1
|
Florio F, Accordini S, Libergoli M, Biressi S. Targeting Muscle-Resident Single Cells Through in vivo Electro-Enhanced Plasmid Transfer in Healthy and Compromised Skeletal Muscle. Front Physiol 2022; 13:834705. [PMID: 35431987 PMCID: PMC9010744 DOI: 10.3389/fphys.2022.834705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle is composed of syncytial muscle fibers, and by various mononucleated cellular types, such as muscle stem cells, immune cells, interstitial and stromal progenitors. These cell populations play a crucial role during muscle regeneration, and alterations of their phenotypic properties have been associated with defective repair and fibrosis in aging and dystrophic muscle. Studies involving in vivo gene modulation are valuable to investigate the mechanisms underlining cell function and dysfunction in complex pathophysiological settings. Electro-enhanced transfer of plasmids using square-wave generating devices represents a cost-effective approach that is widely used to transport DNA to muscle fibers efficiently. Still, it is not clear if this method can also be applied to mononuclear cells present in muscle. We demonstrate here that it is possible to efficiently deliver DNA into different muscle–resident cell populations in vivo. We evaluated the efficiency of this approach not only in healthy muscle but also in muscles of aging and dystrophic animal models. As an exemplificative application of this method, we used a strategy relying on a reporter gene-based plasmid containing regulatory sequences from the collagen 1 locus, and we determined collagen expression in various cell types reportedly involved in the production of fibrotic tissue in the dystrophic settings. The results enclosed in this manuscript reveal the suitability in applying electro-enhanced transfer of plasmid DNA to mononucleated muscle-resident cells to get insights into the molecular events governing diseased muscle physiology.
Collapse
Affiliation(s)
- Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
- *Correspondence: Stefano Biressi,
| |
Collapse
|
2
|
DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14054. [PMID: 26052522 PMCID: PMC4448738 DOI: 10.1038/mtm.2014.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 01/17/2023]
Abstract
The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response.
Collapse
|
3
|
DNA vaccines: MHC II-targeted vaccine protein produced by transfected muscle fibres induces a local inflammatory cell infiltrate in mice. PLoS One 2014; 9:e108069. [PMID: 25299691 PMCID: PMC4191975 DOI: 10.1371/journal.pone.0108069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/25/2014] [Indexed: 01/27/2023] Open
Abstract
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.
Collapse
|
4
|
Petkov SP, Heuts F, Krotova OA, Kilpelainen A, Engström G, Starodubova ES, Isaguliants MG. Evaluation of immunogen delivery by DNA immunization using non-invasive bioluminescence imaging. Hum Vaccin Immunother 2013; 9:2228-36. [PMID: 23896580 DOI: 10.4161/hv.25561] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The efficacy of DNA vaccines is highly dependent on the methods used for their delivery and the choice of delivery sites/targets for gene injection, pointing at the necessity of a strict control over the gene delivery process. Here, we have investigated the effect of the injection site on gene expression and immunogenicity in BALB/c mice, using as a model a weak gene immunogen, DNA encoding firefly luciferase (Luc) delivered by superficial or deep injection with subsequent electroporation (EP). Immunization was assessed by monitoring the in vivo expression of luciferase by 2D- and 3D-bioluminescence imaging (BLI) and by the end-point immunoassays. Anti-Luc antibodies were assessed by ELISA, and T-cell response by IFN-γ and IL-2 FluoroSpot in which mouse splenocytes were stimulated with Luc or a peptide representing its immunodominant CD8+ T-cell epitope GFQSMYTFV. Monitoring of immunization by BLI identified EP parameters supporting the highest Luc gene uptake and expression. Superficial injection of Luc DNA followed by optimal EP led to a low level Luc expression in the mouse skin, and triggered a CD8+ T-cell response characterized by the peptide-specific secretion of IFN-γ and IL-2, but no specific antibodies. Intramuscular gene delivery resulted in a several-fold higher Luc expression and anti-Luc antibody, but induced low IL-2 and virtually no specific IFN-γ. Photon flux from the sites of Luc gene injection was inversely proportional to the immune response against GFQSMYTFV (p<0.05). Thus, BLI permitted to control the accuracy of gene delivery and transfection with respect to the injection site as well as the parameters of electroporation. Further, it confirmed the critical role of the site of DNA administration for the type and magnitude of the vaccine-specific immune response. This argues for the use of luminescent reporters in the preclinical gene vaccine tests to monitor both gene delivery and the immune response development in live animals.
Collapse
Affiliation(s)
- Stefan P Petkov
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Frank Heuts
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Olga A Krotova
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia; DI Ivanovsky Institute of Virology; Ministry of Health of the Russian Federation; Moscow, Russia
| | - Athina Kilpelainen
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Gunnel Engström
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Elizaveta S Starodubova
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Maria G Isaguliants
- Department of Microbiology; Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden; DI Ivanovsky Institute of Virology; Ministry of Health of the Russian Federation; Moscow, Russia
| |
Collapse
|
5
|
Palumbo RN, Zhong X, Panus D, Han W, Ji W, Wang C. Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice. J Control Release 2012; 159:232-9. [PMID: 22300619 DOI: 10.1016/j.jconrel.2012.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
DNA vaccination using cationic polymers as carriers has the potential to be a very powerful method of immunotherapy, but typical immune responses generated have been less than robust. To better understand the details of DNA vaccine delivery in vivo, we prepared polymer/DNA complexes using three structurally distinct cationic polymers and fluorescently labeled plasmid DNA and injected them intradermally into mice. We analyzed transgene expression (luciferase) and the local tissue distribution of the labeled plasmid at the injection site at various time points (from hours to days). Comparable numbers of luciferase expressing cells were observed in the skin of mice receiving naked plasmid or polyplexes one day after transfection. At day 4, however, the polyplexes appeared to result in more transfected skin cells than naked plasmid. Live animal imaging revealed that naked plasmid dispersed quickly in the skin of mice after injection and had a wider distribution than any of the three types of polyplexes. However, naked plasmid level dropped to below detection limit after 24h, whereas polyplexes persisted for up to 2 weeks. The PEGylated polyplexes had a significantly wider distribution in the tissue than the nonPEGylated polyplexes. PEGylated polyplexes also distributed more broadly among dermal fibroblasts and allowed greater interaction with antigen-presenting cells (APCs) (dendritic cells and macrophages) starting at around 24h post-injection. By day 4, co-localization of polyplexes with APCs was observed at the injection site regardless of polymer structure, whereas small amounts of polyplexes were found in the draining lymph nodes. These in vivo findings demonstrate the superior stability of PEGylated polyplexes in physiological milieu and provide important insight on how cationic polymers could be optimized for DNA vaccine delivery.
