1
|
Jeanne M, Chung WK. DNA Sequencing in Newborn Screening: Opportunities, Challenges, and Future Directions. Clin Chem 2025; 71:77-86. [PMID: 39749512 DOI: 10.1093/clinchem/hvae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/01/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Newborn screening is a public health system designed to identify infants at risk for conditions early in life to facilitate timely intervention and treatment to prevent or mitigate adverse health outcomes. Newborn screening programs use tandem mass spectrometry as a platform to detect several treatable inborn errors of metabolism, and the T-cell receptor excision circle assay to detect some inborn errors of the immune system. Recent advancements in DNA sequencing have decreased the cost of sequencing and allow us to consider DNA sequencing as an additional platform to complement other newborn screening methods. CONTENT This review provides an overview of DNA-based newborn screening, including its applications, opportunities, challenges, and future directions. We discuss the potential benefits of expanded DNA sequencing in newborn screening, such as expanding conditions screened and improved specificity and sensitivity of currently screened conditions. Additionally, we examine the ethical, legal, and social implications of implementing genomic sequencing in newborn screening programs, including issues related to consent, privacy, equity, data interpretation, scalability, and psychosocial impact on families. Additionally, we explore emerging strategies for addressing current limitations and advancing the field of newborn screening. SUMMARY DNA sequencing in newborn screening has the potential to improve the diagnosis and management of rare diseases but also presents significant challenges that need to be addressed before implementation at the population level.
Collapse
Affiliation(s)
- Médéric Jeanne
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Tutty E, Archibald AD, Downie L, Gaff C, Lunke S, Vears DF, Stark Z, Best S. Key informant perspectives on implementing genomic newborn screening: a qualitative study guided by the Action, Actor, Context, Target, Time framework. Eur J Hum Genet 2024; 32:1599-1605. [PMID: 38907005 PMCID: PMC11606939 DOI: 10.1038/s41431-024-01650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Newborn screening (NBS) programmes are highly successful, trusted, public health interventions. Genomic sequencing offers the opportunity to increase the benefits of NBS by screening infants for a greater number and variety of childhood-onset conditions. This study aimed to describe who needs to do what, when, and for whom to deliver genomic newborn screening (gNBS) and capture perceived implementation barriers and enablers. 'Key informants' (individuals involved in the delivery of NBS) were interviewed. The Actor, Action, Context, Time and Target framework guided data collection and analysis. Participants (N = 20) identified new Actions required to deliver gNBS (educating healthcare providers, longitudinal psychosocial support), NBS Actions needing modification (obtaining consent) and NBS Actions that could be adopted for gNBS (prompt referral pathways). Obtaining consent in a prenatal Context was a source of some disagreement. The Time to disclose high chance results was raised as a key consideration in gNBS programme design. Genetic counsellors were identified as key Actors in results management, but workforce limitations may be a barrier. Online decision support tools were an enabler to offering gNBS. The implementation of gNBS will require behaviour changes from HCPs delivering NBS. Findings can inform how to deliver gNBS at population-scale.
