1
|
Han J, Joo K, Kim US, Woo SJ, Lee EK, Lee JY, Park TK, Kim SJ, Byeon SH. Voretigene Neparvovec for the Treatment of RPE65-associated Retinal Dystrophy: Consensus and Recommendations from the Korea RPE65-IRD Consensus Paper Committee. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:166-186. [PMID: 36950921 PMCID: PMC10151174 DOI: 10.3341/kjo.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Mutations in the RPE65 gene, associated with Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa, gained growing attention since gene therapy for patients with RPE65-associated retinal dystrophy is available in clinical practice. RPE65 gene accounts for a very small proportion of patients with inherited retinal degeneration, especially Asian patients. Because RPE65-associated retinal dystrophy shares common clinical characteristics, such as early-onset severe nyctalopia, nystagmus, low vision, and progressive visual field constriction, with retinitis pigmentosa by other genetic mutations, appropriate genetic testing is essential to make a correct diagnosis. Also, fundus abnormalities can be minimal in early childhood, and the phenotype is highly variable depending on the type of mutations in RPE65-associated retinal dystrophy, which makes a diagnostic difficulty. The aim of this paper is to review the epidemiology of RPE65-associated retinal dystrophy, mutation spectrum, genetic diagnosis, clinical characteristics, and voretigene neparvovec, a gene therapy product for the treatment of RPE65-related retinal dystrophy.
Collapse
Affiliation(s)
- Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Ungsoo Samuel Kim
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong,
Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | | |
Collapse
|
2
|
Pierrache LHM, Ghafaryasl B, Khan MI, Yzer S, van Genderen MM, Schuil J, Boonstra FN, Pott JWR, de Faber JTHN, Tjon-Fo-Sang MJH, Vermeer KA, Cremers FPM, Klaver CCW, van den Born LI. LONGITUDINAL STUDY OF RPE65-ASSOCIATED INHERITED RETINAL DEGENERATIONS. Retina 2021; 40:1812-1828. [PMID: 32032261 DOI: 10.1097/iae.0000000000002681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To study the disease course of RPE65-associated inherited retinal degenerations (IRDs) as a function of the genotype, define a critical age for blindness, and identify potential modifiers. METHODS Forty-five patients with IRD from 33 families with biallelic RPE65 mutations, 28 stemming from a genetic isolate. We collected retrospective data from medical charts. Coexisting variants in 108 IRD-associated genes were identified with Molecular Inversion Probe analysis. RESULTS Most patients were diagnosed within the first years of life. Daytime visual function ranged from near-normal to blindness in the first four decades and met WHO criteria for blindness for visual acuity and visual field in the fifth decade. p.(Thr368His) was the most common variant (54%). Intrafamilial variability and interfamilial variability in disease severity and progression were observed. Molecular Inversion Probe analysis confirmed all RPE65 variants and identified one additional variant in LRAT and one in EYS in two separate patients. CONCLUSION All patients with RPE65-associated IRDs developed symptoms within the first year of life. Visual function in childhood and adolescence varied but deteriorated inevitably toward blindness after age 40. In this study, genotype was not predictive of clinical course. The variance in severity of disease could not be explained by double hits in other IRD genes.
Collapse
Affiliation(s)
- Laurence H M Pierrache
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Babak Ghafaryasl
- Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands.,Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Muhammad I Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Susanne Yzer
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, the Netherlands.,Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - José Schuil
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, the Netherlands
| | - F Nienke Boonstra
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Royal Dutch Visio, National Foundation for the Visually Impaired and Blind, Huizen, the Netherlands; and
| | - Jan W R Pott
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Chiu W, Lin TY, Chang YC, Isahwan-Ahmad Mulyadi Lai H, Lin SC, Ma C, Yarmishyn AA, Lin SC, Chang KJ, Chou YB, Hsu CC, Lin TC, Chen SJ, Chien Y, Yang YP, Hwang DK. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int J Mol Sci 2021; 22:ijms22094534. [PMID: 33926102 PMCID: PMC8123696 DOI: 10.3390/ijms22094534] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye’s accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs.
Collapse
Affiliation(s)
- Wei Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Ting-Yi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Henkie Isahwan-Ahmad Mulyadi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shen-Che Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Bai Chou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| |
Collapse
|
4
|
Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin Exp Ophthalmol 2019; 47:521-536. [PMID: 30345694 DOI: 10.1111/ceo.13416] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022]
Abstract
Voretigene neparvovec-rzyl was recently approved for the treatment of Leber congenital amaurosis, and the use of gene therapy for eye disease is attracting even greater interest. The eye has immune privileged status, is easily accessible, requires a reduced dosage of therapy due to its size and is highly compartmentalized, significantly reducing systemic spread. Adeno-associated virus (AAV), with its low pathogenicity, prolonged expression profile and ability to transduce multiple cell types, has become the leading gene therapy vector. Target diseases have moved beyond currently untreatable inherited dystrophies to common, partially treatable acquired conditions such as exudative age-related macular degeneration and glaucoma, but use of the technology in these conditions imposes added obligations for caution in vector design. This review discusses the current status of AAV gene therapy trials in genetic and acquired ocular diseases, and explores new scientific developments, which could help ensure effective and safe use of the therapy in the future.
