornification in the epidermis and hard cornification in scales, claws, beak, feathers, hairs, and horns. Transglutaminase (TGase) and sulfhydryl oxidase (SOXase) are the main enzymes involved in cornification. Their evolution was fundamental for the terrestrial adaptation of vertebrates. Immunohistochemistry results revealed that TGase and SOXase were low to absent in fish and amphibian epidermis, while they increased in the epidermis of amniotes with the evolution of the stratum corneum and skin appendages. TGase aids the formation of isopeptide bonds, while SOXase forms disulfide bonds that generate numerous cross-links between keratins and associated corneous proteins, likely increasing the mechanical resistance and durability of the amniote epidermis and its appendages. TGase is low to absent in the beta-corneous layers of sauropsids but is detected in the softer but pliable alpha-layers of sauropsids, mammalian epidermis, medulla, and inner root sheath of hairs. SOXase is present in hard and soft corneous appendages of reptiles, birds, and mammals, and determines cross-linking among corneous proteins of scales, claws, beaks, hairs, and feathers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Lachner J, Derdak S, Mlitz V, Wagner T, Holthaus KB, Ehrlich F, Mildner M, Tschachler E, Eckhart L. An In Vitro Model of Avian Skin Reveals Evolutionarily Conserved Transcriptional Regulation of Epidermal Barrier Formation. J Invest Dermatol 2021; 141:2829-2837. [PMID: 34116064 DOI: 10.1016/j.jid.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The function of the skin as a barrier against a dry environment evolved in a common ancestor of terrestrial vertebrates such as mammals and birds. However, it is unknown which elements of the genetic program of skin barrier formation are evolutionarily ancient and conserved. In this study, we determined the transcriptomes of chicken keratinocytes (KCs) grown in monolayer culture and in an organotypic model of avian skin. The differentiation-associated changes in global gene expression were compared with previously published transcriptome changes of human KCs cultured under equivalent conditions. We found that specific keratins and genes of the epidermal differentiation complex were upregulated during the differentiation of both chicken and human KCs. Likewise, the transcriptional upregulation of genes that control the synthesis and transport of lipids, anti-inflammatory cytokines of the IL-1 family, protease inhibitors, and other regulators of tissue homeostasis was conserved in the KCs of both species. However, some avian KC differentiation-associated transcripts lack homologs in mammals and vice versa, indicating a genetic basis for taxon-specific skin features. The results of this study reveal an evolutionarily ancient program in which dynamic gene transcription controls the metabolism and transport of lipids as well as other core processes during terrestrial skin barrier formation.
Collapse
Affiliation(s)
- Julia Lachner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanja Wagner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Brigit Holthaus
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Gene duplications and gene loss in the epidermal differentiation complex during the evolutionary land-to-water transition of cetaceans. Sci Rep 2021; 11:12334. [PMID: 34112911 PMCID: PMC8192740 DOI: 10.1038/s41598-021-91863-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023] Open
Abstract
Major protein components of the mammalian skin barrier are encoded by genes clustered in the Epidermal Differentiation Complex (EDC). The skin of cetaceans, i.e. whales, porpoises and dolphins, differs histologically from that of terrestrial mammals. However, the genetic regulation of their epidermal barrier is only incompletely known. Here, we investigated the EDC of cetaceans by comparative genomics. We found that important epidermal cornification proteins, such as loricrin and involucrin are conserved and subtypes of small proline-rich proteins (SPRRs) are even expanded in numbers in cetaceans. By contrast, keratinocyte proline rich protein (KPRP), skin-specific protein 32 (XP32) and late-cornified envelope (LCE) genes with the notable exception of LCE7A have been lost in cetaceans. Genes encoding proline rich 9 (PRR9) and late cornified envelope like proline rich 1 (LELP1) have degenerated in subgroups of cetaceans. These data suggest that the evolution of an aquatic lifestyle was accompanied by amplification of SPRR genes and loss of specific other epidermal differentiation genes in the phylogenetic lineage leading to cetaceans.