Collapse
Affiliation(s)
- R Noelle Palumbo
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street S. E., Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
6
|
Lin F, Shen X, McCoy JR, Mendoza JM, Yan J, Kemmerrer SV, Khan AS, Weiner DB, Broderick KE, Sardesai NY. A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine 2011; 29:6771-80. [DOI: 10.1016/j.vaccine.2010.12.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Stevenson FK, Mander A, Chudley L, Ottensmeier CH. DNA fusion vaccines enter the clinic. Cancer Immunol Immunother 2011; 60:1147-51. [PMID: 21644035 PMCID: PMC11029487 DOI: 10.1007/s00262-011-1042-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
Abstract
Induction of effective immune attack on cancer cells in patients requires conversion of weak tumor antigens into strong immunogens. Our strategy employs genetic technology to create DNA vaccines containing tumor antigen sequences fused to microbial genes. The fused microbial protein engages local CD4+ T cells to provide help for anti-tumor immunity, and to reverse potential regulation. In this review, we focus on induction of CD8+ T cells able to kill target tumor cells. The DNA vaccines incorporate tumor-derived peptide sequences fused to an engineered domain of tetanus toxin. In multiple models, this design induces strong CD8+ T-cell responses, able to suppress tumor growth. For clinical relevance, we have used "humanized" mice expressing HLA-A2, successfully inducing cytolytic T-cell responses against a range of candidate human peptides. To overcome physical restriction in translating to patients, we have used electroporation. Clinical trials of patients with cancer are showing induction of responses, with preliminary indications of suppression of tumor growth and evidence for clinically manageable concomitant autoimmunity.
Collapse
Affiliation(s)
- Freda K Stevenson
- Molecular Immunology Group, Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
8
|
Fraix A, Montier T, Carmoy N, Loizeau D, Burel-Deschamps L, Le Gall T, Giamarchi P, Couthon-Gourvès H, Haelters JP, Lehn P, Jaffrès PA. Cationic lipo-thiophosphoramidates for gene delivery: synthesis, physico-chemical characterization and gene transfection activity – comparison with lipo-phosphoramidates. Org Biomol Chem 2011; 9:2422-32. [DOI: 10.1039/c0ob00981d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Ratanamart J, Huggins CG, Shaw JAM. Transgene expression in mononuclear muscle cells not infiltrating inflammatory cells following intramuscular plasmid gene electrotransfer. J Gene Med 2010; 12:377-84. [PMID: 20373332 DOI: 10.1002/jgm.1448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND In situ electroporation-assisted intramuscular plasmid DNA delivery offers high efficiency for therapeutic protein replacement. Expression may be impaired by an immune response against the plasmid or transgenic protein. Expression of the transgene in non-muscle cells may increase the immune response. Gene transfer efficiency and phenotypic identification of intramuscular transgene-expressing mononuclear cells was studied following electroporation-mediated plasmid delivery. METHODS Plasmids expressing beta-galactosidase (pVR1012-betagal) or enhanced green fluorescent protein (eGFP) (pVR1012-eGFP) were electrotransferred into rat tibialis anterior muscles. Both transfection efficiency and the inflammatory response were determined in pVR1012-betagal-injected muscles by beta-galactosidase and haematoxylin and eosin staining of muscles 7 days post-plasmid injection. Muscles injected with pVR1012-eGFP were stained for CD3, CD68 and desmin at 24 and 48 h post-injection to determine whether mononuclear cells expressing eGFP were of immune or myogenic origin. RESULTS With electroporation, beta-galactosidase expression was significantly enhanced by up to ten-fold compared to plasmid injection without electroporation. A large area of regenerating muscle fibres and inflammatory cell infiltration was found in electroporated plasmid-injected muscle. No eGFP expression was found in CD3- or CD68-positive cells. Small mononuclear cells expressing eGFP showed negative staining for CD3 and CD68, but all stained positive for desmin. CONCLUSIONS In situ electroporation enhanced transfection efficiency of plasmid DNA delivery into muscle. Alongside its advantage for improving gene transfer, electroporation led to an increased inflammatory response and muscle damage. Mononuclear cells in muscle were transfected with plasmid and expressed the transgene. These cells were of myogenic origin with no evidence of transgene expression in infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Jarupa Ratanamart
- Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
10
|
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010; 28:3888-95. [DOI: 10.1016/j.vaccine.2010.03.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/09/2010] [Accepted: 03/21/2010] [Indexed: 12/16/2022]
|
11
|
Ohlschläger P, Spies E, Alvarez G, Quetting M, Groettrup M. The combination of TLR-9 adjuvantation and electroporation-mediated delivery enhances in vivo antitumor responses after vaccination with HPV-16 E7 encoding DNA. Int J Cancer 2010; 128:473-81. [PMID: 20309939 DOI: 10.1002/ijc.25344] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 03/11/2010] [Indexed: 11/11/2022]
Abstract
Therapeutic DNA vaccination is an attractive adjuvant option to conventional methods in the fight against cancer, like surgery radiotherapy and chemotherapy. Despite strong antitumor effects that were observed in small animals with different antigens, DNA-based vaccines remain weakly immunogenic in large animals and primates compared to protein-based vaccines. Here, we sought to enhance the immunogenicity of a therapeutic nontransforming cervical cancer DNA vaccine (HPV-16 E7SH) by introduction of a highly optimized CpG cassette into the plasmid backbone as well as by an optimized DNA delivery using an advanced electroporation (EP) technology. By integrating the means for agent administration and EP into a single device, this technology enables a simple, one-step procedure that facilitates reproducibility. We found that highly optimized CpG motifs alone triggers an enhanced IFN-γ and granzyme B response in Elispot assays as well as stronger tumor regression. Furthermore, these effects could be dramatically enhanced when the CpG cassette containing plasmid was administered via the newly developed EP technology. These data suggest that an optimized application of CpG-enriched DNA vaccines may be an attractive strategy for the treatment of cancer. Collectively, these results provide a basis for the transfer of preclinical therapeutic DNA-based immunization studies into successful clinical cancer trials.