Collapse
Affiliation(s)
- Charmaine A Ramlogan-Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia.,Medical and Applied Science, Central Queensland University, School of Health, Rockhampton, Australia
| | - Aparna Murali
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Slawomir Andrzejewski
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Bijay Dhungel
- Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Jason C Steel
- Medical and Applied Science, Central Queensland University, School of Health, Rockhampton, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| |
Collapse
|
5
|
Affiliation(s)
- Gustavo D. Aguirre
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
6
|
Le Meur G, Lebranchu P, Billaud F, Adjali O, Schmitt S, Bézieau S, Péréon Y, Valabregue R, Ivan C, Darmon C, Moullier P, Rolling F, Weber M. Safety and Long-Term Efficacy of AAV4 Gene Therapy in Patients with RPE65 Leber Congenital Amaurosis. Mol Ther 2017; 26:256-268. [PMID: 29033008 DOI: 10.1016/j.ymthe.2017.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was the evaluation of the safety and efficacy of unilateral subretinal injection of the adeno-associated vector (AAV) serotypes 2 and 4 (AAV2/4) RPE65-RPE65 vector in patients with Leber congenital amaurosis (LCA) associated with RPE65 gene deficiency. We evaluated ocular and general tolerance and visual function up to 1 year after vector administration in the most severely affected eye in nine patients with retinal degeneration associated with mutations in the RPE65 gene. Patients received either low (1.22 × 1010 to 2 × 1010 vector genomes [vg]) or high (between 3.27 × 1010 and 4.8 × 1010 vg) vector doses. An ancillary study, in which six of the original nine patients participated, extended the follow-up period to 2-3.5 years. All patients showed good ophthalmological and general tolerance to the rAAV2/4-RPE65-RPE65 vector. We observed a trend toward improved visual acuity in patients with nystagmus, stabilization and improvement of the visual field, and cortical activation along visual pathways during fMRI analysis. OCT analysis after vector administration revealed no retinal thinning, except in cases of macular detachment. Our findings show that the rAAV2/4.RPE65.RPE65 vector was well tolerated in nine patients with RPE65-associated LCA. Efficacy parameters varied between patients during follow-up.
Collapse
Affiliation(s)
- Guylène Le Meur
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France.
| | - Pierre Lebranchu
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; UMR 6597 CNRS, Image and Video Communication Team, Institute for Research into Communications and Cybernetics of Nantes, Polytech Nantes, Nantes, France
| | - Fanny Billaud
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| | | | | | - Yann Péréon
- Reference Centre for Neuromuscular Disorders, FILNEMUS, CHU de Nantes, Nantes, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière ICM, Centre for NeuroImaging Research (CENIR), Paris, France
| | - Catherine Ivan
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France
| | | | | | - Fabienne Rolling
- INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| | - Michel Weber
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| |
Collapse
|
7
|
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Oxford University Hospitals & Moorfields Eye Hospital NHS Foundation Trusts and NIHR Biomedical Research Centres, Oxford OX3 9DU, UK.
| |
Collapse
|
8
|
Dai X, Zhang H, He Y, Qi Y, Chang B, Pang JJ. The frequency-response electroretinogram distinguishes cone and abnormal rod function in rd12 mice. PLoS One 2015; 10:e0117570. [PMID: 25706871 PMCID: PMC4338143 DOI: 10.1371/journal.pone.0117570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/28/2014] [Indexed: 11/19/2022] Open
Abstract
Early studies on Rpe65 knockout mice reported that remaining visual function was attributable to cone function. However, this finding has been challenged more and more as time has passed. Electroretinograms (ERGs) showed that rd12 mice, a spontaneous animal model of RPE65 Leber’s congenital amaurosis, had sizeable photopic responses. Unfortunately, the recorded ERG waveform was difficult to interpret because of a remarkably delayed peak-time, which resembles a rod response more than a cone response. Here, we compare flicker ERGs in animals with normal rod and cone function (C57BL/6J mice), pure rod function (cpfl5 mice), and pure cone function (Rho-/- mice) under different adaptation levels and stimulus intensities. These responses were then compared with those obtained from rd12 mice. Our results showed that normal rods respond to low frequency flicker (5 and 15 Hz) and that normal cones respond to both low and high frequency flicker (5–35 Hz). As was seen in cpfl5 mice, rd12 mice had recordable responses to low frequency flicker (5 and 15Hz), but not to high frequency flicker (25 and 35 Hz). We hypothesize that abnormal rods may be the source of residual vision in rd12 mice, which is proved correct here with double mutant rd12mice. In this study, we show, for the first time, that frequency-response ERGs can effectively distinguish cone- and rod-driven responses in the rd12 mouse. It is another simple and valid method for evaluating the respective contributions of retinal rods and cones.
Collapse
Affiliation(s)
- Xufeng Dai
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Hua Zhang
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Ying He
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yan Qi
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ji-jing Pang
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
9
|
Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A 2013; 110:E517-25. [PMID: 23341635 DOI: 10.1073/pnas.1218933110] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.