Collapse
|
40
|
Markiewicz A, Sigorski D, Markiewicz M, Owczarczyk-Saczonek A, Placek W. Caspase-14-From Biomolecular Basics to Clinical Approach. A Review of Available Data. Int J Mol Sci 2021; 22:5575. [PMID: 34070382 PMCID: PMC8197544 DOI: 10.3390/ijms22115575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 01/26/2023] Open
Abstract
Caspase-14 is a unique member of the caspase family-a family of molecules participating in apoptosis. However, it does not affect this process but regulates another form of programmed cell death-cornification, which is characteristic of the epidermis. Therefore, it plays a crucial role in the formation of the skin barrier. The cell death cycle has been a subject of interest for researchers for decades, so a lot of research has been done to expand the understanding of caspase-14, its role in cell homeostasis and processes affecting its expression and activation. Conversely, it is also an interesting target for clinical researchers searching for its role in the physiology of healthy individuals and its pathophysiology in particular diseases. A summary was done in 2008 by Denecker et al., concentrating mostly on the biotechnological aspects of the molecule and its physiological role. However, a lot of new data have been reported, and some more practical and clinical research has been conducted since then. The majority of studies tackled the issue of clinical data presenting the role of caspase in the etiopathology of many diseases such as retinal dysfunctions, multiple malignancies, and skin conditions. This review summarizes the available knowledge on the molecular and, more interestingly, the clinical aspects of caspase-14. It also presents how theoretical science may pave the way for medical research. Methods: The authors analyzed publications available on PubMed until 21 March 2021, using the search term "caspase 14".
Collapse
Affiliation(s)
- Agnieszka Markiewicz
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, 10-229 Olsztyn, Poland; (A.O.-S.); (W.P.)
| | - Dawid Sigorski
- Department of Oncology, University of Warmia and Mazury, 10-228 Olsztyn, Poland;
| | - Mateusz Markiewicz
- Department of Ophthalmology, University of Warmia and Mazury, 10-561 Olsztyn, Poland;
| | - Agnieszka Owczarczyk-Saczonek
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, 10-229 Olsztyn, Poland; (A.O.-S.); (W.P.)
| | - Waldemar Placek
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, 10-229 Olsztyn, Poland; (A.O.-S.); (W.P.)
| |
Collapse
|
41
|
Davis A, Greenwold MJ. Evolution of an Epidermal Differentiation Complex (EDC) Gene Family in Birds. Genes (Basel) 2021; 12:genes12050767. [PMID: 34069986 PMCID: PMC8157837 DOI: 10.3390/genes12050767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
The transition of amniotes to a fully terrestrial lifestyle involved the adaptation of major molecular innovations to the epidermis, often in the form of epidermal appendages such as hair, scales and feathers. Feathers are diverse epidermal structures of birds, and their evolution has played a key role in the expansion of avian species to a wide range of lifestyles and habitats. As with other epidermal appendages, feather development is a complex process which involves many different genetic and protein elements. In mammals, many of the genetic elements involved in epidermal development are located at a specific genetic locus known as the epidermal differentiation complex (EDC). Studies have identified a homologous EDC locus in birds, which contains several genes expressed throughout epidermal and feather development. A family of avian EDC genes rich in aromatic amino acids that also contain MTF amino acid motifs (EDAAs/EDMTFs), that includes the previously reported histidine-rich or fast-protein (HRP/fp), an important marker in feather development, has expanded significantly in birds. Here, we characterize the EDAA gene family in birds and investigate the evolutionary history and possible functions of EDAA genes using phylogenetic and sequence analyses. We provide evidence that the EDAA gene family originated in an early archosaur ancestor, and has since expanded in birds, crocodiles and turtles, respectively. Furthermore, this study shows that the respective amino acid compositions of avian EDAAs are characteristic of structural functions associated with EDC genes and feather development. Finally, these results support the hypothesis that the genes of the EDC have evolved through tandem duplication and diversification, which has contributed to the evolution of the intricate avian epidermis and epidermal appendages.
Collapse
Affiliation(s)
- Anthony Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Matthew J. Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
- Correspondence:
| |
Collapse
|
42
|
A unique mode of keratinocyte death requires intracellular acidification. Proc Natl Acad Sci U S A 2021; 118:2020722118. [PMID: 33893234 DOI: 10.1073/pnas.2020722118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The stratum corneum (SC), the outermost epidermal layer, consists of nonviable anuclear keratinocytes, called corneocytes, which function as a protective barrier. The exact modes of cell death executed by keratinocytes of the upper stratum granulosum (SG1 cells) remain largely unknown. Here, using intravital imaging combined with intracellular Ca2+- and pH-responsive fluorescent probes, we aimed to dissect the SG1 death process in vivo. We found that SG1 cell death was preceded by prolonged (∼60 min) Ca2+ elevation and rapid induction of intracellular acidification. Once such intracellular ionic changes were initiated, they became sustained, irreversibly committing the SG1 cells to corneocyte conversion. Time-lapse imaging of isolated murine SG1 cells revealed that intracellular acidification was essential for the degradation of keratohyalin granules and nuclear DNA, phenomena specific to SC corneocyte formation. Furthermore, intravital imaging showed that the number of SG1 cells exhibiting Ca2+ elevation and the timing of intracellular acidification were both tightly regulated by the transient receptor potential cation channel V3. The functional activity of this protein was confirmed in isolated SG1 cells using whole-cell patch-clamp analysis. These findings provide a theoretical framework for improved understanding of the unique molecular mechanisms underlying keratinocyte-specific death mode, namely corneoptosis.