Collapse
Affiliation(s)
- Peter Ohlschläger
- Department of Immunology, University of Constance, 78457 Constance, Germany.
| | | | | | | | | |
Collapse
|
12
|
Rush CM, Mitchell TJ, Garside P. A detailed characterisation of the distribution and presentation of DNA vaccine encoded antigen. Vaccine 2009; 28:1620-34. [PMID: 20035828 PMCID: PMC2824851 DOI: 10.1016/j.vaccine.2009.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 11/25/2022]
Abstract
The association between plasmid DNA distribution, the amount of Ag produced, Ag persistence and the identity and localisation of cells presenting DNA-encoded Ag all have important consequences for both quantitative and qualitative aspects of T cell responses induced by DNA vaccines. Using a variety of approaches to detect and quantify the uptake of injected DNA, and the production and presentation of DNA-encoded antigen, we report that injected DNA vaccines rapidly enter the peripheral blood from the injection site and also reach muscle-draining lymph nodes directly as free DNA. 24 h after plasmid injection, MHCII+CD11b+B220−CD11clow/− cells in the draining and distal LNs and spleen contain pDNA. Interestingly, we also observed pDNA+MHCIIlow/−CD11b+ within the bone marrow. Concomitantly, we detected Ag-containing/expressing cells at both the injection site and in draining lymph nodes. Three days after plasmid injection we detected rare pMHC+CD11c+ cells within secondary lymphoid tissue and simultaneously observed Ag-specific CD4+ T cell accumulation and blastogenesis in these tissues. Our results show that the events that determine the induction of DNA vaccine immune responses occur within days of DNA injection and that the response becomes systemic very rapidly, possibly with involvement from resident BM cells.
Collapse
Affiliation(s)
- Catherine M Rush
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor St, Glasgow G4 0NR, UK.
| | | | | |
Collapse
|
13
|
DNA vaccination by electroporation and boosting with recombinant proteins enhances the efficacy of DNA vaccines for Schistosomiasis japonica. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1796-803. [PMID: 19812258 DOI: 10.1128/cvi.00231-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schistosomiasis japonica is an endemic, zoonotic disease of major public health importance in China. Control programs combining chemotherapy and snail killing have not been able to block transmission of infection in lakes and marsh regions. Vaccination is needed as a complementary approach to the ongoing control programs. In the present study, we wanted to determine if the efficacies of DNA vaccines encoding the 23-kDa tetraspanin membrane protein (SjC23), triose phosphate isomerase (SjCTPI), and sixfold-repeated genes of the complementarity determining region 3 (CDR3) in the H chain of NP30 could be enhanced by boosting via electroporation in vivo and/or with cocktail protein vaccines. Mice vaccinated with cocktail DNA vaccines showed a significant worm reduction of 32.88% (P < 0.01) and egg reduction of 36.20% (P < 0.01). Vaccine efficacy was enhanced when animals were boosted with cocktail protein vaccines; adult worm and liver egg burdens were reduced 45.35% and 48.54%, respectively. Nearly identical results were obtained in mice boosted by electroporation in vivo, with adult worm and egg burdens reduced by 45.00% and 50.88%, respectively. The addition of a protein vaccine boost to this regimen further elevated efficacy to approximately 60% for adult worm burden and greater than 60% for liver egg reduction. The levels of interleukin-2, gamma interferon, and the ratios of immunoglobulin G2a (IgG2a)/IgG1 clearly showed that cocktail DNA vaccines induced CD4(+) Th1-type responses. Boosting via either electroporation or with recombinant proteins significantly increased associated immune responses over those seen in mice vaccinated solely with DNA vaccines. Thus, schistosome DNA vaccine efficacy was significantly enhanced via boosting by electroporation in vivo and/or cocktail protein vaccines.