Collapse
|
10
|
Hufnagel RB, Ahmed ZM, Corrêa ZM, Sisk RA. Gene therapy for Leber congenital amaurosis: advances and future directions. Graefes Arch Clin Exp Ophthalmol 2012; 250:1117-28. [PMID: 22644094 DOI: 10.1007/s00417-012-2028-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/25/2012] [Accepted: 04/03/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Leber congenital amaurosis (LCA) is a congenital retinal dystrophy that results in significant and often severe vision loss at an early age. Comprehensive analysis of the genetic mutations and phenotypic correlations in LCA patients has allowed for significant improvements in understanding molecular pathways of photoreceptor degeneration and dysfunction. The purpose of this article is to review the literature on the subject of retinal gene therapy for LCA, including historical descriptions, preclinical animal studies, and human clinical trials. METHODS A literature search of peer-reviewed and indexed publications from 1996-2011 using the PubMed search engine was performed. Key terms included "Leber congenital amaurosis", LCA, RPE65, "cone-rod dystrophy", "gene therapy", and "human trials" in various combinations. Seminal articles prior to 1996 were selected from primary sources and reviews from the initial search. Articles were chosen based on pertinence to clinical, genetic, and therapeutic topics reviewed in this manuscript. Fundus photographs from LCA patients were obtained retrospectively from the clinical practice of one of the authors (R.A.S). RESULTS Herein, we reviewed the literature on LCA as a genetic disease, the results of human gene therapy trials to date, and possible future directions towards treating inherited retinal diseases at the genetic level. Original descriptions of LCA by Theodor Leber and subsequent research demonstrate the severity of this disease with early-onset blindness. Discoveries of the causative heritable mutations revealed genes and protein products involved in photoreceptor development and visual transduction. Animal models have provided a means to test novel therapeutic strategies, namely gene therapy. Stemming from these experiments, three independent clinical trials tested the safety of subretinal delivery of viral gene therapy to patients with mutations in the RPE65 gene. More recently, efficacy studies have been conducted with encouraging results. CONCLUSIONS Initial safety studies indicated promising results of subretinal delivery of viral vector with subclinical immunologic or surgical sequelae. Overall, these initial studies demonstrate that viral vector gene therapy results are very promising, safe, and effective. Future studies measuring potential improvement in photoreceptor function may rely on recent advances in retinal imaging and electrophysiologic testing.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Department of Pediatrics, Division of Pediatric Ophthalmology, University of Cincinnati and Cincinnati Children's Hospital, College of Medicine, 3333 Burnet Ave, ML 7003, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
11
|
Métrailler S, Schorderet DF, Cottet S. Early apoptosis of rod photoreceptors in Rpe65(-/-) mice is associated with the upregulated expression of lysosomal-mediated autophagic genes. Exp Eye Res 2011; 96:70-81. [PMID: 22227450 DOI: 10.1016/j.exer.2011.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/07/2011] [Accepted: 12/23/2011] [Indexed: 01/05/2023]
Abstract
RPE65-related Leber's congenital amaurosis (LCA) is a rod-cone dystrophy whose clinical outcome is mainly attributed to the loss of rod photoreceptors followed by cone degeneration. Pathogenesis in Rpe65(-/-) mice is characterized by a slow and progressive degeneration of rods dependent on the constitutive activation of unliganded opsin. We previously reported that this opsin-mediated apoptosis of rods was dependent on Bcl-2-apoptotic pathway and Bax-induced pro-death activity. In this study, we report early initial apoptosis in the newly differentiated retina of Rpe65(-/-) mice. Apoptotic photoreceptors were identified as rods and resulted from pathological phototransduction signaling. This wave of early apoptosis triggered Bcl-2-related pathway and Bax apoptotic activity, while activation of the caspases was not induced. Following cellular stress, multiple signaling pathways are initiated which either commit cells to death or trigger pro-survival responses including autophagy. We report that Bcl-2-related early rod apoptosis was associated with the upregulation of autophagy markers including chaperone-mediated autophagy (CMA) substrate receptor LAMP-2 and lysosomal hydrolases Cathepsin S and Lysozyme. This suggests that lysosomal-mediated autophagy may be triggered in response to early rod apoptosis in Rpe65-LCA disease. These results highlight that Rpe65-related primary stress induces early signaling events, which trigger Bax-induced-apoptotic pathway and autophagy-mediated cellular response. These events may determine retinal cell fate, progression and severity of the disease.
Collapse
|
12
|
Bonilha VL, Rayborn ME, Li Y, Grossman GH, Berson EL, Hollyfield JG. Histopathology and functional correlations in a patient with a mutation in RPE65, the gene for retinol isomerase. Invest Ophthalmol Vis Sci 2011; 52:8381-92. [PMID: 21931134 DOI: 10.1167/iovs.11-7973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Here the authors describe the structural features of the retina and retinal pigment epithelium (RPE) in postmortem donor eyes of a 56-year-old patient with a homozygous missense RPE65 mutation (Ala132Thr) and correlate the pathology with the patient's visual function last measured at age 51. METHODS Eyes were enucleated within 13.5 hours after death. Representative areas from the macula and periphery were processed for light and electron microscopy. Immunofluorescence was used to localize the distribution of RPE65, rhodopsin, and cone arrestin. The autofluorescence in the RPE was compared with that of two normal eyes from age-similar donors. RESULTS Histologic examination revealed the loss of rods and cones across most areas of the retina, attenuated retinal vessels, and RPE thinning in both eyes. A small number of highly disorganized cones were present in the macula that showed simultaneous labeling with cone arrestin and red/green or blue opsin. RPE65 immunoreactivity and RPE autofluorescence were reduced compared with control eyes in all areas studied. Rhodopsin labeling was observed in rods in the far periphery. The optic nerve showed a reduced number of axons. CONCLUSIONS The clinical findings of reduced visual acuity, constricted fields, and reduced electroretinograms (ERGs) 5 years before death correlated with the small number of cones present in the macula and the extensive loss of photoreceptors in the periphery. The absence of autofluorescence in the RPE suggests that photoreceptor cells were probably missing across the retina for extended periods of time. Possible mechanisms that could lead to photoreceptor cell death are discussed.