Collapse
Affiliation(s)
- Erin Tutty
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Alison D Archibald
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Lilian Downie
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Clara Gaff
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Genomics Health Alliance, Melbourne, VIC, Australia
- WEHI, Melbourne, VIC, 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Danya F Vears
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Law School, University of Melbourne, Melbourne, VIC, Australia
| | - Zornitza Stark
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
| | - Stephanie Best
- Australian Genomics, Melbourne, VIC, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Seed L, Scott A, Pichini A, Peter M, Tadros S, Sortica da Costa C, Hill M. Perceptions of genomic newborn screening: a cross-sectional survey conducted with UK medical students. BMJ Open 2024; 14:e089108. [PMID: 39317512 PMCID: PMC11423729 DOI: 10.1136/bmjopen-2024-089108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND With the potential to identify a vast number of rare diseases soon after birth, genomic newborn screening (gNBS) could facilitate earlier interventions and improve health outcomes. Designing a gNBS programme will involve balancing stakeholders' opinions and addressing concerns. The views of medical students-future clinicians who would deliver gNBS-have not yet been explored. METHODS We conducted a nationwide online survey of UK medical students via the REDCap platform. Perceptions of gNBS, including scope of testing and potential benefits and drawbacks, were explored using a mix of multiple-choice questions, Likert scales, visual analogue scales and free-text questions. RESULTS In total, 116 medical students across 16 universities participated. Overall, 45% supported gNBS, with a positively skewed mean support score of 3.24 (SD 1.26, range: 1.0-5.0), and 55% felt it relevant to their future practice. Almost all agreed that infant-onset and childhood-onset diseases and conditions with effective treatments should be included. Most felt that earlier interventions and personalised care would be the most important benefit of gNBS. Other perceived benefits included earlier diagnoses, diagnosing more patients and enabling research for new treatments. However, several perceived challenges were highlighted: risk of genomic discrimination, incidental or uncertain findings, data security and breaching children's future autonomy. Students expressed conflicting opinions on the psychological impact on families, but most were concerned about a lack of support due to current resource limitations in health services. Students frequently reported having insufficient knowledge to form an opinion, which may reflect gaps in genomics education at medical school and the current lack of evidence base for gNBS. CONCLUSION Although some support for gNBS was demonstrated, ethicolegal and social challenges were raised, emphasising a need for ongoing discussions about the implications of gNBS.
Collapse
Affiliation(s)
- Lydia Seed
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anna Scott
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, UK
- School of Medicine, University of Southampton, Southampton, UK
| | | | - Michelle Peter
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Shereen Tadros
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Cristine Sortica da Costa
- Infection, Immunity and Inflammation Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Neonatal Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Melissa Hill
- North Thames Regional Genetics Service, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
- Genetic and Genomic Medicine, University College London Great Ormond Street Institute of Child Health Library, London, UK
| |
Collapse
|
4
|
Minten T, Gold NB, Bick S, Adelson S, Gehlenborg N, Amendola LM, Boemer F, Coffey AJ, Encina N, Ferlini A, Kirschner J, Russell BE, Servais L, Sund KL, Taft RJ, Tsipouras P, Zouk H, Bick D, Green RC. Data-driven prioritization of genetic disorders for global genomic newborn screening programs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.24.24304797. [PMID: 38585998 PMCID: PMC10996735 DOI: 10.1101/2024.03.24.24304797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Genomic sequencing is poised to expand newborn screening for treatable childhood-onset disorders. Over 30 international research studies and companies are exploring its use, collectively aiming to screen more than 500,000 infants. A key challenge is determining which genes to include in screening. Among 27 newborn sequencing programs, the number of genes analyzed ranged from 134 to 4,299, with only 74 genes included by over 80% of programs. To understand this variability, we assembled a dataset with 25 characteristics of 4,389 genes included in any program and used a multivariate regression analysis to identify characteristics associated with inclusion across programs. These characteristics included presence on the US Recommended Uniform Screening panel, evidence regarding the natural history of disease, and efficacy of treatment. We then used a machine learning model to generate a ranked list of genes, offering a data-driven approach to the future prioritization of disorders for public health newborn screening efforts.
Collapse
|
5
|
del Rosario MC, Swenson KB, Coury S, Schwab J, Green RC, Gold NB. Genetic counselors' perspectives on genomic screening of apparently healthy newborns in the United States. GENETICS IN MEDICINE OPEN 2024; 2:101885. [PMID: 39669612 PMCID: PMC11613815 DOI: 10.1016/j.gimo.2024.101885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 12/14/2024]
Abstract
Purpose There is growing international interest in using genomic sequencing to screen newborns and children for treatable genomic conditions. Although recent research has demonstrated increasing support for using genomic sequencing to screen newborns and children for treatable genomic conditions among various stakeholders, little is known about the perspectives of genetic counselors (GCs) in the United States, who are frequently engaged in the disclosure of positive newborn screening results and coordination of follow-up testing and management. Methods This study utilized a cross-sectional 3-section survey to explore GCs' perspectives on the benefits, limitations, and ethical and practical considerations of genomic sequencing in newborns as an adjunct screen to standard newborn screening (NBS). Additionally, we evaluated GCs' views on specific genes that could be added to NBS via sequencing. Results Of 176 GCs who participated in the study, most endorsed the addition of NBSeq for conditions that typically manifest in childhood and have a well-defined treatment or management protocol. Some perspectives, such as attitudes toward health inequity, varied by practice region. Most respondents endorsed 13 of 25 specific genetic conditions for inclusion in NBSeq. Conclusion Our findings demonstrate GCs' support for the expansion of NBS using genomic sequencing in the United States and the need for ongoing investigation of ethical and practical concerns related to its implementation.
