1
|
McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Front Neurosci 2024; 18:1414658. [PMID: 39376536 PMCID: PMC11456401 DOI: 10.3389/fnins.2024.1414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024] Open
Abstract
Rare diseases affect almost 500 million people globally, predominantly impacting children and often leading to significantly impaired quality of life and high treatment costs. While significant contributions have been made to develop effective treatments for those with rare diseases, more rapid drug discovery strategies are needed. Therapeutic antisense oligonucleotides can modulate target gene expression with high specificity through various mechanisms determined by base sequences and chemical modifications; and have shown efficacy in clinical trials for a few rare neurological conditions. Therefore, this review will focus on the applications of antisense oligonucleotides, in particular splice-switching antisense oligomers as promising therapeutics for rare neurological diseases, with key examples of Duchenne muscular dystrophy and spinal muscular atrophy. Challenges and future perspectives in developing antisense therapeutics for rare conditions including target discovery, antisense chemical modifications, animal models for therapeutic validations, and clinical trial designs will also be briefly discussed.
Collapse
Affiliation(s)
- Simon McDowall
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
| | - May Aung-Htut
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Steve Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Imai S, Watanabe N, Tone Y, Mitamura R, Mori J, Kameyama T, Yamada T, Kusano K. The Usefulness of Determining Plasma and Tissue Concentrations of Phosphorodiamidate Morpholino Oligonucleotides to Estimate Their Efficacy in Duchenne Muscular Dystrophy Patients. Drug Metab Dispos 2024; 52:1029-1036. [PMID: 38991781 DOI: 10.1124/dmd.124.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Currently, four kinds of phosphorodiamidate morpholino oligomers (PMOs), such as viltolarsen, have been approved for the treatment of Duchenne muscular dystrophy (DMD); however, it is unclear whether human efficacy can be estimated using plasma concentrations. This study summarizes the tissue distribution of viltolarsen in mice and cynomolgus monkeys and evaluates the relationship between exposure and efficacy based on exon skipping. In the tissue distribution studies, all muscles in DMD-model mice showed higher concentrations of viltolarsen than those in wild-type mice and cynomolgus monkeys, and the concentrations in skeletal muscle were correlated with the exon-skipping efficiency in mice and cynomolgus monkeys. In addition, a highly sensitive bioanalytical method using liquid chromatography with tandem mass spectrometry shows promise for determining plasma concentrations up to a later time point, and the tissue (muscle)/plasma concentration ratio (Kp) in DMD-model mice was shown to be useful for predicting changes in pharmacodynamic (PD) markers in humans. Our results suggest that pharmacokinetic (PK)/PD analysis can be conducted by using the human PK profile or Kp values and skipping efficiency in DMD-model mice. This information will be useful for the efficient and effective development of PMOs as therapeutic agents. SIGNIFICANCE STATEMENT: We evaluated the relationship between the plasma or tissue concentrations and the efficiency of exon skipping for viltolarsen as an example phosphorodiamidate morpholino oligomers in the skeletal and cardiac muscle of mice and cynomolgus monkeys for pharmacokinetic/pharmacodynamic (PK/PD) analysis. The results suggest that PK/PD analysis can be conducted by using the human PK profile or tissue (muscle)/plasma concentration ratios and skipping efficiency in DMD-model mice.
Collapse
Affiliation(s)
- Shunji Imai
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Naoki Watanabe
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Yuichiro Tone
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Rei Mitamura
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Jumpei Mori
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Tsubasa Kameyama
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Tetsuhiro Yamada
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Kazutomi Kusano
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| |
Collapse
|
3
|
Maretina M, Il’ina A, Egorova A, Glotov A, Kiselev A. Development of 2'-O-Methyl and LNA Antisense Oligonucleotides for SMN2 Splicing Correction in SMA Cells. Biomedicines 2023; 11:3071. [PMID: 38002071 PMCID: PMC10669464 DOI: 10.3390/biomedicines11113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by mutations in the SMN1 gene. Existing therapies demonstrate positive results on SMA patients but still might be ameliorated in efficacy and price. In the presented study we designed antisense oligonucleotides (AONs), targeting intronic splicing silencer sites, some were modified with 2'-O-methyl, others with LNA. The AONs have been extensively tested in different concentrations, both individually and combined, in order to effectively target the ISS-N1 and A+100G splicing silencer regions in intron 7 of the SMN2 gene. By treating SMA-cultured fibroblasts with certain AONs, we discovered a remarkable increase in the levels of full-length SMN transcripts and the number of nuclear gems. This increase was observed to be dose-dependent and reached levels comparable to those found in healthy cells. When added to cells together, most of the tested molecules showed a remarkable synergistic effect in correcting splicing. Through our research, we have discovered that the impact of oligonucleotides is greatly influenced by their length, sequence, and pattern of modification.
Collapse
Affiliation(s)
- Marianna Maretina
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Arina Il’ina
- Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7–9, 199034 Saint Petersburg, Russia;
| | - Anna Egorova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Andrey Glotov
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Anton Kiselev
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| |
Collapse
|
4
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
5
|
Chey YCJ, Arudkumar J, Aartsma-Rus A, Adikusuma F, Thomas PQ. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mech Dis 2023; 15:e1580. [PMID: 35909075 PMCID: PMC10078488 DOI: 10.1002/wsbm.1580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
CRISPR gene-editing technology creates precise and permanent modifications to DNA. It has significantly advanced our ability to generate animal disease models for use in biomedical research and also has potential to revolutionize the treatment of genetic disorders. Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disease that could potentially benefit from the development of CRISPR therapy. It is commonly associated with mutations that disrupt the reading frame of the DMD gene that encodes dystrophin, an essential scaffolding protein that stabilizes striated muscles and protects them from contractile-induced damage. CRISPR enables the rapid generation of various animal models harboring mutations that closely simulates the wide variety of mutations observed in DMD patients. These models provide a platform for the testing of sequence-specific interventions like CRISPR therapy that aim to reframe or skip DMD mutations to restore functional dystrophin expression. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jayshen Arudkumar
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,South Australian Genome Editing (SAGE), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Thakur S, Sinhari A, Jain P, Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022; 13:1006304. [PMID: 36339619 PMCID: PMC9626821 DOI: 10.3389/fphar.2022.1006304] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2022] [Indexed: 09/12/2023] Open
Abstract
It is estimated that the human genome encodes 15% of proteins that are considered to be disease-modifying. Only 2% of these proteins possess a druggable site that the approved clinical candidates target. Due to this disparity, there is an immense need to develop therapeutics that may better mitigate the disease or disorders aroused by non-druggable and druggable proteins or enzymes. The recent surge in approved oligonucleotide therapeutics (OT) indicates the imminent potential of these therapies. Oligonucleotide-based therapeutics are of intermediate size with much-improved selectivity towards the target and fewer off-target effects than small molecules. The OTs include Antisense RNAs, MicroRNA (MIR), small interfering RNA (siRNA), and aptamers, which are currently being explored for their use in neurodegenerative disorders, cancer, and even orphan diseases. The present review is a congregated effort to present the past and present of OTs and the current efforts to make OTs for plausible future therapeutics. The review provides updated literature on the challenges and bottlenecks of OT and recent advancements in OT drug delivery. Further, this review deliberates on a newly emerging approach to personalized treatment for patients with rare and fatal diseases with OT.