Collapse
|
43
|
Kandyel RM, Elwan MM, Abumandour MMA, El Nahass EE. Comparative ultrastructural-functional characterizations of the skin in three reptile species; Chalcides ocellatus, Uromastyx aegyptia aegyptia, and Psammophis schokari aegyptia (FORSKAL, 1775): Adaptive strategies to their habitat. Microsc Res Tech 2021; 84:2104-2118. [PMID: 33852761 DOI: 10.1002/jemt.23766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The current investigation was planned utilizing SEM, histological, and furthermore cytokeratin immunohistochemical to give a full depiction of skin of three reptiles species; Chalcides ocellatus (Scincidae), Uromastyx aegyptia aegyptia (Agamidae), and Psammophis schokari aegyptia (Colubridae) captured from Egypt with various ecological environment. Our SEM results showed different scales covered epidermis of three reptile's species with diverse surface microstructure. Overlapped rhomboid scales with numerous lenticular sense organs with numerous pores and oberhäutchen layer with microridges in C. ocellatus. In U. aegyptia, scales were overlapped elliptical-shaped possess lens-like sense structure with several scattered pits and oberhäutchen layer with polygonal outlined cells. While in P. schokari aegyptia, smooth scales flattened with two large dome-shaped scale receptors/sensilla and lens-like sense structure, moreover polygonal-shaped micro-ornamentation in scale hinge joints were observed. Histologically, skin of three species had outer epidermis with stratum germinativum, stratum corneum (α-keratin, β-keratin layer) capped by surface Oberhäutchen and inner dermis. Osteoderms were observed with dermis of C. ocellatus. There are marked variation within pigment cells types among examined species. Melanophores observed in dermal layer of C. ocellatus, while in U. aegyptia, three pigment cells in tegument dermis; melanophores, xanthophores, and iridophores whereas, P. schokari aegyptia had two forms of chromatophore cells (melanophores and iridophores) in dermis and few melanophores scattered between stratum germinativum cells. The highest cytokeratin immunostaining observed in epidermal cell layer of U. aegyptia aegyptia than two other species. Conclusion, dry scaly skin of reptiles reflects a great range of functional aspects and success to adapt with terrestrial life.
Collapse
Affiliation(s)
- Ramadan M Kandyel
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona M Elwan
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Eman E El Nahass
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
44
|
Lemaire J, Marquis O, Bustamante P, Mangione R, Brischoux F. I got it from my mother: Inter-nest variation of mercury concentration in neonate Smooth-fronted Caiman (Paleosuchus trigonatus) suggests maternal transfer and possible phenotypical effects. ENVIRONMENTAL RESEARCH 2021; 194:110494. [PMID: 33220243 DOI: 10.1016/j.envres.2020.110494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
The deleterious effects of mercury (Hg) contamination are well documented in humans and wildlife. Chronic exposure via diet and maternal transfer are two pathways which increase the toxicological risk for wild populations. However, few studies examined the physiological impact of Hg in crocodilians. We investigated the Hg contamination in neonate Smooth-fronted Caimans, Paleosuchus trigonatus, and the use of keratinized tissues and blood to evaluate maternal transfer. Between November 2017 and February 2020, we sampled 38 neonates from 4 distinct nests. Mercury concentration was measured in claws, scutes and total blood. Highest Hg concentrations were found in claws. Strong inter-nest variations (Hg ranging from 0.17 ± 0.02 to 0.66 ± 0.07 μg.g-1 dw) presumably reflect maternal transfer. Reduced body size in neonates characterized by elevated Hg concentrations suggests an influence of Hg during embryonic development. We emphasize the use of claws as an alternative to egg collection to investigate maternal transfer in crocodilians. Our results demonstrated the need of further investigation of the impact of Hg contamination in the first life stages of crocodilians.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Centre D'Etudes Biologiques de Chizé, (CEBC) UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Olivier Marquis
- Muséum National D'Histoire Naturelle, Parc Zoologique de Paris, 53 Avenue de Saint Maurice, 75012, Paris, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Rosanna Mangione
- Haus des Meeres Aqua Terra Zoo GmbH, Fritz-Grünbaum Platz 1, 1060, Vienna, Austria
| | - François Brischoux
- Centre D'Etudes Biologiques de Chizé, (CEBC) UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
45
|
Genome-wide signatures of mammalian skin covering evolution. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1765-1780. [PMID: 33481165 DOI: 10.1007/s11427-020-1841-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/15/2020] [Indexed: 10/22/2022]
Abstract
Animal body coverings provide protection and allow for adaptation to environmental pressures such as heat, ultraviolet radiation, water loss, and mechanical forces. Here, using a comparative genomics analysis of 39 mammal species spanning three skin covering types (hairless, scaly and spiny), we found some genes (e.g., UVRAG, POLH, and XPC) involved in skin inflammation, skin innate immunity, and ultraviolet radiation damage repair were under selection in hairless ocean mammals (e.g., whales and manatees). These signatures might be associated with a high risk of skin diseases from pathogens and ultraviolet radiation. Moreover, the genomes from three spiny mammal species shared convergent genomic regions (EPHB2, EPHA4, and NIN) and unique positively selected genes (FZD6, INVS, and CDC42) involved in skin cell polarity, which might be related to the development of spines. In scaly mammals, the shared convergent genomic regions (e.g., FREM2) were associated with the integrity of the skin epithelium and epidermal adhesion. This study identifies potential convergent genomic features among distantly related mammals with the same skin covering type.