Collapse
Affiliation(s)
- Maya C. del Rosario
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA
- Master’s Program in Genetic Counseling, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Kathleen B. Swenson
- Department of Medical Sciences & Education, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Stephanie Coury
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Ariadne Labs, Boston, MA
| | | | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Ariadne Labs, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Broad Institute, Boston, MA
| | - Nina B. Gold
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
6
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
7
|
Lunke S, Bouffler SE, Downie L, Caruana J, Amor DJ, Archibald A, Bombard Y, Christodoulou J, Clausen M, De Fazio P, Greaves RF, Hollizeck S, Kanga-Parabia A, Lang N, Lynch F, Peters R, Sadedin S, Tutty E, Eggers S, Lee C, Wall M, Yeung A, Gaff C, Gyngell C, Vears DF, Best S, Goranitis I, Stark Z. Prospective cohort study of genomic newborn screening: BabyScreen+ pilot study protocol. BMJ Open 2024; 14:e081426. [PMID: 38569677 PMCID: PMC11146401 DOI: 10.1136/bmjopen-2023-081426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Newborn bloodspot screening (NBS) is a highly successful public health programme that uses biochemical and other assays to screen for severe but treatable childhood-onset conditions. Introducing genomic sequencing into NBS programmes increases the range of detectable conditions but raises practical and ethical issues. Evidence from prospectively ascertained cohorts is required to guide policy and future implementation. This study aims to develop, implement and evaluate a genomic NBS (gNBS) pilot programme. METHODS AND ANALYSIS The BabyScreen+ study will pilot gNBS in three phases. In the preimplementation phase, study materials, including education resources, decision support and data collection tools, will be designed. Focus groups and key informant interviews will also be undertaken to inform delivery of the study and future gNBS programmes. During the implementation phase, we will prospectively recruit birth parents in Victoria, Australia, to screen 1000 newborns for over 600 severe, treatable, childhood-onset conditions. Clinically accredited whole genome sequencing will be performed following standard NBS using the same sample. High chance results will be returned by genetic healthcare professionals, with follow-on genetic and other confirmatory testing and referral to specialist services as required. The postimplementation phase will evaluate the feasibility of gNBS as the primary aim, and assess ethical, implementation, psychosocial and health economic factors to inform future service delivery. ETHICS AND DISSEMINATION This project received ethics approval from the Royal Children's Hospital Melbourne Research Ethics Committee: HREC/91500/RCHM-2023, HREC/90929/RCHM-2022 and HREC/91392/RCHM-2022. Findings will be disseminated to policy-makers, and through peer-reviewed journals and conferences.
