1
|
Chu GJ, Bailey CG, Nagarajah R, Liang O, Metierre C, Sagnella SM, Castelletti L, Yeo D, Adelstein S, Rasko JEJ. Mesothelin antigen density influences anti-mesothelin chimeric antigen receptor T cell cytotoxicity. Cytotherapy 2024; 26:325-333. [PMID: 38349311 DOI: 10.1016/j.jcyt.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AIMS Several anti-mesothelin (MSLN) chimeric antigen receptor (CAR) T cells are in phase 1/2 clinical trials to treat solid-organ malignancies. The effect of MSLN antigen density on MSLN CAR cytotoxicity against tumor cells has not been examined previously, nor are there data regarding the effect of agents that increase MSLN antigen density on anti-MSLN CAR T cell efficacy. METHODS MSLN antigen density was measured on a panel of pancreatic cancer and mesothelioma cell lines by flow cytometry. In parallel, the cytotoxicity and specificity of two anti-MSLN CAR T cells (m912 and SS1) were compared against these cell lines using a real-time impedance-based assay. The effect of two MSLN 'sheddase' inhibitors (lanabecestat and TMI-1) that increase MSLN surface expression was also tested in combination with CAR T cells. RESULTS SS1 CAR T cells were more cytotoxic compared with m912 CAR T cells against cell lines that expressed fewer than ∼170 000 MSLN molecules/cell. A comparison of the m912 and amatuximab (humanized SS1) antibodies identified that amatuximab could detect and bind to lower levels of MSLN on pancreatic cancer and mesothelioma cell lines, suggesting that superior antibody/scFv affinity was the reason for the SS1 CAR's superior cytotoxicity. The cytotoxicity of m912 CAR T cells was improved in the presence of sheddase inhibitors, which increased MSLN antigen density. CONCLUSIONS These data highlight the value of assessing CAR constructs against a panel of cells expressing varying degrees of target tumor antigen as occurs in human tumors. Furthermore, the problem of low antigen density may be overcome by concomitant administration of drugs that inhibit enzymatic shedding of MSLN.
Collapse
Affiliation(s)
- Gerard J Chu
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cancer and Gene Regulation Laboratory Centenary Institute, Camperdown, NSW, Australia.
| | - Rajini Nagarajah
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
| | - Oliver Liang
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| | - Cynthia Metierre
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
| | - Sharon M Sagnella
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - Laura Castelletti
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| | - Dannel Yeo
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| | - Stephen Adelstein
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Li Ka Shing Cell & Gene Therapy Program, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Kaufmann C, Mortimer LA, Brereton HM, Irani YD, Parker DGA, Anson DS, Bachmann LM, Williams KA. Interleukin-10 Gene Transfer in Rat Limbal Transplantation. Curr Eye Res 2017; 42:1426-1434. [DOI: 10.1080/02713683.2017.1344714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Claude Kaufmann
- Department of Ophthalmology, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Lauren A Mortimer
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Helen M Brereton
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Yazad D Irani
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Douglas GA Parker
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Donald S Anson
- Department of Genetic Medicine, Women’s and Children’s Hospital, Adelaide, Australia
| | - Lucas M Bachmann
- Horten Centre for Patient Oriented Research, University of Zurich, Zurich, Switzerland
| | - Keryn A Williams
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Absence of Replication-Competent Lentivirus in the Clinic: Analysis of Infused T Cell Products. Mol Ther 2017; 26:280-288. [PMID: 28970045 DOI: 10.1016/j.ymthe.2017.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Exposure to replication-competent lentivirus (RCL) is a theoretical safety concern for individuals treated with lentiviral gene therapy. For certain ex vivo gene therapy applications, including cancer immunotherapy trials, RCL detection assays are used to screen the vector product as well as the vector-transduced cells. In this study, we reviewed T cell products screened for RCL using methodology developed in the National Gene Vector Biorepository. All trials utilized third-generation lentiviral vectors produced by transient transfection. Samples from 26 clinical trials totaling 460 transduced cell products from 375 subjects were evaluated. All cell products were negative for RCL. A total of 296 of the clinical trial participants were screened for RCL at least 1 month after infusion of the cell product. No research subject has shown evidence of RCL infection. These findings provide further evidence attesting to the safety of third-generation lentiviral vectors and that testing T cell products for RCL does not provide added value to screening the lentiviral vector product.