Collapse
|
14
|
Generation of high-titer neutralizing antibodies against botulinum toxins A, B, and E by DNA electrotransfer. Infect Immun 2009; 77:2221-9. [PMID: 19237523 DOI: 10.1128/iai.01269-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Botulinum neurotoxins are known to be among the most toxic known substances. They produce severe paralysis by preventing the release of acetylcholine at the neuromuscular junction. Thus, new strategies for efficient production of safe and effective anti-botulinum neurotoxin antisera have been a high priority. Here we describe the use of DNA electrotransfer into the skeletal muscle to enhance antiserum titers against botulinum toxin serotypes A, B, and E in mice. We treated animals with codon-optimized plasmid DNA encoding the nontoxic but highly immunogenic C-terminal heavy chain fragment of the toxin. By employing both codon optimization and the electrotransfer procedure, the immune response and corresponding neutralizing antiserum titers were markedly increased. The cellular localization of the antigen and the immunization regimens were also shown to increase neutralizing titers to >100 IU/ml. This study demonstrates that DNA electrotransfer is an effective procedure for raising neutralizing antiserum titers to remarkably high levels.
Collapse
|
15
|
Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol 2008; 82:5643-9. [PMID: 18353952 DOI: 10.1128/jvi.02564-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In vivo electroporation (EP) has been shown to augment the immunogenicity of plasmid DNA vaccines, but its mechanism of action has not been fully characterized. In this study, we show that in vivo EP augmented cellular and humoral immune responses to a human immunodeficiency virus type 1 Env DNA vaccine in mice and allowed a 10-fold reduction in vaccine dose. This enhancement was durable for over 6 months, and re-exposure to antigen resulted in anamnestic effector and central memory CD8(+) T-lymphocyte responses. Interestingly, in vivo EP also recruited large mixed cellular inflammatory infiltrates to the site of inoculation. These infiltrates contained 45-fold-increased numbers of macrophages and 77-fold-increased numbers of dendritic cells as well as 2- to 6-fold-increased numbers of B and T lymphocytes compared to infiltrates following DNA vaccination alone. These data suggest that recruiting inflammatory cells, including antigen-presenting cells (APCs), to the site of antigen production substantially improves the immunogenicity of DNA vaccines. Combining in vivo EP with plasmid chemokine adjuvants that similarly recruited APCs to the injection site, however, did not result in synergy.
Collapse
|
16
|
Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 2007; 25:3058-68. [PMID: 17885076 DOI: 10.1634/stemcells.2007-0291] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human embryonic stem cells (hESC) may provide a cell source for functional hepatocytes. The aim of this study is to establish a viable human hepatocyte-like cell line from hESC that can be used for cell-based therapies. The differentiated hESC were enriched by transducing with a lentivirus vector containing the green fluorescent protein (GFP) gene driven by the alpha1-antitrypsin promoter; the GFP gene is expressed in committed hepatocyte progenitors and hepatocytes. GFP+ hESC were purified by laser microdissection and pressure catapulting. In addition, differentiated hESC that were transduced with a lentivirus triple-fusion vector were transplanted into NOD-SCID mice, and the luciferase-induced bioluminescence in the livers was evaluated by a charge-coupled device camera. GFP+ hESC expressed a large series of liver-specific genes, and expression levels of these genes were significantly improved by purifying GFP+ hESC; our results demonstrated that purified differentiated hESC express nearly physiological levels of liver-specific genes and have liver-specific functions that are comparable to those of primary human hepatocytes. The differentiated hESC survived and engrafted in mouse livers, and human liver-specific mRNA and protein species were detected in the transplanted mouse liver and serum at 3 weeks after transplantation. This is the first time that human albumin generated by hESC-derived hepatocytes was detected in the serum of an animal model. This also represents the first successful transplantation of differentiated hESC in an animal liver and the first bioluminescence imaging of hESC in the liver. This study is an initial step in establishing a viable hepatocyte-like cell line from hESC. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Yuyou Duan
- Transplant Research Institute, University of California Davis Medical Center, 4635 2nd Avenue, Suite 1001, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fredriksen AB, Bogen B. Chemokine-idiotype fusion DNA vaccines are potentiated by bivalency and xenogeneic sequences. Blood 2007; 110:1797-805. [PMID: 17540847 DOI: 10.1182/blood-2006-06-032938] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
V regions of monoclonal Ig express an exquisite B-cell tumor–specific antigen called idiotype (Id). Id is a weak antigen and it is important to improve immunogenicity of Id vaccines. Chemokine receptors are expressed on antigen-presenting cells (APCs) and are promising targets for Id vaccines. Here we compare monomeric and dimeric forms of MIP-1α and RANTES that target Id to APCs in a mouse B lymphoma (A20) and a multiple myeloma model (MOPC315). MIP-1α was more potent than RANTES. The dimeric proteins were more potent than monomeric equivalents in short-term assays. When delivered in vivo by intramuscular injection of plasmids followed by electroporation, dimeric proteins efficiently primed APCs in draining lymph nodes for activation and proliferation of Id-specific CD4+ T cells. Good anti-Id antibody responses were obtained, and mice immunized only once were 60% to 80% protected in both tumor models. CD8+ T cells contributed to the protection. Antibody responses and tumor protection were reduced when the human Ig hinge = CH3 dimerization motif was replaced with syngeneic mouse counterparts, indicating that tumor-protective responses were dependent on xenogeneic sequences. The results suggest that bivalency and foreign sequences combine to increase the efficiency of chemokine-Id DNA vaccines.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Chemokine CCL3
- Chemokine CCL4
- Chemokine CCL5/genetics
- Chemokine CCL5/immunology
- Chemokines/immunology
- Dimerization
- Electroporation
- Flow Cytometry
- Histocompatibility Antigens Class II/immunology
- Humans
- Immunoglobulin Idiotypes/genetics
- Immunoglobulin Idiotypes/immunology
- Injections, Intramuscular
- Lymphoma, B-Cell/immunology
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Mice, Transgenic
- Models, Immunological
- Multiple Myeloma/immunology
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Plasmids
- Recombinant Fusion Proteins/immunology
- Time Factors
- Vaccination
- Vaccines, DNA/chemistry
- Vaccines, DNA/immunology
Collapse
|
18
|
Schjetne KW, Fredriksen AB, Bogen B. Delivery of antigen to CD40 induces protective immune responses against tumors. THE JOURNAL OF IMMUNOLOGY 2007; 178:4169-76. [PMID: 17371973 DOI: 10.4049/jimmunol.178.7.4169] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ligation of CD40 induces maturation of dendritic cells (DC) and could be a useful target for vaccines. In this study, we have constructed two types of Ab-based vaccine constructs that target mouse CD40. One type is a recombinant Ab with V regions specific for CD40 and has defined T cell epitopes inserted into its C region. The other type is a homodimer, each chain of which is composed of a targeting unit (single-chain fragment variable targeting CD40), a dimerization motif, and an antigenic unit. Such proteins bound CD40, stimulated maturation of DC, and enhanced primary and memory T cell responses. When delivered i.m. as naked DNA followed by electroporation, the vaccines induced T cell responses against MHC class II-restricted epitopes, Ab responses, and protection in two tumor models (myeloma and lymphoma). Two factors apparently contributed to these results: 1) agonistic ligation of CD40 and induction of DC maturation, and 2) delivery of Ag to APC and presentation on MHC class II molecules. These results highlight the importance of agonistic targeting of Ag to CD40 for induction of long-lasting and protective immune responses.
