1
|
Hamann A, Kozisek T, Broad K, Pannier AK. Glucocorticoid Priming of Nonviral Gene Delivery to hMSCs Increases Transfection by Reducing Induced Stresses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:713-722. [PMID: 32913879 PMCID: PMC7452153 DOI: 10.1016/j.omtm.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are under study for cell and gene therapeutics because of their immunomodulatory and regenerative properties. Safe and efficient gene delivery could increase hMSC clinical potential by enabling expression of transgenes for control over factor production, behavior, and differentiation. Viral delivery is efficient but suffers from safety issues, while nonviral methods are safe but highly inefficient, especially in hMSCs. We previously demonstrated that priming cells with glucocorticoids (Gcs) before delivery of DNA complexes significantly increases hMSC transfection, which correlates with a rescue of transfection-induced metabolic and protein synthesis decline, and apoptosis. In this work, we show that transgene expression enhancement is mediated by transcriptional activation of endogenous hMSC genes by the cytosolic glucocorticoid receptor (cGR) and that transfection enhancement can be potentiated with a GR transcription-activation synergist. We demonstrate that the Gc-activated cGR modulates endogenous hMSC gene expression to ameliorate transfection-induced endoplasmic reticulum (ER) and oxidative stresses, apoptosis, and inflammatory responses to prevent hMSC metabolic and protein synthesis decline, resulting in enhanced transgene expression after nonviral gene delivery to hMSCs. These results provide insights important for rational design of more efficient nonviral gene delivery and priming techniques that could be utilized for clinical hMSC applications.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Kelly Broad
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| |
Collapse
|
2
|
Kozisek T, Hamann A, Nguyen A, Miller M, Plautz S, Pannier AK. High-throughput screening of clinically approved drugs that prime nonviral gene delivery to human Mesenchymal stem cells. J Biol Eng 2020; 14:16. [PMID: 32467728 PMCID: PMC7238544 DOI: 10.1186/s13036-020-00238-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) are intensely researched for applications in cell therapeutics due to their unique properties, however, intrinsic therapeutic properties of hMSCs could be enhanced by genetic modification. Viral transduction is efficient, but suffers from safety issues. Conversely, nonviral gene delivery, while safer compared to viral, suffers from inefficiency and cytotoxicity, especially in hMSCs. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological 'priming' of hMSCs with the glucocorticoid dexamethasone can significantly increase transfection in hMSCs by modulating transfection-induced cytotoxicity. This work seeks to establish a library of transfection priming compounds for hMSCs by screening 707 FDA-approved drugs, belonging to diverse drug classes, from the NIH Clinical Collection at four concentrations for their ability to modulate nonviral gene delivery to adipose-derived hMSCs from two human donors. Results Microscope images of cells transfected with a fluorescent transgene were analyzed in order to identify compounds that significantly affected hMSC transfection without significant toxicity. Compound classes that increased transfection across both donors included glucocorticoids, antibiotics, and antihypertensives. Notably, clobetasol propionate, a glucocorticoid, increased transgene production 18-fold over unprimed transfection. Furthermore, compound classes that decreased transfection across both donors included flavonoids, antibiotics, and antihypertensives, with the flavonoid epigallocatechin gallate decreasing transgene production - 41-fold compared to unprimed transfection. Conclusions Our screen of the NCC is the first high-throughput and drug-repurposing approach to identify nonviral gene delivery priming compounds in two donors of hMSCs. Priming compounds and classes identified in this screen suggest that modulation of proliferation, mitochondrial function, and apoptosis is vital for enhancing nonviral gene delivery to hMSCs.