Collapse
|
4
|
Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16017. [PMID: 27110581 PMCID: PMC4830361 DOI: 10.1038/mtm.2016.17] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented.
Collapse
Affiliation(s)
| | | | - Chiara Bovolenta
- New Technologies Unit, Research Division, MolMed S.p.A. , Milan, Italy
| |
Collapse
|
5
|
Cmielewski P, Donnelley M, Parsons DW. Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice. J Gene Med 2015; 16:291-9. [PMID: 25130650 DOI: 10.1002/jgm.2778] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Persistent reporter gene and cystic fibrosis transmembrane conductance regulator (CFTR) nasal airway gene expression can be achieved with a single lentiviral (LV) gene vector dosing when coupled with a preparatory lysophosphatidylcholine (LPC) airway pre-treatment. In the present study, we characterised the duration of gene expression in individual cystic fibrosis (CF) knockout mice (cftr(tm1unc)) over their lifetimes. METHODS CF mouse nasal airways were treated with LV-Rx, a mixture of a therapeutic LV-CFTR gene vector and a LV-luciferase reporter gene vector, after pre-treatment with LPC. Control groups received either PBS sham pre-treatment followed by LV-Rx, or LPC prior to delivery of a LV vector containing no transgene (LV-MT). Airway reporter gene expression was monitored by bioluminescence, and functional CFTR expression was assessed via nasal transepithelial potential difference measurements at regular intervals up to 21 months. The presence of the CFTR transgene in the nasal septa, liver and spleen tissues were assessed by a quantitative polymerase chain reaction. Circulating antibodies to the vector glycoprotein envelope and to the luciferase protein were also measured. RESULTS The combined use of LPC and LV gene vectors in the nasal airway produced enhanced and sustained luciferase and CFTR gene expression lasting at least 12 months. Improved survival was also observed in CF knockout mice treated with the LV vector mixture compared to all control CF mouse groups. CONCLUSIONS The present study showed that our airway pre-treatment and gene delivery technique resulted in sustained functional CFTR expression and improved survival in CF mice.
Collapse
Affiliation(s)
- Patricia Cmielewski
- Respiratory and Sleep Medicine, Women's and Children's Hospital Network, North Adelaide, SA, Australia; School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute and Centre for Stem Cell Research, University of Adelaide, Adelaide, SA, Australia
| | | | | |
Collapse
|
6
|
TANG YONG, GARSON KENNETH, LI LI, VANDERHYDEN BARBARAC. Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Oncol Lett 2015; 9:55-62. [PMID: 25435933 PMCID: PMC4246624 DOI: 10.3892/ol.2014.2684] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to optimize the polyethylenimine (PEI)-mediated transfection method in order to simplify the efficient production of lentiviral vectors (LvVs), and to compare the CaPO4- and PEI-mediated transfection methods for producing LvVs. Different titration methods of LvV stocks, as well as different culture media, culture durations, cell densities and DNA quantities were compared to obtain an optimized procedure for the production of LvVs. Optimization of the production method for LvVs was achieved using PEI-mediated transient transfections. Serum-free Opti-MEM® was used to directly produce LvVs that could be harvested 48 h after transfection. Furthermore, a cell density of 15×106 cells/10-cm plate and a DNA concentration of 1X were selected for the optimum production of LvVs. The optimized LvV titration method was simple and direct; it involved LvVs carrying fluorescent reporters, which proved to be faster than the standard methods but equally as sensitive. In conclusion, a scalable process for production of LvVs by PEI-mediated transfection was established and optimized. The optimized PEI-mediated transfection method was easy to use, as well as providing greater reliability with a higher degree of reproducibility and consistency. Despite using less DNA, the PEI-mediated transfection method resulted in viral titers that were the same as those achieved using the CaPO4-mediated method.