Collapse
Affiliation(s)
- Vera L Bonilha
- Cole Eye Institute, Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med 2011; 10:802-23. [PMID: 21091424 DOI: 10.2174/156652410793937813] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/13/2010] [Indexed: 12/15/2022]
Abstract
Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
Collapse
Affiliation(s)
- J R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
14
|
Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 2010; 29:398-427. [PMID: 20399883 DOI: 10.1016/j.preteyeres.2010.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leber congenital amaurosis (LCA) is a rare hereditary retinal degeneration caused by mutations in more than a dozen genes. RPE65, one of these mutated genes, is highly expressed in the retinal pigment epithelium where it encodes the retinoid isomerase enzyme essential for the production of chromophore which forms the visual pigment in rod and cone photoreceptors of the retina. Congenital loss of chromophore production due to RPE65-deficiency together with progressive photoreceptor degeneration cause severe and progressive loss of vision. RPE65-associated LCA recently gained recognition outside of specialty ophthalmic circles due to early success achieved by three clinical trials of gene therapy using recombinant adeno-associated virus (AAV) vectors. The trials were built on multitude of basic, pre-clinical and clinical research defining the pathophysiology of the disease in human subjects and animal models, and demonstrating the proof-of-concept of gene (augmentation) therapy. Substantial gains in visual function of clinical trial participants provided evidence for physiologically relevant biological activity resulting from a newly introduced gene. This article reviews the current knowledge on retinal degeneration and visual dysfunction in animal models and human patients with RPE65 disease, and examines the consequences of gene therapy in terms of improvement of vision reported.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, University of Pennsylvania, 51 North 39th St, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Jacobson SG, Aleman TS, Cideciyan AV, Roman AJ, Sumaroka A, Windsor EAM, Schwartz SB, Heon E, Stone EM. Defining the residual vision in leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci 2008; 50:2368-75. [PMID: 19117922 DOI: 10.1167/iovs.08-2696] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To quantify the residual vision in Leber congenital amaurosis (LCA) caused by RPE65 mutations. METHODS Patients with RPE65-LCA (n = 30; ages, 4-55) were studied using electroretinography (ERG), full-field stimulus testing (FST), kinetic and static threshold perimetry, and optical coherence tomography (OCT). RESULTS All patients with RPE65-LCA had abnormal ERGs even at the youngest ages. There were no detectable rod ERGs and only reduced cone ERGs. By chromatic FST, however, 59% of patients had measurable rod- and cone-mediated function. The remaining 41% had only cone-mediated function. Extent of kinetic fields varied widely in the first two decades of life but, by the end of the third decade, there was very little measurable field. Regional patterns of visual loss were evident using dark-adapted static threshold perimetry. The mildest dysfunctions showed relatively homogeneous sensitivity loss beyond the central field. Mid-peripheral dysfunction was a later feature; finally, only central and peripheral islands remained. Colocalized measures of visual function and retinal structure by OCT showed that visual function was detectable when a photoreceptor layer was detectable. CONCLUSIONS Residual rod as well as cone function is detectable in RPE65-LCA. The finding of different regional patterns of visual loss in these patients suggests that the optimal retinal site(s) for subretinal gene delivery to achieve efficacy are likely to change with disease progression.
Collapse
Affiliation(s)
- Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 2008; 105:15112-7. [PMID: 18809924 DOI: 10.1073/pnas.0807027105] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy.
Collapse
|
17
|
Koenekoop RK, Lopez I, Allikmets R, Cremers FPM, den Hollander AI. Genetics, phenotypes, mechanisms and treatments for Leber congenital amaurosis: a paradigm shift. EXPERT REVIEW OF OPHTHALMOLOGY 2008. [DOI: 10.1586/17469899.3.4.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Windsor EAM, Schwartz SB, Heon E, Stone EM. Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci 2008; 49:4573-7. [PMID: 18539930 DOI: 10.1167/iovs.08-2121] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To study the topography of photoreceptor loss early in the course of Leber congenital amaurosis (LCA) caused by RPE65 mutations. METHODS Young patients with RPE65-LCA (n = 9; ages, 6-17 years) were studied with optical coherence tomography (OCT) in a wide region of central retina. Outer nuclear layer (ONL) thickness was mapped topographically and compared with that in normal subjects and in older patients with RPE65-LCA. RESULTS Photoreceptor layer topography was abnormal in all young patients with RPE65-LCA. Foveal and extrafoveal ONL was reduced in most patients. There were interindividual differences, with ONL thicknesses at most retinal locations ranging from near the detectability limit to a significant fraction of normal. These differences were not clearly related to age. In most patients, there was a thinner ONL inferior to the fovea compared with that in the superior retina. Summary maps obtained by aligning and averaging photoreceptor topography across all young patients showed a relative preservation of ONL in the superior-temporal and temporal pericentral retina. These retinal regions also showed the greatest magnitude of interindividual variation. CONCLUSIONS Photoreceptor loss in the foveal and extrafoveal retina was prominent, even in the youngest patients studied. Differences in the topography of residual photoreceptors in children with RPE65-LCA suggest that it may be advisable to use individualized ONL mapping to guide the location of subretinal injections for gene therapy and thereby maximize the potential for efficacy.