Collapse
Affiliation(s)
- Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Apurba Sinhari
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Hemant R. Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| |
Collapse
|
7
|
Caruso SM, Quinn PM, da Costa BL, Tsang SH. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. J Clin Invest 2022; 132:158287. [PMID: 35499084 PMCID: PMC9057583 DOI: 10.1172/jci158287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Salvatore Marco Caruso
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Peter M.J. Quinn
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Bruna Lopes da Costa
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Stephen H. Tsang
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
- Institute of Human Nutrition, Department of Ophthalmology and Department of Pathology and Cell Biology
- Columbia Stem Cell Initiative, and
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
8
|
Attias Cohen S, Simaan-Yameen H, Fuoco C, Gargioli C, Seliktar D. Injectable hydrogel microspheres for sustained gene delivery of antisense oligonucleotides to restore the expression of dystrophin protein in duchenne muscular dystrophy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Sheikh O, Yokota T. Pharmacology and toxicology of eteplirsen and SRP-5051 for DMD exon 51 skipping: an update. Arch Toxicol 2021; 96:1-9. [PMID: 34797383 DOI: 10.1007/s00204-021-03184-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) afflicts 1 in 5000 newborn males, leading to progressive muscle weakening and the loss of ambulation between the ages of 8 and 12. Typically, DMD patients pass away from heart failure or respiratory failure. Currently, there is no cure, though exon-skipping therapy including eteplirsen (brand name Exondys 51), a synthetic antisense oligonucleotide designed to skip exon 51 of the dystrophin gene, is considered especially promising. Applicable to approximately 14% of DMD patients, a phosphorodiamidate morpholino oligomer (PMO) antisense oligonucleotide eteplirsen received accelerated approval by the US Food and Drug Administration (FDA) in 2016. Throughout clinical trials, eteplirsen has been well tolerated by patients with no serious drug-related adverse events. The most common events observed are balance disorder, vomiting, and skin rash. Despite its safety and promise of functional benefits, eteplirsen remains controversial due to its low production of dystrophin. In addition, unmodified PMOs have limited efficacy in the heart. To address these concerns of efficacy, eteplirsen has been conjugated to a proprietary cell-penetrating peptide; the conjugate is called SRP-5051. Compared to eteplirsen, SRP-5051 aims to better prompt exon-skipping and dystrophin production but may have greater toxicity concerns. This paper reviews and discusses the available information on the efficacy, safety, and tolerability data of eteplirsen and SRP-5051 from preclinical and clinical trials. Issues faced by eteplirsen and SRP-5051, including efficacy and safety, are identified. Lastly, the current state of eteplirsen and exon-skipping therapy in general as a strategy for the treatment of DMD are discussed.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, T6G 2R3, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, T6G 2R3, Canada.
| |
Collapse
|
10
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
11
|
Intramuscular Evaluation of Chimeric Locked Nucleic Acid/2' OMethyl-Modified Antisense Oligonucleotides for Targeted Exon 23 Skipping in Mdx Mice. Pharmaceuticals (Basel) 2021; 14:ph14111113. [PMID: 34832896 PMCID: PMC8622172 DOI: 10.3390/ph14111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder characterised by progressive muscle wasting. It is caused by mutations in the dystrophin gene, which disrupt the open reading frame leading to the loss of functional dystrophin protein in muscle fibres. Antisense oligonucleotide (AON)-mediated skipping of the mutated exon, which allows production of a truncated but partially functional dystrophin protein, has been at the forefront of DMD therapeutic research for over two decades. Nonetheless, novel nucleic acid modifications and AON designs are continuously being developed to improve the clinical benefit profile of current drugs in the DMD pipeline. We herein designed a series of 15mer and 20mer AONs, consisting of 2′O-Methyl (2′OMe)- and locked nucleic acid (LNA)-modified nucleotides in different percentage compositions, and assessed their efficiency in inducing exon 23 skipping and dystrophin restoration in locally injected muscles of mdx mice. We demonstrate that LNA/2′OMe AONs with a 30% LNA composition were significantly more potent in inducing exon skipping and dystrophin restoration in treated mdx muscles, compared to a previously tested 2′OMe AON and LNA/2′OMe chimeras with lower or higher LNA compositions. These results underscore the therapeutic potential of LNA/2′OMe AONs, paving the way for further experimentation to evaluate their benefit-toxicity profile following systemic delivery.
Collapse
|
12
|
Lesman D, Rodriguez Y, Rajakumar D, Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Hum Gene Ther 2021; 32:1317-1329. [PMID: 34139889 DOI: 10.1089/hum.2021.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uridine-rich 7 (U7) small nuclear RNA (snRNA) is a component of a small nuclear ribonucleoprotein (snRNP) complex. U7 snRNA naturally contains an antisense sequence that identifies histone premessenger RNAs (pre-mRNAs) and is involved in their 3' end processing. By altering this antisense sequence, researchers have turned U7 snRNA into a versatile tool for targeting pre-mRNAs and modifying splicing. Encapsulating a modified U7 snRNA into a viral vector such as adeno-associated virus (also referred as vectorized exon skipping/inclusion, or VES/VEI) enables the delivery of this highly efficacious splicing modulator into a range of cell lines, primary cells, and tissues. In addition, and in contrast to antisense oligonucleotides, viral delivery of U7 snRNA enables long-term expression of antisense sequences in the nucleus as part of a stable snRNP complex. As a result, VES/VEI has emerged as a promising therapeutic platform for treating a large variety of human diseases caused by errors in pre-mRNA splicing or its regulation. Here we provide an overview of U7 snRNA's natural function and its applications in gene therapy.