Collapse
Affiliation(s)
- Tyler Kozisek
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Andrew Hamann
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Albert Nguyen
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Michael Miller
- 2Department of Biomedical Engineering, Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA USA
| | - Sarah Plautz
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| | - Angela K Pannier
- 1Department of Biological Systems Engineering, University of Nebraska-Lincoln, 231 L.W. Chase Hall, Lincoln, NE USA
| |
Collapse
|
3
|
Chen L, Pan X, Zhang YH, Huang T, Cai YD. Analysis of Gene Expression Differences between Different Pancreatic Cells. ACS OMEGA 2019; 4:6421-6435. [DOI: 10.1021/acsomega.8b02171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam 3014ZK, Netherlands
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Hamann A, Broad K, Nguyen A, Pannier AK. Mechanisms of unprimed and dexamethasone-primed nonviral gene delivery to human mesenchymal stem cells. Biotechnol Bioeng 2018; 116:427-443. [PMID: 30450542 PMCID: PMC6322959 DOI: 10.1002/bit.26870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are under intense study for applications of cell and gene therapeutics because of their unique immunomodulatory and regenerative properties. Safe and efficient genetic modification of hMSCs could increase their clinical potential by allowing functional expression of therapeutic transgenes or control over behavior and differentiation. Viral gene delivery is efficient, but suffers from safety issues, while nonviral methods are safe, but highly inefficient, especially in hMSCs. Our lab previously demonstrated that priming cells before delivery of DNA complexes with dexamethasone (DEX), an anti‐inflammatory glucocorticoid drug, significantly increases hMSC transfection success. This work systematically investigates the mechanisms of hMSC transfection and DEX‐mediated enhancement of transfection. Our results show that hMSC transfection and its enhancement by DEX are decreased by inhibiting classical intracellular transport and nuclear import pathways, but DEX transfection priming does not increase cellular or nuclear internalization of plasmid DNA (pDNA). We also show that hMSC transgene expression is largely affected by pDNA promoter and enhancer sequence changes, but DEX‐mediated enhancement of transfection is unaffected by any pDNA sequence changes. Furthermore, DEX‐mediated transfection enhancement is not the result of increased transgene messenger RNA transcription or stability. However, DEX‐priming increases total protein synthesis by preventing hMSC apoptosis induced by transfection, resulting in increased translation of transgenic protein. DEX may also promote further enhancement of transgenic reporter enzyme activity by other downstream mechanisms. Mechanistic studies of nonviral gene delivery will inform future rationally designed technologies for safe and efficient genetic modification of clinically relevant cell types.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Kelly Broad
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Albert Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
5
|
Youngblood RL, Truong NF, Segura T, Shea LD. It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Mol Ther 2018; 26:2087-2106. [PMID: 30107997 PMCID: PMC6127639 DOI: 10.1016/j.ymthe.2018.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Hydrogels provide a regenerative medicine platform with their ability to create an environment that supports transplanted or endogenous infiltrating cells and enables these cells to restore or replace the function of tissues lost to disease or trauma. Furthermore, these systems have been employed as delivery vehicles for therapeutic genes, which can direct and/or enhance the function of the transplanted or endogenous cells. Herein, we review recent advances in the development of hydrogels for cell and non-viral gene delivery through understanding the design parameters, including both physical and biological components, on promoting transgene expression, cell engraftment, and ultimately cell function. Furthermore, this review identifies emerging opportunities for combining cell and gene delivery approaches to overcome challenges to the field.
Collapse
Affiliation(s)
- Richard L Youngblood
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Norman F Truong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Sun Y, Ye L, Zheng Y, Yang Z. Identification of crucial genes associated with Parkinson's disease using microarray data. Mol Med Rep 2017; 17:3775-3782. [PMID: 29257331 DOI: 10.3892/mmr.2017.8305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/23/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine potential crucial genes associated with Parkinson's disease (PD) in addition to the interactions and regulators of these genes. The chip data (GSE7621) were obtained from the Gene Expression Omnibus and standardized using the robust multi‑array average in the Affy package of R software. The differentially expressed genes (DEGs) were then screened using the Samr package with a false discovery rate (FDR) <0.05 and |log2 fold change (FC)|>1. Crucial PD‑associated genes were predicted using the Genetic Association Database in the Database for Annotation, Visualization and Integrated Discovery and sequence alignment. Furthermore, transcription factors (TFs) of the crucial PD‑associated genes were predicted, and protein‑protein interactions (PPIs) between the crucial PD‑associated genes were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins. Additionally, another dataset of PD was used to validate the expression of crucial PD‑associated genes. A total of 670 DEGs (398 upregulated and 272 downregulated genes) were identified in the PD samples. Of these, 10 DEGs enriched in pathways associated with the nervous system were predicted to be crucial in PD, including C‑X‑C chemokine receptor type 4 (CXCR4), deleted in colorectal cancer (DCC) and NCL adaptor protein 2 (NCK2). All 10 genes were associated with neuron development and differentiation. They were simultaneously modulated by multiple TFs, including GATA, E2F and E4 promoter‑binding protein 4. The PPI networks showed that DCC and CXCR4 were hub proteins. The DCC‑netrin 1‑roundabout guidance receptor 2‑slit guidance ligand 1 interaction pathway, and several genes, including TOX high mobility group box family member 4, kinase insert domain receptor and zymogen granule protein 16B, which interacted with CXCR4, were novel findings. Additionally, CXCR4 and NCK2 were upregulated in another dataset (GSE8397) of PD. These genes, interactions of proteins and TFs may be important in the progression of PD.