Collapse
Affiliation(s)
- YONG TANG
- Department of Urology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - KENNETH GARSON
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - LI LI
- Department of Gynecologic Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - BARBARA C. VANDERHYDEN
- Department of Cellular and Molecular Medicine, Centre for Cancer Therapeutics, Ottawa Health Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
McIntyre C, Derrick-Roberts ALK, Byers S, Anson DS. Correction of murine mucopolysaccharidosis type IIIA central nervous system pathology by intracerebroventricular lentiviral-mediated gene delivery. J Gene Med 2014; 16:374-87. [DOI: 10.1002/jgm.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/07/2014] [Accepted: 11/14/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chantelle McIntyre
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
| | - Ainslie L. K. Derrick-Roberts
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| | - Sharon Byers
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
- School of Molecular and Biomedical Science; University of Adelaide; South Australia Australia
| | - Donald S. Anson
- School of Paediatrics and Reproductive Health; University of Adelaide; South Australia Australia
- Genetics and Molecular Pathology, SA Pathology; North Adelaide South Australia Australia
| |
Collapse
|
8
|
Derrick-Roberts AL, Pyragius CE, Kaidonis XM, Jackson MR, Anson DS, Byers S. Lentiviral-Mediated Gene Therapy Results in Sustained Expression of β-Glucuronidase for up to 12 Months in the Gusmps/mps and up to 18 Months in the Gustm(L175F)Sly Mouse Models of Mucopolysaccharidosis Type VII. Hum Gene Ther 2014; 25:798-810. [DOI: 10.1089/hum.2013.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ainslie L.K. Derrick-Roberts
- Genetics and Molecular Pathology, South Australia Pathology (Children, Youth and Women's Health Service Site), Adelaide, South Australia 5006, Australia
- Discipline of Paediatrics, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Carmen E. Pyragius
- Genetics and Molecular Pathology, South Australia Pathology (Children, Youth and Women's Health Service Site), Adelaide, South Australia 5006, Australia
| | - Xenia M. Kaidonis
- Genetics and Molecular Pathology, South Australia Pathology (Children, Youth and Women's Health Service Site), Adelaide, South Australia 5006, Australia
- Department of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Matilda R. Jackson
- Genetics and Molecular Pathology, South Australia Pathology (Children, Youth and Women's Health Service Site), Adelaide, South Australia 5006, Australia
- Department of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Donald S. Anson
- Genetics and Molecular Pathology, South Australia Pathology (Children, Youth and Women's Health Service Site), Adelaide, South Australia 5006, Australia
- Discipline of Paediatrics, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Sharon Byers
- Genetics and Molecular Pathology, South Australia Pathology (Children, Youth and Women's Health Service Site), Adelaide, South Australia 5006, Australia
- Discipline of Paediatrics, The University of Adelaide, Adelaide, South Australia 5000, Australia
- Department of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
9
|
Wong ESY, McIntyre C, Peters HL, Ranieri E, Anson DS, Fletcher JM. Correction of methylmalonic aciduria in vivo using a codon-optimized lentiviral vector. Hum Gene Ther 2014; 25:529-38. [PMID: 24568291 DOI: 10.1089/hum.2013.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic aciduria is a rare disorder of organic acid metabolism with limited therapeutic options, resulting in high morbidity and mortality. Positive results from combined liver/kidney transplantation suggest, however, that metabolic sink therapy may be efficacious. Gene therapy offers a more accessible approach for the treatment of methylmalonic aciduria than organ transplantation. Accordingly, we have evaluated a lentiviral vector-mediated gene transfer approach in an in vivo mouse model of methylmalonic aciduria. A mouse model of methylmalonic aciduria (Mut(-/-)MUT(h2)) was injected intravenously at 8 weeks of age with a lentiviral vector that expressed a codon-optimized human methylmalonyl coenzyme A mutase transgene, HIV-1SDmEF1αmurSigHutMCM. Untreated Mut(-/-)MUT(h2) and normal mice were used as controls. HIV-1SDmEF1αmurSigHutMCM-treated mice achieved near-normal weight for age, and Western blot analysis demonstrated significant methylmalonyl coenzyme A enzyme expression in their livers. Normalization of liver methylmalonyl coenzyme A enzyme activity in the treated group was associated with a reduction in plasma and urine methylmalonic acid levels, and a reduction in the hepatic methylmalonic acid concentration. Administration of the HIV-1SDmEF1αmurSigHutMCM vector provided significant, although incomplete, biochemical correction of methylmalonic aciduria in a mouse model, suggesting that gene therapy is a potential treatment for this disorder.