Collapse
Affiliation(s)
- Karoline W Schjetne
- Institute of Immunology, University of Oslo and Rikshospitalet-Radiumhospitalet Medical Center, N-0027 Oslo, Norway
| | | | | |
Collapse
|
19
|
Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V, Garcia-Hand D, Abdullah R, Braun R, Montefiori DC, Rosati M, Felber BK, Pavlakis GN, Mathiesen I, Israel ZR, Eldridge JH, Egan MA. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 2007; 81:5257-69. [PMID: 17329330 PMCID: PMC1900241 DOI: 10.1128/jvi.00055-07] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/20/2007] [Indexed: 12/13/2022] Open
Abstract
Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log(10) increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Amara Luckay
- Wyeth Vaccines Research, 401 N. Middletown Rd., Bldg. 180/216-10, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peng B, Zhao Y, Xu L, Xu Y. Electric pulses applied prior to intramuscular DNA vaccination greatly improve the vaccine immunogenicity. Vaccine 2006; 25:2064-73. [PMID: 17239494 DOI: 10.1016/j.vaccine.2006.11.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/12/2006] [Accepted: 11/15/2006] [Indexed: 11/16/2022]
Abstract
Electroporation can improve intramuscular DNA vaccination efficacy but the exact antigen presentation mechanism remains unclear. We reported here that a similar immuno-potentiation effect was also observed by stimulating the skeletal muscles with electric pulses (EP) a few days prior to DNA inoculation (EP + n days + DNA). The application of EP by itself activated proinflammatory chemokine genes and stress genes. It also triggered an influx of inflammatory monocytes/macrophages (MPs). After DNA inoculation, the plasmids were seen taken up by these inflammatory MPs, which migrated to the draining LNs subsequently. The antibody responses results were fast and strong. Furthermore, MPs isolated from the draining LNs of EP + n days + DNA treated mice were capable of stimulating Ag specific CD4+ T cell proliferation in vitro. Based on these observations, we proposed that the local inflammation resulted from EP treatment played an important role in facilitating antigen presentation of the DNA vaccines.
Collapse
Affiliation(s)
- Baowei Peng
- School of Pharmacy, Shanghai JiaoTong University, 1954 Hua Shan Rd., Shanghai 200030, PR China
| | | | | | | |
Collapse
|
21
|
Grafström G, Engström P, Salford LG, Persson BRR. 99mTc-DTPA Uptake and Electrical Impedance Measurements in Verification ofIn VivoElectropermeabilization Efficiency in Rat Muscle. Cancer Biother Radiopharm 2006; 21:623-35. [PMID: 17257078 DOI: 10.1089/cbr.2006.21.623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE In vivo electropermeabilization of cell membranes in rat muscle tissue cause a significant decrease of the electrical impedance, in the frequency region of 1-10 kHz. We aimed to study how the 99mTc-DTPA uptake in the electropermeabilized region correlates to the change of admittance Y = 1/absZ, where Z is the measured impedance. METHODS The electropermeabilization was performed in vivo by applying high-voltage (0.5-2 kV) short (0.1-2 ms) pulses through gold-plated needle electrodes in skeletal muscle. The impedance was measured before and after each electropermeabilization pulse. The uptake of 99mTc-DTPA uptake in the electropermeabilized region was measured after 6 and 24 hours with a gamma camera. RESULTS The pulse shape (square and exponential), duration, and amplitude of the applied electric field were varied, and electropermeabilization efficiency was evaluated using the various measurement modalities. Good correlations were found (correlation coefficient approximately 0.9) between the 99mTc-DTPA uptake in the electropermeabilized and control "region of interest" the admittance ratio Y (post-treatment)/Y (pretreatment), and charge displacement parameter Q. CONCLUSION The electrical impedance measurements method can be utilized in clinical settings to verify the efficiency of electropermeabilization applied to chemotherapy and to power RNAi (RNA-interference) and DNA-plasmid transfection in vaccination, immunization, and gene-therapy.