Collapse
Affiliation(s)
- Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Sophie E Bouffler
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Lilian Downie
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Jade Caruana
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David J Amor
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Alison Archibald
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Yvonne Bombard
- Genomics Health Services Research Program, St Michael's Hospital, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - John Christodoulou
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marc Clausen
- Genomics Health Services Research Program, St Michael's Hospital, Toronto, Ontario, Canada
| | - Paul De Fazio
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ronda F Greaves
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Hollizeck
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Anaita Kanga-Parabia
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nitzan Lang
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Fiona Lynch
- University of Melbourne, Melbourne, Victoria, Australia
| | | | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Erin Tutty
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Stefanie Eggers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Crystle Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Meaghan Wall
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Clara Gaff
- University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Genomics Health Alliance, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Christopher Gyngell
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Danya F Vears
- University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Stephanie Best
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ilias Goranitis
- University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Kariyawasam DS, Scarfe J, Meagher C, Farrar MA, Bhattacharya K, Carter SM, Newson AJ, Otlowski M, Watson J, Millis N, Norris S. 'Integrating Ethics and Equity with Economics and Effectiveness for newborn screening in the genomic age: A qualitative study protocol of stakeholder perspectives. PLoS One 2024; 19:e0299336. [PMID: 38527031 PMCID: PMC10962853 DOI: 10.1371/journal.pone.0299336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Newborn bloodspot screening is a well-established population health initiative that detects serious, childhood-onset, treatable conditions to improve health outcomes. With genomic technologies advancing rapidly, many countries are actively discussing the introduction of genomic assays into newborn screening programs. While adding genomic testing to Australia's newborn screening program could improve outcomes for infants and families, it must be considered against potential harms, ethical, legal, equity and social implications, and economic and health system impacts. We must ask not only 'can' we use genomics to screen newborns?' but 'should we'?' and 'how much should health systems invest in genomic newborn screening?'. METHODS This study will use qualitative methods to explore understanding, priorities, concerns and expectations of genomic newborn screening among parents/carers, health professionals/scientists, and health policy makers across Australia. In-depth, semi-structured interviews will be held with 30-40 parents/carers recruited via hospital and community settings, 15-20 health professionals/scientists, and 10-15 health policy makers. Data will be analysed using inductive content analysis. The Sydney Children's Hospital Network Human Research Ethics Committee approved this study protocol [2023/ETH02371]. The Standards for Reporting Qualitative Research will guide study planning, conduct and reporting. DISCUSSION Few studies have engaged a diverse range of stakeholders to explore the implications of genomics in newborn screening in a culturally and genetically diverse population, nor in a health system underpinned by universal health care. As the first study within a multi-part research program, findings will be used to generate new knowledge on the risks and benefits and importance of ethical, legal, social and equity implications of genomic newborn screening from the perspective of key stakeholders. As such it will be the foundation on which child and family centered criteria can be developed to inform health technology assessments and drive efficient and effective policy decision-making on the implementation of genomics in newborn screening.
Collapse
Affiliation(s)
- Didu S. Kariyawasam
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanne Scarfe
- Faculty of Medicine and Health, Sydney School of Public Health, Menzies Centre for Health Policy & Economics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Christian Meagher
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kaustav Bhattacharya
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Genetic Metabolic Disorders Service, Sydney Children’s Hospital Network, Randwick and Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Discipline of Genomics, Sydney University, Westmead, New South Wales, Australia
| | - Stacy M. Carter
- Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, The University of Wollongong, Wollongong, New South Wales, Australia
| | - Ainsley J. Newson
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Margaret Otlowski
- Centre for Law and Genetics, Faculty of Law, College of Arts, Law and Education, University of Tasmania, Tasmania, Australia
| | - Jo Watson
- HTA Consumer Consultative Committee, Department of Health & Aged Care, Canberra, Australian Capital Territory, Australia
| | | | - Sarah Norris
- Faculty of Medicine and Health, Sydney School of Public Health, Menzies Centre for Health Policy & Economics, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
9
|
Lynch F, Best S, Gaff C, Downie L, Archibald AD, Gyngell C, Goranitis I, Peters R, Savulescu J, Lunke S, Stark Z, Vears DF. Australian Public Perspectives on Genomic Newborn Screening: Risks, Benefits, and Preferences for Implementation. Int J Neonatal Screen 2024; 10:6. [PMID: 38248635 PMCID: PMC10801595 DOI: 10.3390/ijns10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Recent dramatic reductions in the timeframe in which genomic sequencing can deliver results means its application in time-sensitive screening programs such as newborn screening (NBS) is becoming a reality. As genomic NBS (gNBS) programs are developed around the world, there is an increasing need to address the ethical and social issues that such initiatives raise. This study therefore aimed to explore the Australian public's perspectives and values regarding key gNBS characteristics and preferences for service delivery. We recruited English-speaking members of the Australian public over 18 years of age via social media; 75 people aged 23-72 participated in 1 of 15 focus groups. Participants were generally supportive of introducing genomic sequencing into newborn screening, with several stating that the adoption of such revolutionary and beneficial technology was a moral obligation. Participants consistently highlighted receiving an early diagnosis as the leading benefit, which was frequently linked to the potential for early treatment and intervention, or access to other forms of assistance, such as peer support. Informing parents about the test during pregnancy was considered important. This study provides insights into the Australian public's views and preferences to inform the delivery of a gNBS program in the Australian context.