Collapse
Affiliation(s)
- Daniel Lesman
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yacidzohara Rodriguez
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dhanarajan Rajakumar
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nicolas Wein
- Center for Gene Therapy, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatric, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Abstract
Duchenne muscular dystrophy (DMD) is a devastating, rare disease. While clinically described in the 19th century, the genetic foundation of DMD was not discovered until more than 100 years later. This genetic understanding opened the door to the development of genetic treatments for DMD. Over the course of the last 30 years, the research that supports this development has moved into the realm of clinical trials and regulatory drug approvals. Exon skipping to therapeutically restore the frame of an out-of-frame dystrophin mutation has taken center stage in drug development for DMD. The research reviewed here focuses on the clinical development of exon skipping for the treatment of DMD. In addition to the generation of clinical treatments that are being used for patient care, this research sets the stage for future therapeutic development with a focus on increasing efficacy while providing safety and addressing the multi-systemic aspects of DMD.
Collapse
Affiliation(s)
- Shin'ichi Takeda
- Honorary Director General, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Paula R Clemens
- Professor and Vice Chair of VA Affairs, Department of Neurology, University of Pittsburgh School of Medicine, Division Chief, Neurology, Medical Service Line, VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Eric P Hoffman
- Professor, Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - State University of New York, Binghamton, NY USA
| |
Collapse
|
14
|
Daoutsali E, Hailu TT, Buijsen RAM, Pepers BA, van der Graaf LM, Verbeek MM, Curtis D, de Vlaam T, van Roon-Mom WMC. Antisense Oligonucleotide-Induced Amyloid Precursor Protein Splicing Modulation as a Therapeutic Approach for Dutch-Type Cerebral Amyloid Angiopathy. Nucleic Acid Ther 2021; 31:351-363. [PMID: 34061681 PMCID: PMC8823675 DOI: 10.1089/nat.2021.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dutch-type cerebral amyloid angiopathy (D-CAA) is a monogenic form of cerebral amyloid angiopathy and is inherited in an autosomal dominant manner. The disease is caused by a point mutation in exon 17 of the amyloid precursor protein (APP) gene that leads to an amino acid substitution at codon 693. The mutation is located within the amyloid beta (Aβ) domain of APP, and leads to accumulation of toxic Aβ peptide in and around the cerebral vasculature. We have designed an antisense oligonucleotide (AON) approach that results in skipping of exon 17, generating a shorter APP isoform that lacks part of the Aβ domain and the D-CAA mutation. We demonstrate efficient AON-induced skipping of exon 17 at RNA level and the occurrence of a shorter APP protein isoform in three different cell types. This resulted in a reduction of Aβ40 in neuronally differentiated, patient-derived induced pluripotent stem cells. AON-treated wild-type mice showed successful exon skipping on RNA and protein levels throughout the brain. These results illustrate APP splice modulation as a promising therapeutic approach for D-CAA.
Collapse
Affiliation(s)
- Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Daniel Curtis
- Amylon Therapeutics, Leiden, the Netherlands.,Atalanta Therapeutics, Boston, Massachusetts, USA
| | | | | |
Collapse
|
15
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
16
|
Signorelli M, Ebrahimpoor M, Veth O, Hettne K, Verwey N, García‐Rodríguez R, Tanganyika‐deWinter CL, Lopez Hernandez LB, Escobar Cedillo R, Gómez Díaz B, Magnusson OT, Mei H, Tsonaka R, Aartsma‐Rus A, Spitali P. Peripheral blood transcriptome profiling enables monitoring disease progression in dystrophic mice and patients. EMBO Mol Med 2021; 13:e13328. [PMID: 33751844 PMCID: PMC8033515 DOI: 10.15252/emmm.202013328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
DMD is a rare disorder characterized by progressive muscle degeneration and premature death. Therapy development is delayed by difficulties to monitor efficacy non-invasively in clinical trials. In this study, we used RNA-sequencing to describe the pathophysiological changes in skeletal muscle of 3 dystrophic mouse models. We show how dystrophic changes in muscle are reflected in blood by analyzing paired muscle and blood samples. Analysis of repeated blood measurements followed the dystrophic signature at five equally spaced time points over a period of seven months. Treatment with two antisense drugs harboring different levels of dystrophin recovery identified genes associated with safety and efficacy. Evaluation of the blood gene expression in a cohort of DMD patients enabled the comparison between preclinical models and patients, and the identification of genes associated with physical performance, treatment with corticosteroids and body measures. The presented results provide evidence that blood RNA-sequencing can serve as a tool to evaluate disease progression in dystrophic mice and patients, as well as to monitor response to (dystrophin-restoring) therapies in preclinical drug development and in clinical trials.
Collapse
Affiliation(s)
- Mirko Signorelli
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Mitra Ebrahimpoor
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Olga Veth
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Kristina Hettne
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Nisha Verwey
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Luz B Lopez Hernandez
- Departamento de Medicina GenómicaUniversidad Autónoma de GuadalajaraGuadalajaraMexico
- Centro Médico Nacional "20 de Noviembre", ISSSTECiudad de MéxicoMexico
| | | | - Benjamín Gómez Díaz
- Sociedad Mexicana de la Distrofia Muscular A.C INR‐LGIICiudad de MéxicoMexico
| | | | - Hailiang Mei
- Sequencing Analysis Support CoreLeiden University Medical CenterLeidenThe Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | | | - Pietro Spitali
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
17
|
Ntini E, Vang Ørom UA. Targeting Polyadenylation for Retention of RNA at Chromatin. Methods Mol Biol 2021; 2161:51-58. [PMID: 32681505 DOI: 10.1007/978-1-0716-0680-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The various steps of RNA polymerase II transcription, including transcription initiation, splicing, and termination, are interlinked and tightly coordinated. Efficient 3'end processing is defined by sequence motifs emerging in the nascent-transcribed RNA strand and the cotranscriptional binding of regulatory proteins. The processing of a mature 3'end consists of cleavage and polyadenylation and is coupled with RNA polymerase II transcription termination and the dissociation of the nascent RNA transcript from the chromatin-associated transcriptional template. The subcellular and subnuclear topological specificity of the various RNA species is important for their functions. For instance, the formation of RNA-binding protein interactions, critical for the final outcome of gene expression, may require the nucleoplasmic fully spliced and polyadenylated form of an RNA transcript. Thus, interfering with the critical step of transcription termination and 3'end formation provides a means for assaying the functional potential of a given RNA of interest.In this protocol, we describe a method for blocking 3'end processing of the nascent RNA transcript, by using RNase H-inactive antisense oligonucleotides targeting cleavage and polyadenylation, delivered via transient transfection in cell culture.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
18
|
PMO-based let-7c site blocking oligonucleotide (SBO) mediated utrophin upregulation in mdx mice, a therapeutic approach for Duchenne muscular dystrophy (DMD). Sci Rep 2020; 10:21492. [PMID: 33298994 PMCID: PMC7726560 DOI: 10.1038/s41598-020-76338-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Upregulation of utrophin, a dystrophin related protein, is considered a promising therapeutic approach for Duchenne muscular dystrophy (DMD). Utrophin expression is repressed at the post-transcriptional level by a set of miRNAs, among which let-7c is evolutionarily highly conserved. We designed PMO-based SBOs complementary to the let-7c binding site in UTRN 3′UTR, with the goal of inhibiting let-7c interaction with UTRN mRNA and thus upregulating utrophin. We used the C2C12UTRN5′luc3′ reporter cell line in which the 5′- and 3′-UTRs of human UTRN sequences flank luciferase, for reporter assays and the C2C12 cell line for utrophin western blots, to independently evaluate the site blocking efficiency of a series of let-7c PMOs in vitro. Treatment of one-month old mdx mice with the most effective let-7c PMO (i.e. S56) resulted in ca. two-fold higher utrophin protein expression in skeletal muscles and the improvement in dystrophic pathophysiology in mdx mice, in vivo. In summary, we show that PMO-based let-7c SBO has potential applicability for upregulating utrophin expression as a therapeutic approach for DMD.