Collapse
Affiliation(s)
- Yongqi Sun
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Linlin Ye
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yonghui Zheng
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zichao Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Nguyen A, Beyersdorf J, Riethoven JJ, Pannier AK. High-throughput screening of clinically approved drugs that prime polyethylenimine transfection reveals modulation of mitochondria dysfunction response improves gene transfer efficiencies. Bioeng Transl Med 2016; 1:123-135. [PMID: 27981241 PMCID: PMC5127179 DOI: 10.1002/btm2.10017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
Nonviral gene delivery methods are advantageous over viral vectors in terms of safety, cost, and flexibility in design and application, but suffer from lower gene transfer efficiency. In addition to modifications to nucleic acid design and nonviral carriers, new tools are sought to enhance transfection. Priming is the pharmacological modulation of transfection efficiency and transgene expression, and has demonstrated transfection increase in several compounds, for example, chloroquine and glucocorticoids. To develop a library of transfection priming compounds, a high‐throughput screen was performed of the NIH Clinical Collection (NCC) to identify clinical compounds that prime polyethylenimine (PEI) transfection. HEK293T cells were treated with priming compounds, then transfected with enhanced green fluorescent protein (EGFP)‐encoding plasmid by PEI. After 48‐hr culture, primed and transfected cells were assayed for transfection, cell proliferation, and cell viability by fluorescence measurement of EGFP reporter, Hoechst 33342 nuclei stain, and resazurin metabolic assay. From the microscope image analysis and microplate measurements, transfection fold‐changes were determined, and compounds resulting in statistically significant transfection fold‐change were identified. NCC compounds were clustered using PubChem fingerprint similarity by Tanimoto coefficients in ChemmineTools. Fold‐changes for each compound were linked to drug clusters, from which drug classes that prime transfection were identified. Among the identified drugs classes that primed transfection increases were antioxidants, GABAA receptor modulators, and glucocorticoids. Resveratrol and piceid, stilbenoid antioxidants found in grapes, and zolpidem, a GABAA modulator, increased transfection nearly three‐fold. Literature indicate interaction of the identified transfection priming drug clusters with mitochondria, which may modulate mitochondrial dysfunction known to be associated with PEI transfection.
Collapse
Affiliation(s)
- Albert Nguyen
- Dept. of Biological Systems Engineering University of Nebraska-Lincoln Lincoln NE 68583; Center for Nanohybrid Functional Materials University of Nebraska-Lincoln, Lincoln NE 68588; Dept. of Electrical and Computer Engineering University of Nebraska-Lincoln Lincoln NE 68588
| | - Jared Beyersdorf
- Dept. of Biological Systems Engineering University of Nebraska-Lincoln Lincoln NE 68583
| | - Jean-Jack Riethoven
- Bioinformatics Core Research Facility University of Nebraska-Lincoln Lincoln NE 68588; School of Biological Sciences University of Nebraska-Lincoln, Lincoln NE 68588
| | - Angela K Pannier
- Dept. of Biological Systems Engineering University of Nebraska-Lincoln Lincoln NE 68583; Center for Nanohybrid Functional Materials University of Nebraska-Lincoln, Lincoln NE 68588
| |
Collapse
|
8
|
Martin TM, Plautz SA, Pannier AK. Temporal endogenous gene expression profiles in response to lipid-mediated transfection. J Gene Med 2015; 17:14-32. [PMID: 25663588 DOI: 10.1002/jgm.2821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Design of efficient nonviral gene delivery systems is limited as a result of the rudimentary understanding of the specific molecules and processes that facilitate DNA transfer. METHODS Lipoplexes formed with Lipofectamine 2000 (LF2000) and plasmid-encoding green fluorescent protein (GFP) were delivered to the HEK 293T cell line. After treating cells with lipoplexes, HG-U133 Affymetrix microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. RESULTS Relative to untreated cells 2 h after lipoplex treatment, only downregulated genes were identified ≥ 30-fold: ALMS1, ITGB1, FCGR3A, DOCK10 and ZDDHC13. Subsequently, relative to GFP- cells, the GFP+ cell population showed at least a five-fold upregulation of RAP1A and PACSIN3 (8 h) or HSPA6 and RAP1A (16 and 24 h). Pharmacologic studies altering endogenous levels for ALMS1, FCGR3A, and DOCK10 (involved in filopodia protrusions), ITGB1 (integrin signaling), ZDDHC13 (membrane trafficking) and PACSIN3 (proteolytic shedding of membrane receptors) were able to increase or decrease transgene production. CONCLUSIONS RAP1A, PACSIN3 and HSPA6 may help lipoplex-treated cells overcome a transcriptional shutdown due to treatment with lipoplexes and provide new targets for investigating molecular mechanisms of transfection or for enhancing transfection through cell priming or engineering of the nonviral gene delivery system.