Collapse
Affiliation(s)
- Edward S Y Wong
- 1 Genetics and Molecular Pathology, Women's and Children's Hospital , North Adelaide, SA 5006, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Kuate S, Marino MP, Reiser J. Analysis of partial recombinants in lentiviral vector preparations. Hum Gene Ther Methods 2014; 25:126-35. [PMID: 24367910 DOI: 10.1089/hgtb.2013.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The presence of replication-competent lentivirus (RCL) in lentiviral vector preparations is a major safety concern for clinical applications of such vectors. RCL are believed to emerge from rare recombinant vector genomes that are referred to as partial recombinants or Psi-Gag recombinants. To quantitatively determine the fraction of partial recombinants in lentiviral vector preparations and to analyze them at the DNA sequence level, we established a drug selection assay involving a lentiviral packaging construct containing a drug-resistance gene encoding blasticidin (BSD) resistance. Upon transduction of target cells, the BSD resistance gene confers BSD resistance to the transduced cells. The results obtained indicate that there were up to 156 BSD-resistant colonies in a total of 10(6) transducing vector particles. The predicted recombination events were verified by polymerase chain reaction using genomic DNA obtained from BSD-resistant cell clones and by DNA sequence analysis. In an attempt to reduce the emergence of partial recombinants, sequence overlaps between the packaging and the vector constructs were reduced by substituting the Rev response element (RRE) present in the vector construct using a heterologous RRE element derived from simian immunodeficiency virus (SIVmac239). The results obtained showed that a reduction of sequence overlaps resulted in an up to sevenfold reduction of the frequency of BSD-resistant colonies, indicating that the capacity to form partial recombinants was diminished.
Collapse
Affiliation(s)
- Seraphin Kuate
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research , U.S. Food and Drug Administration, Bethesda, MD 20892
| | | | | |
Collapse
|
11
|
Airway gene transfer in a non-human primate: lentiviral gene expression in marmoset lungs. Sci Rep 2013; 3:1287. [PMID: 23412644 PMCID: PMC3573341 DOI: 10.1038/srep01287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
Genetic therapies for cystic fibrosis (CF) must be assessed for safety and efficacy, so testing in a non-human primate (NHP) model is invaluable. In this pilot study we determined if the conducting airways of marmosets (n = 2) could be transduced using an airway pre-treatment followed by an intratracheal bolus dose of a VSV-G pseudotyped HIV-1 based lentiviral (LV) vector (LacZ reporter). LacZ gene expression (X-gal) was assessed after 7 days and found primarily in conducting airway epithelia as well as in alveolar regions. The LacZ gene was not detected in liver or spleen via qPCR. Vector p24 protein bio-distribution into blood was transient. Dosing was well tolerated. This preliminary study confirmed the transducibility of CF-relevant airway cell types. The marmoset is a promising NHP model for testing and translating genetic treatments for CF airway disease towards clinical trials.