Collapse
|
19
|
Schneider AFE, Aartsma-Rus A. Developments in reading frame restoring therapy approaches for Duchenne muscular dystrophy. Expert Opin Biol Ther 2020; 21:343-359. [PMID: 33074029 DOI: 10.1080/14712598.2021.1832462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exon skipping compounds restoring the dystrophin transcript reading frame have received regulatory approval for Duchenne muscular dystrophy (DMD). Recently, focus shifted to developing compounds to skip additional exons, improving delivery to skeletal muscle, and to genome editing, to restore the reading frame on DNA level. AREAS COVERED We outline developments for reading frame restoring approaches, challenges of mutation specificity, and optimizing delivery. Also, we highlight ongoing efforts to better detect exon skipping therapeutic effects in clinical trials. Searches on relevant terms were performed, focusing on recent publications (<3 years). EXPERT OPINION Currently, 3 AONS are approved. Whether dystrophin levels are sufficient to slowdown disease progression needs to be confirmed. Enhancing AON uptake by muscles is currently under investigation. Gene editing is an alternative, but one that involves practical and ethical concerns. Given the field's momentum, we believe the efficiency of frame-restoring approaches will improve.
Collapse
Affiliation(s)
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Aartsma-Rus A, van Putten M. The use of genetically humanized animal models for personalized medicine approaches. Dis Model Mech 2019; 13:13/2/dmm041673. [PMID: 31591145 PMCID: PMC6906630 DOI: 10.1242/dmm.041673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For many genetic diseases, researchers are developing personalized medicine approaches. These sometimes employ custom genetic interventions such as antisense-mediated exon skipping or genome editing, aiming to restore protein function in a mutation-specific manner. Animal models can facilitate the development of personalized medicine approaches; however, given that they target human mutations and therefore human genetic sequences, scientists rely on the availability of humanized animal models. Here, we outline the usefulness, caveats and potential of such models, using the example of the hDMDdel52/mdx model, a humanized model recently generated for Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
21
|
Bosgra S, Sipkens J, de Kimpe S, den Besten C, Datson N, van Deutekom J. The Pharmacokinetics of 2'- O-Methyl Phosphorothioate Antisense Oligonucleotides: Experiences from Developing Exon Skipping Therapies for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2019; 29:305-322. [PMID: 31429628 DOI: 10.1089/nat.2019.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Delivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs. For the class of 2'-O-methyl phosphorothioate (2OMe PS) RNA AONs, most nonclinical and clinical PK data available today are derived from development of exon skipping therapies for Duchenne muscular dystrophy (DMD). While some publications have featured PK aspects of these AONs, no comprehensive overview is available to date. This article presents a detailed review of absorption, distribution, metabolism, and excretion of 2OMe PS AONs, compiled from publicly available data and previously unpublished internal data on drisapersen and related exon skipping candidates in preclinical species and DMD patients. Considerations regarding drug-drug interactions, toxicokinetics, and pharmacodynamics are also discussed. From the data presented, the picture emerges of consistent PK properties within the 2OMe PS class, predictable behavior across species, and a considerable overlap with other single-stranded PS AONs. A level of detail on muscle as a target tissue is provided, which was not previously available. Furthermore, muscle biopsy samples taken in DMD clinical trials allowed confirmation of the applicability of interspecies scaling approaches commonly applied in the absence of clinical target tissue data.
Collapse
|
22
|
Aung-Htut MT, McIntosh CS, West KA, Fletcher S, Wilton SD. In Vitro Validation of Phosphorodiamidate Morpholino Oligomers. Molecules 2019; 24:E2922. [PMID: 31408997 PMCID: PMC6719133 DOI: 10.3390/molecules24162922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
One of the crucial aspects of screening antisense oligonucleotides destined for therapeutic application is confidence that the antisense oligomer is delivered efficiently into cultured cells. Efficient delivery is particularly vital for antisense phosphorodiamidate morpholino oligomers, which have a neutral backbone, and are known to show poor gymnotic uptake. Here, we report several methods to deliver these oligomers into cultured cells. Although 4D-Nucleofector™ or Neon™ electroporation systems provide efficient delivery and use lower amounts of phosphorodiamidate morpholino oligomer, both systems are costly. We show that some readily available transfection reagents can be used to deliver phosphorodiamidate morpholino oligomers as efficiently as the electroporation systems. Among the transfection reagents tested, we recommend Lipofectamine 3000™ for delivering phosphorodiamidate morpholino oligomers into fibroblasts and Lipofectamine 3000™ or Lipofectamine 2000™ for myoblasts/myotubes. We also provide optimal programs for nucleofection into various cell lines using the P3 Primary Cell 4D-Nucleofector™ X Kit (Lonza), as well as antisense oligomers that redirect expression of ubiquitously expressed genes that may be used as positive treatments for human and murine cell transfections.