Collapse
Affiliation(s)
- Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
den Hollander AI, Roepman R, Koenekoop RK, Cremers FPM. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008; 27:391-419. [PMID: 18632300 DOI: 10.1016/j.preteyeres.2008.05.003] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leber congenital amaurosis (LCA) is the most severe retinal dystrophy causing blindness or severe visual impairment before the age of 1 year. Linkage analysis, homozygosity mapping and candidate gene analysis facilitated the identification of 14 genes mutated in patients with LCA and juvenile retinal degeneration, which together explain approximately 70% of the cases. Several of these genes have also been implicated in other non-syndromic or syndromic retinal diseases, such as retinitis pigmentosa and Joubert syndrome, respectively. CEP290 (15%), GUCY2D (12%), and CRB1 (10%) are the most frequently mutated LCA genes; one intronic CEP290 mutation (p.Cys998X) is found in approximately 20% of all LCA patients from north-western Europe, although this frequency is lower in other populations. Despite the large degree of genetic and allelic heterogeneity, it is possible to identify the causative mutations in approximately 55% of LCA patients by employing a microarray-based, allele-specific primer extension analysis of all known DNA variants. The LCA genes encode proteins with a wide variety of retinal functions, such as photoreceptor morphogenesis (CRB1, CRX), phototransduction (AIPL1, GUCY2D), vitamin A cycling (LRAT, RDH12, RPE65), guanine synthesis (IMPDH1), and outer segment phagocytosis (MERTK). Recently, several defects were identified that are likely to affect intra-photoreceptor ciliary transport processes (CEP290, LCA5, RPGRIP1, TULP1). As the eye represents an accessible and immune-privileged organ, it appears to be uniquely suitable for human gene replacement therapy. Rodent (Crb1, Lrat, Mertk, Rpe65, Rpgrip1), avian (Gucy2D) and canine (Rpe65) models for LCA and profound visual impairment have been successfully corrected employing adeno-associated virus or lentivirus-based gene therapy. Moreover, phase 1 clinical trials have been carried out in humans with RPE65 deficiencies. Apart from ethical considerations inherently linked to treating children, major obstacles for the treatment of LCA could be the putative developmental deficiencies in the visual cortex in persons blind from birth (amblyopia), the absence of sufficient numbers of viable photoreceptor or RPE cells in LCA patients, and the unknown and possibly toxic effects of overexpression of transduced genes. Future LCA research will focus on the identification of the remaining causal genes, the elucidation of the molecular mechanisms of disease in the retina, and the development of gene therapy approaches for different genetic subtypes of LCA.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Human Genetics & Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Cottet S, Michaut L, Boisset G, Schlecht U, Gehring W, Schorderet DF. Biological characterization of gene response in Rpe65-/- mouse model of Leber's congenital amaurosis during progression of the disease. FASEB J 2006; 20:2036-49. [PMID: 17012256 DOI: 10.1096/fj.06-6211com] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RPE65 is the retinal isomerase essential for conversion of all-trans-retinyl ester to 11-cis-retinol in the visual cycle. Leber's congenital amaurosis (LCA), an autosomal recessive form of RP resulting in blindness, is commonly caused by mutations in the Rpe65 gene. Whereas the molecular mechanisms by which these mutations contribute to retinal disease remain largely unresolved, affected patients show marked RPE damage and photoreceptor degeneration. We evaluated gene expression in Rpe65-/- mouse model of LCA before and at the onset of photoreceptor cell death in 2, 4, and 6 month old animals. Microarray analysis demonstrates altered expression of genes involved in phototransduction, apoptosis regulation, cytoskeleton organization, and extracellular matrix (ECM) constituents. Cone-specific phototransduction genes are strongly decreased, reflecting early loss of cones. In addition, remaining rods show modified expression of genes encoding components of the cytoskeleton and ECM. This may affect rod physiology and interaction with the adjacent RPE and lead to loss of survival signals, as reflected by the alteration of apoptosis-related genes Together, these results suggest that RPE65 defect triggers an overall remodeling of the neurosensitive retina that may, in turn, disrupt photoreceptor homeostasis and induce apoptosis signaling cascade toward retinal cell death.
Collapse
Affiliation(s)
- Sandra Cottet
- Institute of Research in Ophthalmology, Sion, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, Li J, Rani A, Foster TC, Chiodo VA, Doyle T, Li H, Malhotra R, Teusner JT, McDowell JH, Min SH, Li Q, Kaushal S, Hauswirth WW. Gene Therapy Restores Vision-Dependent Behavior as Well as Retinal Structure and Function in a Mouse Model of RPE65 Leber Congenital Amaurosis. Mol Ther 2006; 13:565-72. [PMID: 16223604 DOI: 10.1016/j.ymthe.2005.09.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 11/21/2022] Open
Abstract
Retinal pigment epithelium-specific protein 65 kDa (RPE65) is a protein responsible for isomerization of all-trans-retinaldehyde to its photoactive 11-cis-retinaldehyde and is essential for the visual cycle. RPE65 mutations can cause severe, early onset retinal diseases such as Leber congenital amaurosis (LCA). A naturally occurring rodent model of LCA with a recessive nonsense Rpe65 mutation, the rd12 mouse, displays a profoundly diminished rod electroretinogram (ERG), an absence of 11-cis-retinaldehyde and rhodopsin, an overaccumulation of retinyl esters in retinal pigmented epithelial (RPE) cells, and photoreceptor degeneration. rd12 mice were injected subretinally at postnatal day 14 with rAAV5-CBA-hRPE65 vector. RPE65 expression was found over large areas of RPE soon after treatment. This led to improved rhodopsin levels with ERG signals restored to near normal. Retinyl ester levels were maintained at near normal, and fundus and retinal morphology remained normal. All parameters of restored retinal health remained stable for at least 7 months. The Morris water maze behavioral test was modified to test rod function under very dim light; rd12 mice treated in one eye performed similar to normally sighted C57BL/6J mice, while untreated rd12 mice performed very poorly, demonstrating that gene therapy can restore normal vision-dependent behavior in a congenitally blind animal.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Carrier Proteins/genetics
- Dependovirus
- Disease Models, Animal
- Esters
- Eye Proteins/genetics
- Genetic Therapy
- Genetic Vectors
- Mice
- Mice, Inbred C57BL
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Optic Atrophy, Hereditary, Leber/therapy
- Retina/anatomy & histology
- Retina/pathology
- Retina/physiology
- Rhodopsin/biosynthesis
- Vision, Ocular/genetics
- cis-trans-Isomerases
Collapse
Affiliation(s)
- Ji-jing Pang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ben-Arie-Weintrob Y, Berson EL, Dryja TP. Histopathologic-genotypic correlations in retinitis pigmentosa and allied diseases. Ophthalmic Genet 2005; 26:91-100. [PMID: 16020312 DOI: 10.1080/13816810590968032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This paper reviews the published histopathologic findings of patients with retinitis pigmentosa (RP) or an allied disease in whom the responsible gene defect was identified, including 10 cases with dominant RP (cases with mutations in RHO, PRPC8, and RP1), three with dominant spinocerebellar ataxia (SCA7), three X-linked RP carrier females (RPGR), two with congenital retinal blindness (AIPL1 and RPE65), two with mitochondrial encephalomyopathy overlap syndrome (MTTL1), and one case each with dominant cone degeneration (GCAP1), X-linked cone degeneration (RCP), enhanced S-cone syndrome (NR2E3), and dominant late-onset retinal degeneration (CTRP5). No histopathologic descriptions were found of the vast majority of genetically defined forms of retinal degeneration.