Collapse
Affiliation(s)
- Gustav Grafström
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Kennedy NJ, Spithill TW, Tennent J, Wood PR, Piedrafita D. DNA vaccines in sheep: CTLA-4 mediated targeting and CpG motifs enhance immunogenicity in a DNA prime/protein boost strategy. Vaccine 2006; 24:970-9. [PMID: 16242220 DOI: 10.1016/j.vaccine.2005.08.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/20/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
DNA vaccines have proven to be an efficient means of inducing immune responses in small laboratory animals; however, their efficacy in large out-bred animal models has been much less promising. In addressing this issue, we have investigated the ability of ovine cytotoxic lymphocyte antigen 4 (CTLA-4) mediated targeting and ruminant specific CpG optimised plasmids, both alone and in combination, to enhance immune responses in sheep to the pro cathepsin B (FhCatB) antigen from Fasciola hepatica. In this study, CTLA-4 mediated targeting enhanced the speed and magnitude of the primary antibody response and effectively primed for a potent memory response compared to conventional DNA vaccination alone, which failed to induce a detectable immune response. While the CpG-augmentation of the CTLA-4 targeted construct did not further enhance the magnitude or isotype profile of the CTLA-4 induced antibody titres, it did result in the induction of significant antigen-specific, lymphocyte-proliferative responses that were not observed in any other treatment group, showing for the first time that significant cellular responses can be induced in sheep following DNA vaccination. In contrast, CpG-augmentation in the absence of CTLA-4 mediated targeting failed to induce a detectable immune response. This is the first study to explore the potential adjuvant effects of ruminant specific CpG motifs on DNA vaccine induced immune responses in sheep. The ability of CpG-augmented CTLA-4 mediated targeting to induce both humoral and cellular immune responses in this study suggests that this may be an effective approach for enhancing the efficacy of DNA vaccines in large out-bred animal models.
Collapse
Affiliation(s)
- Nicholas J Kennedy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| | | | | | | | | |
Collapse
|
23
|
Fredriksen AB, Sandlie I, Bogen B. DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells. Mol Ther 2006; 13:776-85. [PMID: 16414309 DOI: 10.1016/j.ymthe.2005.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/24/2005] [Accepted: 10/26/2005] [Indexed: 11/28/2022] Open
Abstract
Naked DNA vaccines have a number of advantages over conventional vaccines, but induce only weak immune responses. We have here investigated if this inadequacy may be overcome by inducing muscle to secrete fusion proteins with the ability to target antigen-presenting cells (APC). The novel targeted vaccines are homodimers with (i) two identical single-chain fragment variable (scFv) targeting units specific for MHC class II molecules on mouse APC, (ii) a human Ig hinge and C(H)3 dimerization unit, and (iii) two identical scFv tumor antigenic units (idiotypes) from B cell cancers. After plasmid injection and electroporation of mouse muscle, secreted vaccine proteins (vaccibodies) delivered idiotypic tumor antigen to APC in draining lymph nodes for induction of T and B cell responses that protected mice against tumor challenges with a multiple myeloma (MOPC315) and a B cell lymphoma (A20). Targeting to APC was essential for these effects. The results show that immunogenicity of plasmid DNA vaccines can be increased by inducing muscle to secrete proteins that target antigen to APC.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Dimerization
- Electroporation
- Histocompatibility Antigens Class II/immunology
- Immunoglobulin Idiotypes/genetics
- Immunoglobulin Idiotypes/immunology
- Injections, Intramuscular
- Lymphoma, B-Cell/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Mice, Transgenic
- Models, Immunological
- Multiple Myeloma/immunology
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Plasmids
- Recombinant Fusion Proteins/immunology
- Time Factors
- Vaccination
- Vaccines, DNA/chemistry
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Agnete B Fredriksen
- Institute of Immunology, University of Oslo, Rikshospitalet and Rikshospitalet University Hospital, Sognsvannsvn. 20, 0027 Oslo, Norway.
| | | | | |
Collapse
|
24
|
Li Z, Song D, Zhang H, He W, Fan X, Zhang Y, Huang J, Wang X, Liu Q, Xiong S. Improved Humoral Immunity Against Tuberculosis ESAT-6 Antigen by Chimeric DNA Prime and Protein Boost Strategy. DNA Cell Biol 2006; 25:25-30. [PMID: 16405398 DOI: 10.1089/dna.2006.25.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ag85A and ESAT-6 proteins of Mycobacterium tuberculosis (M.TB) are important protective antigens. The 32-kDa Ag85A is a strong immunogen in both small and large animals. However, the 6-kDa ESAT-6 has relatively low inherent immunogenicity, especially in large animals. To improve the immunogenicity of ESAT-6 in animals, we made chimeric DNA vaccines, HG856K and HG856A, by inserting the esat-6 gene into the Kpn I or Acc I endonuclease restriction site of the ag85a gene, respectively. BALB/c mice were injected intramuscularly three times with the 10-microg singular DNA vaccine (HG85 encoding for Ag85A or HG6 encoding for ESAT-6) or chimeric DNA vaccine (HG856K or HG856A) followed by electroporation (EP). Ten days after the last DNA vaccination, mice received a booster immunization intraperitoneally with 50-microg pure recombinant protein Ag85A or ESAT-6 without adjuvant. Additional groups of mice immunized with chimeric DNA vaccines were boosted with two mixed proteins (Ag85A/ESAT-6) at the same time. The results showed that the immunogenicity of M.TB ESAT-6 antigen was not improved by priming with the HG6 DNA vaccine. However, the humoral immunity against the ESAT-6 antigen was significantly increased in the mice primed with chimeric DNA vaccines, HG856K or HG856A, followed by boosting with ESAT-6 or ESAT-6/Ag85A mixed proteins.