Collapse
Affiliation(s)
- May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia
| | - Craig S McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia.
| | - Kristin A West
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
23
|
Wu B, Wang M, Shah S, Lu QL. In Vivo Evaluation of Dystrophin Exon Skipping in mdx Mice. Methods Mol Biol 2019; 1828:231-247. [PMID: 30171545 DOI: 10.1007/978-1-4939-8651-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dystrophin exon skipping in mdx mice has been the key model for the development of antisense therapy in vivo. Evaluation of exon skipping in this model involves the following two aspects: (1) efficiency and accuracy of exon skipping and levels of dystrophin expression determined by RT-PCR, immunochemistry, and western blotting; (2) therapeutic effects on muscle pathology and functions assessed by histology and functional assays including grip strength measurement, treadmill test, echocardiogram, and hemodynamics for cardiac functions. Here we describe some key considerations and the essential methodologies in detail for exon skipping in mdx mice.
Collapse
Affiliation(s)
- Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.
| | - Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Sapana Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.
| |
Collapse
|
24
|
Bolduc V, Foley AR, Solomon-Degefa H, Sarathy A, Donkervoort S, Hu Y, Chen GS, Sizov K, Nalls M, Zhou H, Aguti S, Cummings BB, Lek M, Tukiainen T, Marshall JL, Regev O, Marek-Yagel D, Sarkozy A, Butterfield RJ, Jou C, Jimenez-Mallebrera C, Li Y, Gartioux C, Mamchaoui K, Allamand V, Gualandi F, Ferlini A, Hanssen E, Wilton SD, Lamandé SR, MacArthur DG, Wagener R, Muntoni F, Bönnemann CG. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 2019; 4:124403. [PMID: 30895940 DOI: 10.1172/jci.insight.124403] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Herimela Solomon-Degefa
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Apurva Sarathy
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Grace S Chen
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Katherine Sizov
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sara Aguti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Beryl B Cummings
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Monkol Lek
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taru Tukiainen
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Russell J Butterfield
- Department of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Cristina Jou
- Pathology Department and Biobanc de l'Hospital Infantil Sant Joan de Déu per a la Investigació, Hospital Sant Joan de Déu, Barcelona, Spain.,Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Yan Li
- Peptide/Protein Sequencing Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Corine Gartioux
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Valérie Allamand
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Eric Hanssen
- Bio21 Advanced Microscopy Facility, The University of Melbourne, Melbourne, Australia
| | | | - Steve D Wilton
- Centre for Molecular Medicine and Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Daniel G MacArthur
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
van Putten M, Tanganyika-de Winter C, Bosgra S, Aartsma-Rus A. Nonclinical Exon Skipping Studies with 2'-O-Methyl Phosphorothioate Antisense Oligonucleotides in mdx and mdx-utrn-/- Mice Inspired by Clinical Trial Results. Nucleic Acid Ther 2019; 29:92-103. [PMID: 30672725 PMCID: PMC6461150 DOI: 10.1089/nat.2018.0759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy is a severe, progressive muscle-wasting disease that is caused by mutations that abolish the production of functional dystrophin protein. The exon skipping approach aims to restore the disrupted dystrophin reading frame, to allow the production of partially functional dystrophins, such as found in the less severe Becker muscular dystrophy. Exon skipping is achieved by antisense oligonucleotides (AONs). Several chemical modifications have been tested in nonclinical and clinical trials. The morpholino phosphorodiamidate oligomer eteplirsen has been approved by the Food and Drug Administration, whereas clinical development with the 2'-O-methyl phosphorothioate (2OMePS) AON drisapersen was recently stopped. In this study, we aimed to study various aspects of 2OMePS AONs in nonclinical animal studies. We show that while efficiency of exon skipping restoration is comparable in young and older C57BL/10ScSn-Dmdmdx/J (mdx/BL10) mice, functional improvement was only observed for younger treated mice. Muscle quality did not affect exon skipping efficiency as exon skip and dystrophin levels were similar between mdx/BL10 and more severely affected, age-matched D2-mdx mice. We further report that treadmill running increases AON uptake and dystrophin levels in mdx/BL10 mice. Finally, we show that even low levels of exon skipping and dystrophin restoration are sufficient to significantly increase the survival of mdx-utrn-/- mice from 70 to 97 days.
Collapse
Affiliation(s)
- Maaike van Putten
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sieto Bosgra
- 2 Biomarin Nederland BV, Leiden, the Netherlands
| | - Annemieke Aartsma-Rus
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
26
|
Novak JS, Jaiswal JK, Partridge TA. The macrophage as a Trojan horse for antisense oligonucleotide delivery. Expert Opin Ther Targets 2018; 22:463-466. [PMID: 29860876 PMCID: PMC6309535 DOI: 10.1080/14728222.2018.1482279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- James S Novak
- a Center for Genetic Medicine Research, Children's Research Institute , Children's National Health System , Washington, DC , USA
- b Department of Genomics and Precision Medicine , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
- c Department of Pediatrics , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
| | - Jyoti K Jaiswal
- a Center for Genetic Medicine Research, Children's Research Institute , Children's National Health System , Washington, DC , USA
- b Department of Genomics and Precision Medicine , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
- c Department of Pediatrics , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
| | - Terence A Partridge
- a Center for Genetic Medicine Research, Children's Research Institute , Children's National Health System , Washington, DC , USA
- b Department of Genomics and Precision Medicine , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
- c Department of Pediatrics , The George Washington University School of Medicine and Health Sciences , Washington, DC , USA
| |
Collapse
|
27
|
Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11:1756286418776932. [PMID: 29854003 PMCID: PMC5971383 DOI: 10.1177/1756286418776932] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022] Open
Abstract
The introduction of genetics revolutionized the field of neurodegenerative and neuromuscular diseases and has provided considerable insight into the underlying pathomechanisms. Nevertheless, effective treatment options have been limited. This changed recently when antisense oligonucleotides (ASOs) could be translated from in vitro and experimental animal studies into clinical practice. In 2016, two ASOs were approved by the United States US Food and Drug Administration (FDA) and demonstrated remarkable efficacy in Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). ASOs are synthetic single-stranded strings of nucleic acids. They selectively bind to specific premessenger ribonucleic acid (pre-mRNA)/mRNA sequences and alter protein synthesis by several mechanisms of action. Thus, apart from gene replacement, ASOs may therefore provide the most direct therapeutic strategy for influencing gene expression. In this review, we shall discuss basic mechanisms of ASO action, the role of chemical modifications needed to improve the pharmacodynamic and pharmacokinetic properties of ASOs, and we shall then focus on several ASOs developed for the treatment of neurodegenerative and neuromuscular disorders, including SMA, DMD, myotonic dystrophies, Huntington's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia D. Wurster
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm, 89081, Germany
| | | |
Collapse
|
28
|
Wyatt EJ, Demonbreun AR, Kim EY, Puckelwartz MJ, Vo AH, Dellefave-Castillo LM, Gao QQ, Vainzof M, Pavanello RCM, Zatz M, McNally EM. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers. JCI Insight 2018; 3:99357. [PMID: 29720576 DOI: 10.1172/jci.insight.99357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
Collapse
Affiliation(s)
- Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ellis Y Kim
- Committee on Molecular Medicine and Molecular Pathogenesis and
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Developmental Biology and Regenerative Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Quan Q Gao
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariz Vainzof
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rita C M Pavanello
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Ultrasensitive Hybridization-Based ELISA Method for the Determination of Phosphorodiamidate Morpholino Oligonucleotides in Biological samples. Methods Mol Biol 2018; 1565:265-277. [PMID: 28364250 DOI: 10.1007/978-1-4939-6817-6_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Determining the concentration of oligonucleotide in biological samples such as tissue lysate and serum is essential for determining the biodistribution and pharmacokinetic profile, respectively. ELISA-based assays have shown far greater sensitivities compared to other methods such as HPLC and LC/MS. Here, we describe a novel ultrasensitive hybridization-based ELISA method for quantitating morpholino oligonucleotides in mouse tissue lysate and serum samples. The assay has a linear detection range of 5-250 pM (R2 > 0.99).