Collapse
Affiliation(s)
- Fiona Lynch
- Biomedical Ethics Research Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (F.L.); (C.G.); (J.S.)
- Melbourne Law School, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stephanie Best
- Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Melbourne, VIC 3052, Australia;
- Australian Genomics, Melbourne, VIC 3052, Australia; (I.G.); (Z.S.)
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Clara Gaff
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (C.G.); (L.D.); (A.D.A.)
- Melbourne Genomics, Melbourne, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lilian Downie
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (C.G.); (L.D.); (A.D.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Alison D. Archibald
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (C.G.); (L.D.); (A.D.A.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Christopher Gyngell
- Biomedical Ethics Research Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (F.L.); (C.G.); (J.S.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ilias Goranitis
- Australian Genomics, Melbourne, VIC 3052, Australia; (I.G.); (Z.S.)
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Riccarda Peters
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Julian Savulescu
- Biomedical Ethics Research Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (F.L.); (C.G.); (J.S.)
- Melbourne Law School, The University of Melbourne, Melbourne, VIC 3052, Australia
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Zornitza Stark
- Australian Genomics, Melbourne, VIC 3052, Australia; (I.G.); (Z.S.)
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Danya F. Vears
- Biomedical Ethics Research Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (F.L.); (C.G.); (J.S.)
- Melbourne Law School, The University of Melbourne, Melbourne, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Abstract
Rare diseases are a leading cause of infant mortality and lifelong disability. To improve outcomes, timely diagnosis and effective treatments are needed. Genomic sequencing has transformed the traditional diagnostic process, providing rapid, accurate and cost-effective genetic diagnoses to many. Incorporating genomic sequencing into newborn screening programmes at the population scale holds the promise of substantially expanding the early detection of treatable rare diseases, with stored genomic data potentially benefitting health over a lifetime and supporting further research. As several large-scale newborn genomic screening projects launch internationally, we review the challenges and opportunities presented, particularly the need to generate evidence of benefit and to address the ethical, legal and psychosocial issues that genomic newborn screening raises.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics, Melbourne, Victoria, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Richard H Scott
- Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
- Genomics England, London, UK
| |
Collapse
|
11
|
Vears DF, Savulescu J, Christodoulou J, Wall M, Newson AJ. Are We Ready for Whole Population Genomic Sequencing of Asymptomatic Newborns? Pharmgenomics Pers Med 2023; 16:681-691. [PMID: 37415831 PMCID: PMC10321326 DOI: 10.2147/pgpm.s376083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
The introduction of genomic sequencing technologies into routine newborn screening programs in some form is not only inevitable but also already occurring in some settings. The question is therefore not "if" but "when and how" genomic newborn screening (GNBS) should be implemented. In April 2022, the Centre for Ethics of Paediatric Genomics held a one-day symposium exploring ethical issues relating to the use of genomic sequencing in a range of clinical settings. This review article synthesises the panel discussion and presents both the potential benefits of wide-scale implementation of genomic newborn screening, as well as its practical and ethical issues, including obtaining appropriate consent, and health system implications. A more in-depth understanding of the barriers associated with implementing genomic newborn screening is critical to the success of GNBS programs, both from a practical perspective and also in order to maintain public trust in an important public health initiative.
Collapse
Affiliation(s)
- Danya F Vears
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Julian Savulescu
- Chen Su Lan Centennial Professor in Medical Ethics, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Visiting Professorial Fellow in Biomedical Ethics, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Distinguished Visiting Professor in Law, Melbourne University, Carlton, Victoria, Australia
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
| | - John Christodoulou
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Meaghan Wall
- Victorian Clinical Genetics Service, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Ainsley J Newson
- Faculty of Medicine & Health, Sydney School of Public Health, Sydney Health Ethics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|