Collapse
|
12
|
Macsai CE, Derrick-Roberts ALK, Ding X, Zarrinkalam KH, McIntyre C, Anderson PH, Anson DS, Byers S. Skeletal response to lentiviral mediated gene therapy in a mouse model of MPS VII. Mol Genet Metab 2012; 106:202-13. [PMID: 22525091 DOI: 10.1016/j.ymgme.2012.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 12/01/2022]
Abstract
Mucopolysaccharidosis VII (MPS VII) is an autosomal recessive, lysosomal storage disorder caused by β-glucuronidase (GUSB) deficiency, resulting in the accumulation of glycosaminoglycans (GAGs), in a variety of cell types. Severe, progressive skeletal pathology, termed dysostosis multiplex, is a prominent clinical feature of MPS VII. We have evaluated a gene therapy protocol for its efficacy in preventing the development and progression of bone pathology in MPS VII mice treated with a lentiviral vector at birth or at 7 weeks. Two weeks after injections, high levels of vector expression were observed in liver, spleen and bone marrow and to a lesser extent in kidney, lung and heart. Widespread clearance of GAG storage was observed in somatic tissues of both groups and some clearance of neuronal storage was observed in mice treated from birth. Micro-CT analysis demonstrated a significant decrease in vertebral and femoral bone mineral volume, trabecular number, bone surface density and cortical bone thickness in both treatment groups. Lumbar and femoral bone lengths were significantly decreased in untreated MPS VII mice, while growth plate heights were increased and these parameters did not change upon treatment. Small improvements in performance in the open field and rotarod behaviour tests were noted. Overall, systemic lentiviral-mediated gene therapy results in a measurable improvement in parameters of bone mass and architecture as well as biochemical and enzymatic correction. Conversely, growth plate chondrocytes were not responsive to treatment, as evidenced by the lack of improvement in vertebral and femoral bone length and growth plate height.
Collapse
Affiliation(s)
- Carmen E Macsai
- Genetics and Molecular Pathology, SA Pathology (CYWHS Site), Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
14
|
Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, Babic M, Lin M, Carmagnac A, Lee YK, Kok CH, Gagliardi L, Friend KL, Ekert PG, Butcher CM, Brown AL, Lewis ID, To LB, Timms AE, Storek J, Moore S, Altree M, Escher R, Bardy PG, Suthers GK, D'Andrea RJ, Horwitz MS, Scott HS. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 2011; 43:1012-7. [PMID: 21892162 PMCID: PMC3184204 DOI: 10.1038/ng.913] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/29/2011] [Indexed: 12/14/2022]
Abstract
We report the discovery of the GATA2 gene as a new myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML) predisposition gene. We found the same, novel heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS/AML in three families, and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS/AML family. The mutations reside within the second zinc finger of GATA2 which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutants on transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counselling, selection of related bone marrow transplant donors, and development of therapies.
Collapse
Affiliation(s)
- Christopher N Hahn
- Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
MacKenzie CJ, Shioda T. COS-1 cells as packaging host for production of lentiviruses. ACTA ACUST UNITED AC 2011; Chapter 26:Unit 26.7. [PMID: 21400698 DOI: 10.1002/0471143030.cb2607s50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a protocol for in vitro production of recombinant lentiviruses using COS-1 African green monkey kidney epithelial cells and HEK293T human embryonic kidney epithelial cells as packaging cells. COS-1 and HEK293T express SV40 large T antigen, amplifying transfected circular plasmids harboring SV40 replication origin. Support protocols for evaluation of transfection efficiency by in situ β-galactosidase enzyme activity assay and titer of infection-capable virions are also provided. Advantages of using COS-1 packaging cells over the standard HEK293T cells for contamination-sensitive applications or automated processing are discussed.