Collapse
|
46
|
Fedotovskikh GV, Arifulova II, Dujsebayeva TN. Ultrastructural study of the mucocytes in the dermal glands of
Bufotes pewzowi
(Amphibia, Bufonidae), with some reflections on the polymorphism of the secretory epithelium. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020; 6:jof6040234. [PMID: 33086692 PMCID: PMC7712659 DOI: 10.3390/jof6040234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.
Collapse
Affiliation(s)
- Laura F. Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
- Correspondence:
| | - Josephine E. Humphries
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Chantal M. Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia;
| | - Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - David A. Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Hamish I. McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
48
|
|
49
|
Kosmala GK, Brown GP, Shine R. Thin-skinned invaders: geographic variation in the structure of the skin among populations of cane toads (Rhinella marina). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The structure of the skin may evolve rapidly during a biological invasion, for two reasons. First, novel abiotic challenges such as hydric conditions may modify selection of traits (such as skin thickness) that determine rates of evaporative water loss. Second, invaders might benefit from enhanced rates of dispersal, with locomotion possibly facilitated by thinner (and hence more flexible) skin. We quantified thickness of layers of the skin in cane toads (Rhinella marina) from the native range (Brazil), a stepping-stone population (Hawaii), and the invaded range in Australia. Overall, the skin is thinner in cane toads in Australia than in the native range, consistent with selection on mobility. However, layers that regulate water exchange (epidermal stratum corneum and dermal ground substance layer) are thicker in Australia, retarding water loss in hot dry conditions. Within Australia, epidermal thickness increased as the toads colonized more arid regions, but then decreased in the arid Kimberley region. That curvilinearity might reflect spatial sorting, whereby mobile (thin-skinned) individuals dominate the invasion front; or the toads’ restriction to moist sites in this arid landscape may reduce the importance of water-conservation. Further work is needed to clarify the roles of adaptation versus phenotypic plasticity in generating the strong geographic variation in skin structure among populations of cane toads.
Collapse
Affiliation(s)
- Georgia K Kosmala
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
- Department of Biological Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
50
|
Pérez‐Cembranos A, Pérez‐Mellado V, Alemany I, Bassitta M, Terrasa B, Picornell A, Castro JA, Brown RP, Ramon C. Morphological and genetic diversity of the Balearic lizard,
Podarcis lilfordi
(Günther, 1874): Is it relevant to its conservation? DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | | | - Iris Alemany
- Laboratori de Genètica Departament de Biologia Universitat de les Illes Balears Palma de Mallorca Spain
| | - Marta Bassitta
- Laboratori de Genètica Departament de Biologia Universitat de les Illes Balears Palma de Mallorca Spain
| | - Bàrbara Terrasa
- Laboratori de Genètica Departament de Biologia Universitat de les Illes Balears Palma de Mallorca Spain
| | - Antonia Picornell
- Laboratori de Genètica Departament de Biologia Universitat de les Illes Balears Palma de Mallorca Spain
| | - José A. Castro
- Laboratori de Genètica Departament de Biologia Universitat de les Illes Balears Palma de Mallorca Spain
| | - Richard P. Brown
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - Cori Ramon
- Laboratori de Genètica Departament de Biologia Universitat de les Illes Balears Palma de Mallorca Spain
| |
Collapse
|