Collapse
|
30
|
A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS One 2018; 13:e0193289. [PMID: 29466448 PMCID: PMC5821388 DOI: 10.1371/journal.pone.0193289] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON)-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.
Collapse
|
31
|
Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Sci Rep 2017; 7:17888. [PMID: 29263366 PMCID: PMC5738430 DOI: 10.1038/s41598-017-17982-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe muscle disorder caused by lack of dystrophin. Predictive biomarkers able to anticipate response to the therapeutic treatments aiming at dystrophin re-expression are lacking. The objective of this study is to investigate Matrix Metalloproteinase-9 (MMP-9) as predictive biomarker for Duchenne. Two natural history cohorts were studied including 168 longitudinal samples belonging to 66 patients. We further studied 1536 samples obtained from 3 independent clinical trials with drisapersen, an antisense oligonucleotide targeting exon 51: an open label study including 12 patients; a phase 3 randomized, double blind, placebo controlled study involving 186 patients; an open label extension study performed after the phase 3. Analysis of natural history cohorts showed elevated MMP-9 levels in patients and a significant increase over time in longitudinal samples. MMP-9 decreased in parallel to clinical stabilization in the 12 patients involved in the open label study. The phase 3 study and subsequent extension study clarified that the decrease in MMP-9 levels was not predictive of treatment response. These data do not support the inclusion of serum MMP-9 as predictive biomarker for DMD patients.
Collapse
|
32
|
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 2017; 14:9-21. [PMID: 29192260 DOI: 10.1038/nrneurol.2017.148] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antisense oligonucleotides (ASOs) were first discovered to influence RNA processing and modulate protein expression over two decades ago; however, progress translating these agents into the clinic has been hampered by inadequate target engagement, insufficient biological activity, and off-target toxic effects. Over the years, novel chemical modifications of ASOs have been employed to address these issues. These modifications, in combination with elucidation of the mechanism of action of ASOs and improved clinical trial design, have provided momentum for the translation of ASO-based strategies into therapies. Many neurological conditions lack an effective treatment; however, as research progressively disentangles the pathogenic mechanisms of these diseases, they provide an ideal platform to test ASO-based strategies. This steady progress reached a pinnacle in the past few years with approvals of ASOs for the treatment of spinal muscular atrophy and Duchenne muscular dystrophy, which represent landmarks in a field in which disease-modifying therapies were virtually non-existent. With the rapid development of improved next-generation ASOs toward clinical application, this technology now holds the potential to have a dramatic effect on the treatment of many neurological conditions in the near future.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
33
|
Mishra MK, Loro E, Sengupta K, Wilton SD, Khurana TS. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS One 2017; 12:e0182676. [PMID: 29045431 PMCID: PMC5646768 DOI: 10.1371/journal.pone.0182676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by an absence of the 427kD muscle-specific dystrophin isoform. Utrophin is the autosomal homolog of dystrophin and when overexpressed, can compensate for the absence of dystrophin and rescue the dystrophic phenotype of the mdx mouse model of DMD. Utrophin is subject to miRNA mediated repression by several miRNAs including let-7c. Inhibition of utrophin: let-7c interaction is predicted to 'repress the repression' and increase utrophin expression. We developed and tested the ability of an oligonucleotide, composed of 2'-O-methyl modified bases on a phosphorothioate backbone, to anneal to the utrophin 3'UTR and prevent let-7c miRNA binding, thereby upregulating utrophin expression and improving the dystrophic phenotype in vivo. Suppression of utrophin: let-7c interaction using bi-weekly intraperitoneal injections of let7 site blocking oligonucleotides (SBOs) for 1 month in the mdx mouse model for DMD, led to increased utrophin expression along with improved muscle histology, decreased fibrosis and increased specific force. The functional improvement of dystrophic muscle achieved using let7-SBOs suggests a novel utrophin upregulation-based therapeutic strategy for DMD.
Collapse
Affiliation(s)
- Manoj K. Mishra
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kasturi Sengupta
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Tejvir S. Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Novak JS, Hogarth MW, Boehler JF, Nearing M, Vila MC, Heredia R, Fiorillo AA, Zhang A, Hathout Y, Hoffman EP, Jaiswal JK, Nagaraju K, Cirak S, Partridge TA. Myoblasts and macrophages are required for therapeutic morpholino antisense oligonucleotide delivery to dystrophic muscle. Nat Commun 2017; 8:941. [PMID: 29038471 PMCID: PMC5643396 DOI: 10.1038/s41467-017-00924-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/07/2017] [Indexed: 01/15/2023] Open
Abstract
Exon skipping is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), employing morpholino antisense oligonucleotides (PMO-AO) to exclude disruptive exons from the mutant DMD transcript and elicit production of truncated dystrophin protein. Clinical trials for PMO show variable and sporadic dystrophin rescue. Here, we show that robust PMO uptake and efficient production of dystrophin following PMO administration coincide with areas of myofiber regeneration and inflammation. PMO localization is sustained in inflammatory foci where it enters macrophages, actively differentiating myoblasts and newly forming myotubes. We conclude that efficient PMO delivery into muscle requires two concomitant events: first, accumulation and retention of PMO within inflammatory foci associated with dystrophic lesions, and second, fusion of PMO-loaded myoblasts into repairing myofibers. Identification of these factors accounts for the variability in clinical trials and suggests strategies to improve this therapeutic approach to DMD.Exon skipping is a strategy for the treatment of Duchenne muscular dystrophy, but has variable efficacy. Here, the authors show that dystrophin restoration occurs preferentially in areas of myofiber regeneration, where antisense oligonucleotides are stored in macrophages and delivered to myoblasts and newly formed myotubes.