Collapse
Affiliation(s)
- Crystal J MacKenzie
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts, USA
| | | |
Collapse
|
16
|
Lesch HP, Laitinen A, Peixoto C, Vicente T, Makkonen KE, Laitinen L, Pikkarainen JT, Samaranayake H, Alves PM, Carrondo MJT, Ylä-Herttuala S, Airenne KJ. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther 2011; 18:531-8. [DOI: 10.1038/gt.2010.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Liu C, Wong E, Miller D, Smith G, Anson D, Parsons D. Lentiviral airway gene transfer in lungs of mice and sheep: successes and challenges. J Gene Med 2010; 12:647-58. [PMID: 20635320 DOI: 10.1002/jgm.1481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Persistent airway gene expression can be achieved in mouse nasal airway using a vesicular stomatitis virus glycoprotein pseudotyped lentiviral (LV) gene vector in combination with lysophosphatidylcholine (LPC) pretreatment. We have now examined the acute in vivo effects of this combination single-dose method for airway LV gene transfer in mouse and sheep lung. METHODS Mouse and sheep lungs were exposed to LPC followed 1 h later with the LV vector. Lungs were processed 7 days later using X-gal detection to measure beta-gal gene expression and identify transduced cell types. RESULTS In mouse ciliated conducting airways, LPC pretreatment produced extensive gene transfer that extended from the tracheal dosing site into the bronchi and lower airways. Gene expression was present in both terminally differentiated surface cells and in basal cells. Without LPC pretreatment, transduction was limited to the dosing site. In sheep lung, small-volume bronchoscopic instillation delivery produced localized and low-level transduction near the dosing site. Gene expression was again present in surface and basal cells. Neither alterations in LPC dose parameters, nor larger vector volumes increased the level of transduction. CONCLUSIONS These findings are the first to confirm the applicability of LPC pretreatment in the production of extensive lentiviral gene transfer in mouse lung airways. However, improved methodologies to increase transduction efficiency are required for adult sheep lung. The results suggest that continued in vivo development of LPC-enhanced lentiviral gene transfer is needed in the lungs of large animals to establish effective lentiviral gene transfer techniques suited to the treatment of airway disease.
Collapse
Affiliation(s)
- Chuanhe Liu
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
18
|
McIntyre C, Byers S, Anson DS. Correction of mucopolysaccharidosis type IIIA somatic and central nervous system pathology by lentiviral-mediated gene transfer. J Gene Med 2010; 12:717-28. [PMID: 20683858 DOI: 10.1002/jgm.1489] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The hallmark of lysosomal storage disorders (LSDs) is microscopically demonstrable lysosomal distension. In mucopolysaccharidosis type IIIA (MPS IIIA), this occurs as a result of an inherited deficiency of the lysosomal hydrolase sulphamidase. Consequently, heparan sulphate, a highly sulphated glycosaminoglycan, accumulates primarily within the cells of the reticulo-endothelial and monocyte-macrophage systems and, most importantly, neurones. Children affected by MPS IIIA experience a severe, progressive neuropathology that ultimately leads to death at around 15 years of age. METHODS MPS IIIA pathology was addressed in a mouse model using two separate methods of therapeutic gene delivery. A lentiviral vector expressing murine sulphamidase was delivered to 6-week-old MPS IIIA affected mice either by intravenous injection, or by intraventricular infusion. Therapeutic outcomes were assessed 7 months after gene transfer. RESULTS After intravenous gene delivery, liver sulphamidase was restored to approximately 30% of wild-type levels. The resultant widespread delivery of enzyme secreted from transduced cells to somatic tissues via the peripheral circulation corrected most somatic pathology. However, unlike an earlier study, central nervous system (CNS) pathology remained unchanged. Conversely, intraventricular gene delivery resulted in widespread sulphamidase gene delivery in (and reduced lysosomal storage throughout) the brain. Improvements in behaviour were observed in these mice, and interestingly, pathological urinary retention was prevented. CONCLUSIONS The CNS remains the last major barrier to effective therapy for children affected by LSDs. The blood-brain barrier (BBB) limits the uptake of lysosomal enzymes from the peripheral circulation into the CNS, making direct gene delivery to the brain a reasonable, albeit more challenging, therapeutic option. Future work will further assess the relative advantages of directly targeting the brain with somatic gene delivery with sulphamidase modified to increase the efficiency of transport across the BBB.
Collapse
Affiliation(s)
- Chantelle McIntyre
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, Australia.