Collapse
Affiliation(s)
- Zhongming Li
- Vaccine Research Laboratory, Shanghai H&G Biotechnology Co. Inc., People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grønevik E, Mathiesen I, Lømo T. Early events of electroporation-mediated intramuscular DNA vaccination potentiate Th1-directed immune responses. J Gene Med 2005; 7:1246-54. [PMID: 15822067 DOI: 10.1002/jgm.760] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Application of electrical pulses after DNA injection into muscle increases expression of the encoded genes, and is shown to improve antigen-specific immune responses when used for DNA vaccination. In addition, electroporation causes tissue injury and inflammatory reactions. Together with immune stimulatory motifs in the injected DNA these factors may potentiate the immune response by acting as adjuvants for the antigen. Here, we have examined the role of these factors in promoting the efficiency of DNA vaccination. METHODS We injected a plasmid DNA vector containing the gene Ag85B from M. tuberculosis into mouse quadriceps muscles followed by electroporation. Ag85B was under control of a Tet-responsive promoter, and was expressed either immediately or up to 28 days later by administrating doxycycline to the mice. Delayed expression was combined with injection of non-coding DNA or saline with or without electroporation to examine the ability of these factors to enhance the Ag85B-specific antibody response in the blood and cellular responses in the spleen. Blood samples were analysed with ELISA, while the number of Ag85B-specific IFN-gamma- and IL-4-producing spleenocytes was analysed with ELISpot. RESULTS Delaying Ag85B expression by 5 or 28 days caused lower anti-Ag85B-specific IgG2a levels. In contrast, the IgG1 antibody response was not significantly affected. Injection of non-coding DNA followed by electroporation moderately increased the IgG2a response. Delaying the Ag85B expression by 28 days reduced the average number of Ag85B-specific IFN-gamma-producing spleenocytes by over 60%. No significant change in the number of IL-4-producing Ag85B-specific spleenocytes was observed. CONCLUSIONS These results suggest that DNA and electroporation per se may act as good adjuvants in promoting efficient Th1-directed responses during DNA vaccination.
Collapse
Affiliation(s)
- Eirik Grønevik
- Department of Physiology, University of Oslo, Box 1103 Blindern, 0316 Oslo, Norway.
| | | | | |
Collapse
|
26
|
Li Z, Zhang H, Fan X, Zhang Y, Huang J, Liu Q, Tjelle TE, Mathiesen I, Kjeken R, Xiong S. DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine 2005; 24:4565-8. [PMID: 16154246 DOI: 10.1016/j.vaccine.2005.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA vaccines have shown to induce strong immune response in small animals; however, its capacity of inducing robust antigen-specific immune responses in large animals is limited. In the present study, in vivo electroporation (EP) was applied and the effect of EP on humoral immune response against tuberculosis (TB) induced by DNA vaccination was tested in mice and rhesus macaques. Mice injected with 10 microg DNA encoding Ag85A and ESAT-6 followed by EP showed a reproducible humoral immunity which was equal to that obtained by using 100 microg DNA without EP. Boosting the DNA/EP treated animals with corresponding recombinant protein (50 microg of either Ag85A or ESAT-6) without adding adjuvant gave more than a 7-8-fold increase in the antibody titre but only 3-4-fold increase was found in the mice receiving 100 microg DNA without EP followed by protein boost. In concordance with the results obtained in mice, the monkeys received less DNA achieved equal high antibody responses to those induced by high dosage of DNA. Boosting the the DNA/EP treated monkeys with TB protein (500 microg of either Ag85A or ESAT-6) improved the humoral response by 7-8-fold increase in antibody titre, indicating electroporation's ability to compensate lower DNA concentration and enhance humoral immunity of TB DNA vaccines in mice and non-human primates.
Collapse
Affiliation(s)
- Zhongming Li
- Vaccine Research Laboratory, Shanghai H&G Biotechnology Co. Inc., 395 Jiang Chang Road (W), Suite 3B, Shanghai 200436, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. THE JOURNAL OF IMMUNOLOGY 2005; 174:6292-8. [PMID: 15879128 DOI: 10.4049/jimmunol.174.10.6292] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Proliferation
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Cytotoxicity, Immunologic/genetics
- Dose-Response Relationship, Immunologic
- Electroporation/methods
- Epitopes, T-Lymphocyte/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunization, Secondary/methods
- Immunoglobulin G/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Retroviridae Proteins, Oncogenic/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Sarah Buchan
- Molecular Immunology Group, Southampton University Hospitals Trust, Southampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Grønevik E, von Steyern FV, Kalhovde JM, Tjelle TE, Mathiesen I. Gene expression and immune response kinetics using electroporation-mediated DNA delivery to muscle. J Gene Med 2005; 7:218-27. [PMID: 15515140 DOI: 10.1002/jgm.650] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Injection of DNA encoding exogenic proteins into muscle tissue combined with electroporation often results in a transient increase of the encoded protein concentration in the muscle and the blood. The reduction is normally due to an immune response against the exogenic protein but other factors may also be involved. How various electroporation parameters affect the concentration kinetics of syngenic and exogenic proteins is studied in relation to immune response and muscle damage after electroporation-mediated DNA transfer to muscle. METHODS Electroporation was applied to mouse quadriceps and rat tibialis anterior muscles after injection of DNA encoding either secreted alkaline phosphatase (SEAP), beta-galactosidase (beta-gal), luciferase or a mouse IgG molecule. Protein concentrations in blood or muscle and antibody responses were measured for a period up to 3 months. Tissue inflammation and muscle cell damage were studied on muscle cross-sections and assessed by measuring the concentrations of creatine phosphokinase (CPK) in blood. RESULTS Mice with the highest SEAP concentration in blood at day 7 also had the highest rate of decrease afterwards, the strongest antibody responses against SEAP and the highest acute levels of CPK in blood. DNA-transfected muscle fibers were significantly reduced in number from days 7 to 14. Mononuclear cells surrounded the reporter gene expressing muscle fibers, thus indicating a cellular immune response. When using DNA encoding a syngenic protein the protein concentration in blood was relatively stabile over a 3-month period, but showed different kinetics for various electroporation parameters. CONCLUSIONS Our findings suggest that the optimal electroporation parameters for DNA vaccination may be different from the optimal parameters for long-term expression of genes encoding syngenic proteins.