Collapse
Affiliation(s)
- Yael Ben-Arie-Weintrob
- The Cogan Eye Pathology Laboratory and the Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, MA 02114, U.S.A
| | | | | |
Collapse
|
23
|
Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 2005; 102:13658-63. [PMID: 16150724 PMCID: PMC1224626 DOI: 10.1073/pnas.0504167102] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RPE65 is essential for isomerization of vitamin A to the visual chromophore. Mutations in RPE65 cause early-onset blindness, and Rpe65-deficient mice lack 11-cis-retinal but overaccumulate alltrans-retinyl esters in the retinal pigment epithelium (RPE). RPE65 is proposed to be a substrate chaperone but may have an enzymatic role because it is closely related to carotenoid oxygenases. We hypothesize that, by analogy with other carotenoid oxygenases, the predicted iron-coordinating residues of RPE65 are essential for retinoid isomerization. To clarify RPE65's role in isomerization, we reconstituted a robust minimal visual cycle in 293-F cells. Only cells transfected with RPE65 constructs produced 11-cis-retinoids, but coexpression with lecithin:retinol acyltransferase was needed for high-level production. Accumulation was significant, amounting to >2 nmol of 11-cis-retinol per culture. Transfection with constructs harboring mutations in residues of RPE65 homologous to those required for interlinked enzymatic activity and iron coordination in related enzymes abolish this isomerization. Iron chelation also abolished isomerization activity. Mutating cysteines implicated in palmitoylation of RPE65 had generally little effect on isomerization activity. Mutations associated with Leber congenital amaurosis/early-onset blindness cause partial to total loss of isomerization activity in direct relation to their clinical effects. These findings establish a catalytic role, in conjunction with lecithin:retinol acyltransferase, for RPE65 in synthesis of 11-cis-retinol, and its identity as the isomerohydrolase.
Collapse
Affiliation(s)
- T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology and Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0706, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Jacobson SG, Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, Windsor EAM, Traboulsi EI, Heon E, Pittler SJ, Milam AH, Maguire AM, Palczewski K, Stone EM, Bennett J. Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success. Proc Natl Acad Sci U S A 2005; 102:6177-82. [PMID: 15837919 PMCID: PMC1087926 DOI: 10.1073/pnas.0500646102] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in RPE65, a gene essential to normal operation of the visual (retinoid) cycle, cause the childhood blindness known as Leber congenital amaurosis (LCA). Retinal gene therapy restores vision to blind canine and murine models of LCA. Gene therapy in blind humans with LCA from RPE65 mutations may also have potential for success but only if the retinal photoreceptor layer is intact, as in the early-disease stage-treated animals. Here, we use high-resolution in vivo microscopy to quantify photoreceptor layer thickness in the human disease to define the relationship of retinal structure to vision and determine the potential for gene therapy success. The normally cone photoreceptor-rich central retina and rod-rich regions were studied. Despite severely reduced cone vision, many RPE65-mutant retinas had near-normal central microstructure. Absent rod vision was associated with a detectable but thinned photoreceptor layer. We asked whether abnormally thinned RPE65-mutant retina with photoreceptor loss would respond to treatment. Gene therapy in Rpe65(-/-) mice at advanced-disease stages, a more faithful mimic of the humans we studied, showed success but only in animals with better-preserved photoreceptor structure. The results indicate that identifying and then targeting retinal locations with retained photoreceptors will be a prerequisite for successful gene therapy in humans with RPE65 mutations and in other retinal degenerative disorders now moving from proof-of-concept studies toward clinical trials.
Collapse
Affiliation(s)
- Samuel G Jacobson
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morrow EM, Furukawa T, Raviola E, Cepko CL. Synaptogenesis and outer segment formation are perturbed in the neural retina of Crx mutant mice. BMC Neurosci 2005; 6:5. [PMID: 15676071 PMCID: PMC548520 DOI: 10.1186/1471-2202-6-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/27/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Leber's congenital amaurosis (LCA), affected individuals are blind, or nearly so, from birth. This early onset suggests abnormal development of the neural retina. Mutations in genes that affect the development and/or function of photoreceptor cells have been found to be responsible in some families. These examples include mutations in the photoreceptor transcription factor, Crx. RESULTS A Crx mutant strain of mice was created to serve as a model for LCA and to provide more insight into Crx's function. In this study, an ultrastructural analysis of the developing retina in Crx mutant mice was performed. Outer segment morphogenesis was found to be blocked at the elongation stage, leading to a failure in production of the phototransduction apparatus. Further, Crx-/- photoreceptors demonstrated severely abnormal synaptic endings in the outer plexiform layer. CONCLUSIONS This is the first report of a synaptogenesis defect in an animal model for LCA. These data confirm the essential role this gene plays in multiple aspects of photoreceptor development and extend our understanding of the basic pathology of LCA.