Collapse
Affiliation(s)
- James S Novak
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Jessica F Boehler
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Marie Nearing
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Maria C Vila
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Raul Heredia
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Alyson A Fiorillo
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Yetrib Hathout
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Sebahattin Cirak
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA.,Institute for Human Genetics, University Hospital Cologne, Cologne, 50923, Germany.,Department of Pediatrics, University Hospital Cologne, Cologne, 50923, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, 50931, Germany
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Washington, DC, 20010, USA. .,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA. .,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
35
|
Jirka SMG, 't Hoen PAC, Diaz Parillas V, Tanganyika-de Winter CL, Verheul RC, Aguilera B, de Visser PC, Aartsma-Rus AM. Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. Mol Ther 2017; 26:132-147. [PMID: 29103911 PMCID: PMC5763161 DOI: 10.1016/j.ymthe.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle wasting disorder caused by reading frame disrupting mutations in the DMD gene. Exon skipping is a therapeutic approach for DMD. It employs antisense oligonucleotides (AONs) to restore the disrupted open reading frame, allowing the production of shorter, but partly functional dystrophin protein as seen in less severely affected Becker muscular dystrophy patients. To be effective, AONs need to be delivered and effectively taken up by the target cells, which can be accomplished by the conjugation of tissue-homing peptides. We performed phage display screens using a cyclic peptide library combined with next generation sequencing analyses to identify candidate muscle-homing peptides. Conjugation of the lead peptide to 2'-O-methyl phosphorothioate AONs enabled a significant, 2-fold increase in delivery and exon skipping in all analyzed skeletal and cardiac muscle of mdx mice and appeared well tolerated. While selected as a muscle-homing peptide, uptake was increased in liver and kidney as well. The homing capacity of the peptide may have been overruled by the natural biodistribution of the AON. Nonetheless, our results suggest that the identified peptide has the potential to facilitate delivery of AONs and perhaps other compounds to skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Silvana M G Jirka
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | | | | | | | | | - Annemieke M Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
36
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
37
|
Zhang Z, Shen M, Gresch PJ, Ghamari-Langroudi M, Rabchevsky AG, Emeson RB, Stamm S. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake. EMBO Mol Med 2016; 8:878-94. [PMID: 27406820 PMCID: PMC4967942 DOI: 10.15252/emmm.201506030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Paul J Gresch
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Ronald B Emeson
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
38
|
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44:6549-63. [PMID: 27288447 PMCID: PMC5001604 DOI: 10.1093/nar/gkw533] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023] Open
Abstract
Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Mallory A Havens
- Department of Biology, Lewis University, Romeoville, IL 60446, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
39
|
Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 2016; 100:5897-906. [PMID: 26969040 DOI: 10.1007/s00253-016-7429-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms.
Collapse
|
40
|
Gramlich M, Pane LS, Zhou Q, Chen Z, Murgia M, Schötterl S, Goedel A, Metzger K, Brade T, Parrotta E, Schaller M, Gerull B, Thierfelder L, Aartsma-Rus A, Labeit S, Atherton JJ, McGaughran J, Harvey RP, Sinnecker D, Mann M, Laugwitz KL, Gawaz MP, Moretti A. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med 2016; 7:562-76. [PMID: 25759365 PMCID: PMC4492817 DOI: 10.15252/emmm.201505047] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM.
Collapse
Affiliation(s)
- Michael Gramlich
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Luna Simona Pane
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Qifeng Zhou
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Zhifen Chen
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Sonja Schötterl
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Alexander Goedel
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Katja Metzger
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Thomas Brade
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Elvira Parrotta
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Brenda Gerull
- Libin Cardiovascular Institute of Alberta and University of Calgary, Calgary, AB, Canada
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Siegfried Labeit
- Institute for Integrative Pathophysiology, Universitätsmedizin Mannheim, Mannheim, Germany
| | - John J Atherton
- Department of Cardiology, Royal Brisbane and Women's Hospital and University of Queensland School of Medicine, Brisbane, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Qld, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia St Vincent's Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Daniel Sinnecker
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karl-Ludwig Laugwitz
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - Alessandra Moretti
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, Munich, Germany DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
41
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2016. [PMID: 26595814 DOI: 10.1172/jci82534.mdm4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
42
|
Bao TL, Veedu RN, Fletcher S, Wilton SD. Antisense oligonucleotide development for the treatment of muscular dystrophies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Brolin C, Shiraishi T, Hojman P, Krag TO, Nielsen PE, Gehl J. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e267. [PMID: 26623939 PMCID: PMC5014535 DOI: 10.1038/mtna.2015.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for improvement of in vivo cellular availability, we have investigated the effect of electrotransfer upon intramuscular (i.m.) PNA administration in vivo. Antisense PNA targeting exon 23 of the murine dystrophin gene was administered by i.m. injection to the tibialis anterior (TA) muscle of normal NMRI and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice switching was detected at the RNA level up to 4 weeks after a single-dose treatment. In dystrophic muscles of the MDX mouse, electroporation increased the number of dystrophin-positive fibers about 2.5-fold at 2 weeks after a single PNA administration compared to injection only. In conclusion, we find that electroporation can enhance PNA antisense effects in muscle tissue.
Collapse
Affiliation(s)
- Camilla Brolin
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Takehiko Shiraishi
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas O Krag
- Neuromuscular Research Unit, Department of Neurology Rigshospitalet, University of Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (CEDGE), Department of Oncology, Copenhagen University Hospital Herlev, Denmark
| |
Collapse
|
44
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2015; 126:68-84. [PMID: 26595814 DOI: 10.1172/jci82534] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
45
|
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell types for ex vivo gene therapy, and perspectives of in vivo gene therapy including genome editing in human zygotes. Although technical challenges, such as efficacy, accuracy, and delivery of the genome editing components, remain to be further improved, yet genome editing technologies offer a new avenue for the gene therapy of DMD.