Collapse
Affiliation(s)
- Eirik Grønevik
- Department of Physiology, University of Oslo, Box 1103 Blindern, 0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
29
|
Mir LM, Moller PH, André F, Gehl J. Electric pulse-mediated gene delivery to various animal tissues. ADVANCES IN GENETICS 2005; 54:83-114. [PMID: 16096009 DOI: 10.1016/s0065-2660(05)54005-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electroporation designates the use of electric pulses to transiently permeabilize the cell membrane. It has been shown that DNA can be transferred to cells through a combined effect of electric pulses causing (1) permeabilization of the cell membrane and (2) an electrophoretic effect on DNA, leading the polyanionic molecule to move toward or across the destabilized membrane. This process is now referred to as DNA electrotransfer or electro gene transfer (EGT). Several studies have shown that EGT can be highly efficient, with low variability both in vitro and in vivo. Furthermore, the area transfected is restricted by the placement of the electrodes, and is thus highly controllable. This has led to an increasing use of the technology to transfer reporter or therapeutic genes to various tissues, as evidenced from the large amount of data accumulated on this new approach for non-viral gene therapy, termed electrogenetherapy (EGT as well). By transfecting cells with a long lifetime, such as muscle fibers, a very long-term expression of genes can be obtained. A great variety of tissues have been transfected successfully, from muscle as the most extensively used, to both soft (e.g., spleen) and hard tissue (e.g., cartilage). It has been shown that therapeutic levels of systemically circulating proteins can be obtained, opening possibilities for using EGT therapeutically. This chapter describes the various aspects of in vivo gene delivery by means of electric pulses, from important issues in methodology to updated results concerning the electrotransfer of reporter and therapeutic genes to different tissues.
Collapse
Affiliation(s)
- Lluis M Mir
- Laboratory of Vectorology and Gene Transfer, UMR 8121 CNRS Institut Gustave-Roussy, F-94805 Villejuif Cédex, France
| | | | | | | |
Collapse
|
30
|
Mennuni C, Calvaruso F, Facciabene A, Aurisicchio L, Storto M, Scarselli E, Ciliberto G, La Monica N. Efficient induction of T-cell responses to carcinoembryonic antigen by a heterologous prime-boost regimen using DNA and adenovirus vectors carrying a codon usage optimized cDNA. Int J Cancer 2005; 117:444-55. [PMID: 15906358 DOI: 10.1002/ijc.21188] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immunogenic properties of plasmid DNA and recombinant adenovirus (Ad) encoding the carcinoembryonic antigen (CEA) were examined in mice by measuring both the amplitude and type of immune response, and the immunogenicity of codon usage optimized cDNA encoding CEA (CEAopt) was assessed both in C57Bl/6 and CEA transgenic mice. Vectors were injected into quadriceps muscle either alone or in combination, and plasmid DNA was electroporated to enhance gene expression efficiency and immunogenicity. Injection of plasmid pVIJ/CEA followed by Ad-CEA boost elicited the highest amplitude of both CD4+ and CD8+ T-cell response to the target antigen, measured by both IFNgamma-ELIspot assay and intracellular staining. Vectors carrying cDNA of CEAopt expressed a greater amount of the CEA protein than their wild-type counterparts, and this enhanced expression was associated with greater immunogenicity. Both CD4+ and CD8+ T-cell epitopes were mapped in the C-terminal portion of the protein. In CEA transgenic mice, only immunization based on repeated injections of pVIJ/CEAopt followed by Ad-CEAopt was able to elicit a CEA-specific CD8+ T-cell response, whereas the wild-type vectors did not break tolerance to this target antigen. MC38-CEA tumor cells injected s.c. in CEA transgenic mice vaccinated with CEAopt vectors exhibited delayed growth kinetics. These studies demonstrate that this type of genetic vaccine is highly immunogenic and can break tolerance to CEA tumor antigen in CEA transgenic mice.
Collapse
Affiliation(s)
- Carmela Mennuni
- Istituto di Ricerche di Biologia Molecolare (IRBM), Pomezia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Scheerlinck JPY, Karlis J, Tjelle TE, Presidente PJA, Mathiesen I, Newton SE. In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 2004; 22:1820-5. [PMID: 15068866 DOI: 10.1016/j.vaccine.2003.09.053] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vivo electroporation was utilised to enhance plasmid DNA expression in sheep muscle to improve the immune response to DNA vaccination. DNA encoding enhanced green fluorescence protein expressed at higher levels in sheep muscle following in vivo electroporation which caused minimal muscle damage. Groups of seven sheep were then given three intramuscular injections of plasmids encoding two Haemonchus contortus Ag, with and without electroporation at 0, 3 and 7 weeks. Humoral responses were enhanced in electroporated sheep. Four weeks after vaccination, all groups were injected subcutaneously with recombinant Ag formulated in Quil A. Induction of vaccine-specific immune memory was demonstrated in DNA-vaccinated sheep.
Collapse
Affiliation(s)
- J-P Y Scheerlinck
- Centre for Animal Biotechnology, The University of Melbourne, Melbourne, Vic. 3010, Australia.
| | | | | | | | | | | |
Collapse
|