Collapse
Affiliation(s)
- Eric M Morrow
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, New Research Building, Room 360K, NRB, Room 360K, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - Takahisa Furukawa
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, New Research Building, Room 360K, NRB, Room 360K, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
- The 4th Department, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka, Japan
| | - Elio Raviola
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, B2-201, Boston, Massachusetts, 02115, USA
| | - Constance L Cepko
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, New Research Building, Room 360K, NRB, Room 360K, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| |
Collapse
|
26
|
Abstract
Leber congenital amaurosis (LCA; estimated prevalence 1 : 50,000-100,000) is an early-onset inherited cause of childhood blindness characterized by a severe retinal dystrophy immediately after birth. Variants in at least six genes, AIPL1, CRB1, CRX, GUCY2D, RPE65, and RPGRIP1, have been associated with a diagnosis consistent with LCA or early-onset retinitis pigmentosa and together account for less than 50% of all LCA cases. Genetically heterogeneous inheritance has complicated the molecular analysis of LCA cases, especially sporadic ones where conventional methods are of limited value. Until recently, the management of patients with LCA relied mainly on clinical examination, electrophysiology, and other ancillary tests. Genotyping, i.e., determining the exact genetic defect causing LCA in each specific case, was not routinely performed since the comprehensive screening of six genes by SSCP and/or direct sequencing is relatively inefficient and cost-prohibitive. Patients, therefore, were often left with no specific information on their disease status. Recent advances in genotyping technologies have allowed the introduction of comprehensive and affordable screening procedures to determine causal genetic variation, resulting in precise molecular diagnosis, more accurate visual prognosis, and suggestions towards treatment options.
Collapse
Affiliation(s)
- Rando Allikmets
- Department of Ophthalmology Columbia University Eye Institute Research, Rm. 715 630 West 168th Street New York, NY 10032 USA.
| |
Collapse
|
27
|
Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, Savchenko A, Redmond TM, Tang W, Wei Z, Rex TS, Glover E, Maguire AM, Pugh EN, Jacobson SG, Bennett J. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9:182-8. [PMID: 14759802 DOI: 10.1016/j.ymthe.2003.11.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022] Open
Abstract
The congenital retinal blindness known as Leber congenital amaurosis (LCA) can be caused by mutations in the RPE65 gene. RPE65 plays a critical role in the visual cycle that produces the photosensitive pigment rhodopsin. Recent evidence from human studies of LCA indicates that earlier rather than later intervention may be more likely to restore vision. We determined the impact of in utero delivery of the human RPE65 cDNA to retinal pigment epithelium cells in a murine model of LCA, the Rpe65(-/-) mouse, using a serotype 2 adeno-associated virus packaged within an AAV1 capsid (AAV2/1). Delivery of AAV2/1-CMV-hRPE65 to fetuses (embryonic day 14) resulted in efficient transduction of retinal pigment epithelium, restoration of visual function, and measurable rhodopsin. The results demonstrate AAV-mediated correction of the deficit and suggest that in utero retinal gene delivery may be a useful approach for treating a variety of blinding congenital retinal diseases.
Collapse
Affiliation(s)
- Nadine S Dejneka
- F.M. Kirby Center and Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, 51 N. 39th Street, Philadelphia, PA 19104-2689, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 2004; 49:379-98. [PMID: 15231395 DOI: 10.1016/j.survophthal.2004.04.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leber congenital amaurosis is a congenital retinal dystrophy described almost 150 years ago. Today, Leber congenital amaurosis is proving instrumental in our understanding of the molecular events that determine normal and aberrant retinal development. Six genes have been shown to be mutated in Leber congenital amaurosis, and they participate in a wide variety of retinal pathways: retinoid metabolism (RPE65), phototransduction (GUCY2D), photoreceptor outer segment development (CRX), disk morphogenesis (RPGRIP1), zonula adherens formation (CRB1), and cell-cycle progression (AIPL1). Longitudinal studies of visual performance show that most Leber congenital amaurosis patients remain stable, some deteriorate, and rare cases exhibit improvements. Histopathological analyses reveal that most cases have extensive degenerative retinal changes, some have an entirely normal retinal architecture, whereas others have primitive, poorly developed retinas. Animal models of Leber congenital amaurosis have greatly added to understanding the impact of the genetic defects on retinal cell death, and response to rescue. Gene therapy for RPE65 deficient dogs partially restored sight, and provides the first real hope of treatment for this devastating blinding condition.