Collapse
Affiliation(s)
- Timothy M Martin
- Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
9
|
Martin TM, Plautz SA, Pannier AK. Temporal endogenous gene expression profiles in response to polymer-mediated transfection and profile comparison to lipid-mediated transfection. J Gene Med 2015; 17:33-53. [PMID: 25663627 DOI: 10.1002/jgm.2822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Design of efficient nonviral gene delivery systems is limited by the rudimentary understanding of specific molecules that facilitate transfection. METHODS Polyplexes using 25-kDa polyethylenimine (PEI) and plasmid-encoding green fluorescent protein (GFP) were delivered to HEK 293T cells. After treating cells with polyplexes, microarrays were used to identify endogenous genes differentially expressed between treated and untreated cells (2 h of exposure) or between flow-separated transfected cells (GFP+) and treated, untransfected cells (GFP-) at 8, 16 and 24 h after lipoplex treatment. Cell priming studies were conducted using pharmacologic agents to alter endogenous levels of the identified differentially expressed genes to determine effect on transfection levels. Differentially expressed genes in polyplex-mediated transfection were compared with those differentially expressed in lipoplex transfection to identify DNA carrier-dependent molecular factors. RESULTS Differentially expressed genes were RGS1, ARHGAP24, PDZD2, SNX24, GSN and IGF2BP1 after 2 h; RAP1A and ACTA1 after 8 h; RAP1A, WDR78 and ACTA1 after 16 h; and RAP1A, SCG5, ATF3, IREB2 and ACTA1 after 24 h. Pharmacologic studies altering endogenous levels for ARHGAP24, GSN, IGF2BP1, PDZD2 and RGS1 were able to increase or decrease transgene production. Comparing differentially expressed genes for polyplexes and lipoplexes, no common genes were identified at the 2-h time point, whereas, after the 8-h time point, RAP1A, ATF3 and HSPA6 were similarly expressed. SCG5 and PGAP1 were only upregulated in polyplex-transfected cells. CONCLUSIONS The identified genes and pharmacologic agents provide targets for improving transfection systems, although polyplex or lipoplex dependencies must be considered.
Collapse
Affiliation(s)
- Timothy M Martin
- Department of Pharmaceutical Sciences, Durham Research Center II, University of Nebraska-Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
10
|
Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells. Mol Ther 2015; 24:331-341. [PMID: 26478250 DOI: 10.1038/mt.2015.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4-15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6-10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells.
Collapse
|
11
|
Lin CW, Jan MS, Kuo JHS. Exploring MicroRNA Expression Profiles Related to the mTOR Signaling Pathway in Mouse Embryonic Fibroblast Cells Treated with Polyethylenimine. Mol Pharm 2015; 12:2858-68. [PMID: 26158199 DOI: 10.1021/acs.molpharmaceut.5b00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the toxicology of poly(ethylenimine) (PEI) in gene expression levels has been previously investigated, little is known about the effects of PEI on the expression of microRNAs (miRNAs) that regulate gene expression at the post-transcriptional level. In this study, we explored miRNA expression profiles related to cell death mechanisms in mouse embryonic fibroblast (MEF) cells treated with PEI by applying microarray analysis. Based on the analysis of the mTOR signaling pathway, three upregulated miRNAs (mmu-miR-3090-5p, mmu-miR-346-3p, and mmu-miR-494-3p) were verified in MEF cells treated with PEI at 24 h using real-time quantitative reverse transcriptase-polymerase chain reaction. We further demonstrated that these three upregulated miRNAs resulted in the decrease of gene and protein expressions of the target gene growth factor Igf1 in MEF cells treated with PEI or transfected with three upregulated miRNA mimics. However, these three upregulated miRNAs are not all cell-specific. Finally, we demonstrated that the mTOR signaling pathway is inhibited by autophagy induction and that the cell viability decreases in MEF cells treated with PEI or transfected with these three miRNA mimics. Collectively, our data suggested that PEI may affect the regulation of miRNAs in target cells.
