Koffler-Brill T, Noy Y, Avraham KB. The long and short: Non-coding RNAs in the mammalian inner ear.
Hear Res 2023;
428:108666. [PMID:
36566643 PMCID:
PMC9883734 DOI:
10.1016/j.heares.2022.108666]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Non-coding RNAs (ncRNAs) play a critical role in the entire body, and their mis-regulation is often associated with disease. In parallel with the advances in high-throughput sequencing technologies, there is a great deal of focus on this broad class of RNAs. Although these molecules are not translated into proteins, they are now well established as significant regulatory components in many biological pathways and pathological conditions. ncRNAs can be roughly divided into two main sub-groups based on the length of the transcript, with both the small and long non-coding RNAs having diverse regulatory functions. The smaller length group includes ribosomal RNAs (rRNA), transfer RNAs (tRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), microRNAs (miRNA), small interfering RNAs (siRNA), and PIWI-associated RNAs (piRNA). The longer length group includes linear long non-coding RNAs (lncRNA) and circular RNAs (circRNA). This review is designed to present the different classes of small and long ncRNA molecules and describe some of their known roles in physiological and pathological conditions, as well as methods used to assess the validity and function of miRNAs and lncRNAs, with a focus on their role and functions in the inner ear, hearing and deafness.
Collapse