Collapse
Affiliation(s)
- Akitsu Hotta
- Center for iPS Cell Research & Application (CiRA), Kyoto University, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
| |
Collapse
|
46
|
Abstract
Duchenne muscular dystrophy is the most common form of muscular dystrophy. Genetic and biochemical research over the years has characterized the cause, pathophysiology and development of the disease providing several potential therapeutic targets and/or biomarkers. High throughput - omic technologies have provided a comprehensive understanding of the changes occurring in dystrophic muscles. Murine and canine animal models have been a valuable source to profile muscles and body fluids, thus providing candidate biomarkers that can be evaluated in patients. This review will illustrate known circulating biomarkers that could track disease progression and response to therapy in patients affected by Duchenne muscular dystrophy. We present an overview of the transcriptomic, proteomic, metabolomics and lipidomic biomarkers described in literature. We show how studies in muscle tissue have led to the identification of serum and urine biomarkers and we highlight the importance of evaluating biomarkers as possible surrogate endpoints to facilitate regulatory processes for new medicinal products.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Burki U, Keane J, Blain A, O'Donovan L, Gait MJ, Laval SH, Straub V. Development and Application of an Ultrasensitive Hybridization-Based ELISA Method for the Determination of Peptide-Conjugated Phosphorodiamidate Morpholino Oligonucleotides. Nucleic Acid Ther 2015; 25:275-84. [PMID: 26176274 DOI: 10.1089/nat.2014.0528] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antisense oligonucleotide (AON)-induced exon skipping is one of the most promising strategies for treating Duchenne muscular dystrophy (DMD) and other rare monogenic conditions. Phosphorodiamidate morpholino oligonucleotides (PMOs) and 2'-O-methyl phosphorothioate (2'OMe) are two of the most advanced AONs in development. The next generation of peptide-conjugated PMO (P-PMO) is also showing great promise, but to advance these therapies it is essential to determine the pharmacokinetic and biodistribution (PK/BD) profile using a suitable method to detect AON levels in blood and tissue samples. An enzyme-linked immunosorbent assay (ELISA)-based method, which shows greater sensitivity than the liquid chromatography-mass spectrometry method, is the method of choice for 2'OMe detection in preclinical and clinical studies. However, no such assay has been developed for PMO/P-PMO detection, and we have, therefore, developed an ultrasensitive hybridization-based ELISA for this purpose. The assay has a linear detection range of 5-250 pM (R(2)>0.99) in mouse serum and tissue lysates. The sensitivity was sufficient for determining the 24-h PK/BD profile of PMO and P-PMO injected at standard doses (12.5 mg/kg) in mdx mice, the dystrophin-deficient mouse model for DMD. The assay demonstrated an accuracy approaching 100% with precision values under 12%. This provides a powerful cost-effective assay for the purpose of accelerating the development of these emerging therapeutic agents.
Collapse
Affiliation(s)
- Umar Burki
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Jonathan Keane
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Alison Blain
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Liz O'Donovan
- 2 Laboratory of Molecular Biology , Medical Research Council, Cambridge, United Kingdom
| | - Michael John Gait
- 2 Laboratory of Molecular Biology , Medical Research Council, Cambridge, United Kingdom
| | - Steven H Laval
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
48
|
Wilton SD, Veedu RN, Fletcher S. The emperor's new dystrophin: finding sense in the noise. Trends Mol Med 2015; 21:417-26. [PMID: 26051381 DOI: 10.1016/j.molmed.2015.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/16/2023]
Abstract
Targeted dystrophin exon removal is a promising therapy for Duchenne muscular dystrophy (DMD); however, dystrophin expression in some reports is not supported by the associated data. As in the account of 'The Emperor's New Clothes', the validity of such claims must be questioned, with critical re-evaluation of available data. Is it appropriate to report clinical benefit and induction of dystrophin as dose dependent when the baseline is unclear? The inability to induce meaningful levels of dystrophin does not mean that dystrophin expression as an end point is irrelevant, nor that induced exon skipping as a strategy is flawed, but demands that drug safety and efficacy, and study parameters be addressed, rather than questioning the strategy or the validity of dystrophin as a biomarker.
Collapse
Affiliation(s)
- S D Wilton
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia.
| | - R N Veedu
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| | - S Fletcher
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| |
Collapse
|
49
|
Lee EJ, Kim AY, Lee EM, Lee MM, Min CW, Kang KK, Park JK, Hwang M, Kwon SH, Tremblay JP, Jeong KS. Therapeutic effects of exon skipping and losartan on skeletal muscle of mdx mice. Pathol Int 2015; 64:388-96. [PMID: 25143127 DOI: 10.1111/pin.12190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
Various attempts have been made to find treatments for Duchenne muscular dystrophy (DMD) patients. Exon skipping is one of the promising technologies for DMD treatment by restoring dystropin protein, which is one of the muscle components. It is well known that losartan, an angiotensin II type1 receptor blocker, promotes muscle regeneration and differentiation by lowering the level of transforming growth factor-beta1 signaling. In this study, we illustrated the combined effects of exon skipping and losartan on skeletal muscle of mdx mice. We supplied mdx mice with losartan for 2 weeks before exon skipping treatment. The losartan with the exon skipping group showed less expression of myf5 than the losartan treated group. Also the losartan with exon skipping group recovered normal muscle architecture, in contrast to the losartan group which still showed many central nuclei. However, the exon skipping efficiency and the restoration of dystrophin protein were lower in the losartan with exon skipping group compared to the exon skipping group. We reveal that losartan promotes muscle regeneration and shortens the time taken to restore normal muscle structure when combined with exon skipping. However, combined treatment of exon skipping and losartan decreases the restoration of dystrophin protein meaning decrease of exon skipping efficiency.
Collapse
Affiliation(s)
- Eun-Joo Lee
- College of Veterinary Medicine, School of Medicine, Kyungpook National University, Daegu, Korea; Stem Cell Therapeutic Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fontenete S, Leite M, Guimarães N, Madureira P, Ferreira RM, Figueiredo C, Wengel J, Azevedo NF. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes. PLoS One 2015; 10:e0125494. [PMID: 25915865 PMCID: PMC4410960 DOI: 10.1371/journal.pone.0125494] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/12/2015] [Indexed: 12/13/2022] Open
Abstract
In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization.
Collapse
Affiliation(s)
- Sílvia Fontenete
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- * E-mail:
| | - Marina Leite
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Nuno Guimarães
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Pedro Madureira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- IBMC, Institute for Molecular Biology and Cell Biology, Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of Porto University, Porto, Portugal
| | - Jesper Wengel
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|