Collapse
Affiliation(s)
| | | | - Jung-Hua Steven Kuo
- §Department of Pharmacy, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Jen-Te, Tainan 717, Taiwan
| |
Collapse
|
12
|
Martin TM, Wysocki BJ, Beyersdorf JP, Wysocki TA, Pannier AK. Integrating mitosis, toxicity, and transgene expression in a telecommunications packet-switched network model of lipoplex-mediated gene delivery. Biotechnol Bioeng 2015; 111:1659-71. [PMID: 25097912 DOI: 10.1002/bit.25207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene delivery systems transport exogenous genetic information to cells or biological systems with the potential to directly alter endogenous gene expression and behavior with applications in functional genomics, tissue engineering, medical devices, and gene therapy. Nonviral systems offer advantages over viral systems because of their low immunogenicity, inexpensive synthesis, and easy modification but suffer from lower transfection levels. The representation of gene transfer using models offers perspective and interpretation of complex cellular mechanisms,including nonviral gene delivery where exact mechanisms are unknown. Here, we introduce a novel telecommunications model of the nonviral gene delivery process in which the delivery of the gene to a cell is synonymous with delivery of a packet of information to a destination computer within a packet-switched computer network. Such a model uses nodes and layers to simplify the complexity of modeling the transfection process and to overcome several challenges of existing models. These challenges include a limited scope and limited time frame, which often does not incorporate biological effects known to affect transfection. The telecommunication model was constructed in MATLAB to model lipoplex delivery of the gene encoding the green fluorescent protein to HeLa cells. Mitosis and toxicity events were included in the model resulting in simulation outputs of nuclear internalization and transfection efficiency that correlated with experimental data. A priori predictions based on model sensitivity analysis suggest that increasing endosomal escape and decreasing lysosomal degradation, protein degradation, and GFP-induced toxicity can improve transfection efficiency by three-fold. Application of the telecommunications model to nonviral gene delivery offers insight into the development of new gene delivery systems with therapeutically relevant transfection levels.
Collapse
|
13
|
Martin TM, Wysocki BJ, Wysocki TA, Pannier AK. Identifying Intracellular pDNA Losses From a Model of Nonviral Gene Delivery. IEEE Trans Nanobioscience 2015; 14:455-464. [PMID: 25622323 DOI: 10.1109/tnb.2015.2392777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nonviral gene delivery systems are a type of nanocommunication system that transmit plasmid packets (i.e., pDNA packets) that are programmed at the nanoscale to biological systems at the microscopic cellular level. This engineered nanocommunication system suffers large pDNA losses during transmission of the genetically encoded information, preventing its use in biotechnological and medical applications. The pDNA losses largely remain uncharacterized, and the ramifications of reducing pDNA loss from newly designed gene delivery systems remain difficult to predict. Here, the pDNA losses during primary and secondary transmission chains were identified utilizing a MATLAB model employing queuing theory simulating delivery of pEGFPLuc transgene to HeLa cells carried by Lipofectamine 2000 nonviral DNA carrier. Minimizing pDNA loss during endosomal escape of the primary transmission process results in increased number of pDNA in the nucleus with increased transfection, but with increased probability of cell death. The number of pDNA copies in the nucleus and the amount of time the pDNAs are in the nucleus directly correlates to improved transfection efficiency. During secondary transmission, pDNAs are degraded during distribution to daughter cells. Reducing pDNA losses improves transfection, but a balance in quantity of nuclear pDNA, mitosis, and toxicity must be considered in order to achieve therapeutically relevant transfection levels.
Collapse
|