Collapse
Affiliation(s)
- Robert K Koenekoop
- McGill Ocular Genetics Laboratory, Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Lai CM, Yu MJT, Brankov M, Barnett NL, Zhou X, Redmond TM, Narfstrom K, Rakoczy PE. Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue. GENETIC VACCINES AND THERAPY 2004; 2:3. [PMID: 15109394 PMCID: PMC416492 DOI: 10.1186/1479-0556-2-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 04/27/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND Leber's congenital amaurosis (LCA) is a severe form of retinal dystrophy. Mutations in the RPE65 gene, which is abundantly expressed in retinal pigment epithelial (RPE) cells, account for approximately 10-15% of LCA cases. In this study we used the high turnover, and rapid breeding and maturation time of the Rpe65-/- knockout mice to assess the efficacy of using rAAV-mediated gene therapy to replace the disrupted RPE65 gene. The potential for rAAV-mediated gene treatment of LCA was then analyzed by determining the pattern of RPE65 expression, the physiological and histological effects that it produced, and any improvement in visual function. METHODS rAAV.RPE65 was injected into the subretinal space of Rpe65-/- knockout mice and control mice. Histological and immunohistological analyses were performed to evaluate any rescue of photoreceptors and to determine longevity and pattern of transgene expression. Electron microscopy was used to examine ultrastructural changes, and electroretinography was used to measure changes in visual function following rAAV.RPE65 injection. RESULTS rAAV-mediated RPE65 expression was detected for up to 18 months post injection. The delivery of rAAV.RPE65 to Rpe65-/- mouse retinas resulted in a transient improvement in the maximum b-wave amplitude under both scotopic and photopic conditions (76% and 59% increase above uninjected controls, respectively) but no changes were observed in a-wave amplitude. However, this increase in b-wave amplitude was not accompanied by any slow down in photoreceptor degeneration or apoptotic cell death. Delivery of rAAV.RPE65 also resulted in a decrease in retinyl ester lipid droplets and an increase in short wavelength cone opsin-positive cells, suggesting that the recovery of RPE65 expression has long-term benefits for retinal health. CONCLUSION This work demonstrated the potential benefits of using the Rpe65-/- mice to study the effects and mechanism of rAAV.RPE65-mediated gene delivery into the retina. Although the functional recovery in this model was not as robust as in the dog model, these experiments provided important clues about the long-term physiological benefits of restoration of RPE65 expression in the retina.
Collapse
Affiliation(s)
- Chooi-May Lai
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Meaghan JT Yu
- Department of Molecular Ophthalmology, Lions Eye Institute and The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Meliha Brankov
- Department of Molecular Ophthalmology, Lions Eye Institute and The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Nigel L Barnett
- Vision Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaohuai Zhou
- Virus Core Facility, Gene Therapy Center, University of North Carolina, North Carolina, 27599, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kristina Narfstrom
- Vision Science Group, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - P Elizabeth Rakoczy
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
30
|
Preising MN, Heegaard S. Recent advances in early-onset severe retinal degeneration: more than just basic research? Trends Mol Med 2004; 10:51-4. [PMID: 15106616 DOI: 10.1016/j.molmed.2003.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Successful treatment of early-onset sever retinal degeneration (EOSRD) in an animal model of the disease has provided the first proof-o-principle for retinal gene therapy of higher mammals. Currently, large sets of DNA samples are screened to identify patients with Leber's congenital amaurosis (LCA) carrying mutations in RPE65 as possible candidates for gene therapy trials. Research into EOSRD and LCA aims to identify the function of proteins involved or phenotypic changes upon mutation. These data will be used to describe the disease phenotype and identify parameters that can predict the outcome of gene therapy trials.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cytoskeletal Proteins
- Disease Models, Animal
- Eye Proteins
- Genetic Predisposition to Disease/genetics
- Genetic Therapy
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Mutation/genetics
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/therapy
- Photoreceptor Cells, Vertebrate/metabolism
- Pigment Epithelium of Eye/metabolism
- Proteins/genetics
- Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Retinal Degeneration/genetics
- Retinal Degeneration/metabolism
- Retinal Degeneration/therapy
- Trans-Activators/genetics
- Trans-Activators/metabolism
- cis-trans-Isomerases
Collapse
Affiliation(s)
- Markus N Preising
- Departmentof Paediatric Ophthalmology, Strabismology and Ophthalmogenetics, Klinikum, University of Regensburg, Germany.
| | | |
Collapse
|
31
|
Surace EM, Auricchio A, Reich SJ, Rex T, Glover E, Pineles S, Tang W, O'Connor E, Lyubarsky A, Savchenko A, Pugh EN, Maguire AM, Wilson JM, Bennett J. Delivery of adeno-associated virus vectors to the fetal retina: impact of viral capsid proteins on retinal neuronal progenitor transduction. J Virol 2003; 77:7957-63. [PMID: 12829835 PMCID: PMC161923 DOI: 10.1128/jvi.77.14.7957-7963.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of fetal ocular gene transfer may be useful as a therapeutic tool for the prevention of retinal genetic disorders with congenital or early clinical manifestations. In this study we explored the neural progenitor transduction patterns of adeno-associated virus (AAV) vectors following delivery to the developing retina. Recombinant vectors with the same genome carrying the enhanced green fluorescent protein (EGFP) transgene packaged in capsids of differing serotypes (serotypes 1, 2, and 5, termed AAV2/1, AAV2/2, and AAV2/5, respectively) were created. Delivery of the AAV vectors during early retinal development resulted in efficient and stable transduction of retinal progenitors. Vector surface proteins and the developmental status of the retina profoundly affected viral tropism and transgene distribution. The procedure is not detrimental to retinal development and function and therefore provides a safe delivery vehicle for potential therapeutic applications and a means of assessing the mechanisms of retina development and disease.
Collapse
Affiliation(s)
- Enrico M Surace
- F. M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, Scheie Eye Institute, 310 Stellar Chance Building, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104-6069, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koenekoop RK. Abnormal retinal architecture in a 33-week-old fetus with LCA and a homozygous C330Y mutation in RPE65. Ophthalmic Genet 2003; 24:125-6. [PMID: 12789577 DOI: 10.1076/opge.24.2.125.14000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Robert K Koenekoop
- Department of Ophthalmology, McGill University, Montreal Children's Hospital, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Dejneka NS, Surace EM, Bennett J. Gene therapy for Leber congenital amaurosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:415-22. [PMID: 15180293 DOI: 10.1007/978-1-4615-0067-4_53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nadine S Dejneka
- University of Pennsylvania, Scheie Eye Institute, Philadelphia, PA 19104-6069, USA.
| | | | | |
Collapse
|
34
|
Prenatal Human Ocular Degeneration Occurs in Leber’s Congenital Amaurosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003. [DOI: 10.1007/978-1-4615-0067-4_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|