| | | | | |
Collapse
|
19
|
Bielicki J, McIntyre C, Anson DS. Comparison of ventricular and intravenous lentiviral-mediated gene therapy for murine MPS VII. Mol Genet Metab 2010; 101:370-82. [PMID: 20864369 DOI: 10.1016/j.ymgme.2010.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 12/28/2022]
Abstract
Mucopolysaccharidosis type VII (MPS VII) is caused by the deficiency of the lysosomal hydrolase β-glucuronidase. Symptoms include intellectual impairment, growth retardation, visual and hearing deficits and organ malfunction. The MPS VII mouse displays most of the symptoms variously associated with the MPS disorders, and has been widely used as a developmental paradigm for gene therapy. In this study, a lentiviral vector expressing murine β-glucuronidase was delivered to 6-week-old MPS VII affected mice, either by intravenous injection, or by ventricular infusion. Therapeutic outcomes were assessed 7 months after gene transfer. Intravenous vector delivery restored liver β-glucuronidase to normal levels. Consequently, most somatic pathology was corrected, and brain pathology was reduced. In mice that received ventricular vector most brain regions appeared biochemically and histologically normal. These animals showed significantly improved behavioural performance within the open-field test. An additional positive outcome of ventricular vector delivery was the significant reduction of lysosomal storage within the eye. The blood-brain barrier is not completely impervious to lysosomal enzymes, therefore, therapeutic enzyme can be distributed widely throughout the brain via the extensive cerebral vasculature. However, improvements in somatic gene delivery and expression are required for this to be completely successful. Ventricular vector delivery cleared lysosomal storage within the CNS making this a reasonable, albeit more challenging, therapeutic option for the MPS. The best therapeutic outcomes, with possible synergistic effects within the CNS, might be expected to occur when vector delivery to the brain is used in combination with somatic gene transfer.
Collapse
Affiliation(s)
- Julie Bielicki
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA, 5006, Australia
| | | | | |
Collapse
|
20
|
Tiffen JC, Bailey CG, Ng C, Rasko JEJ, Holst J. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Mol Cancer 2010; 9:299. [PMID: 21092230 PMCID: PMC3002927 DOI: 10.1186/1476-4598-9-299] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022] Open
Abstract
Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS), we generated clonal cell populations from a human breast cancer (MCF-7) and a mouse melanoma (B16-F10) cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments.
Collapse
Affiliation(s)
- Jessamy C Tiffen
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown NSW 2050, Australia
| | | | | | | | | |
Collapse
|
21
|
Engler JR, Zannettino ACW, Bailey CG, Rasko JEJ, Hughes TP, White DL. OCT-1 function varies with cell lineage but is not influenced by BCR-ABL. Haematologica 2010; 96:213-20. [PMID: 20971815 DOI: 10.3324/haematol.2010.033290] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Despite the excellent responses to imatinib therapy observed in patients with chronic phase chronic myeloid leukemia, approximately 25% of patients display primary resistance or suboptimal response. The OCT-1 activity in mononuclear cells reflects the efficiency of active influx of imatinib. OCT-1 activity in mononuclear cells is highly variable between patients and significantly correlates with a patient's molecular response to imatinib treatment and overall survival. The present study examined whether cell lineage and BCR-ABL expression influenced OCT-1 activity. DESIGN AND METHODS The OCT-1 activity and OCT-1 mRNA expression was assessed in pure populations of neutrophils, monocytes and lymphocytes recovered from chronic myeloid leukemia patients at diagnosis, in cytogenetic remission and normal individuals. The role of BCR-ABL on OCT-1 activity and differentiation was examined in a cell line model of ectopic BCR-ABL expression. RESULTS The OCT-1 activity and OCT-1 mRNA expression was highest in the neutrophil population and lowest in lymphocytes (P<0.05). This was observed for patients at diagnosis, in cytogenetic remission and normal individuals. Interestingly, neutrophil OCT-1 activity was not significantly different between patients at diagnosis, in remission and normal donors. This was also observed for monocytes and lymphocytes. Furthermore, OCT-1 activity in mononuclear cells was significantly correlated with the OCT-1 activity in neutrophils (P=0.001). In a cell line model in which BCR-ABL was ectopically expressed, we found no evidence that BCR-ABL directly affected OCT-1 expression and function. However, BCR-ABL stimulated granulocyte differentiation which, in turn, led to significantly increased OCT-1 activity (P=0.024). CONCLUSIONS These studies suggest that the predictive OCT-1 activity in patient mononuclear cells is strongly related to cell lineage, particularly the presence of neutrophils in the peripheral blood. Furthermore, BCR-ABL expression is unlikely to directly influence OCT-1 activity but may have an indirect role by enhancing granulocyte differentiation.
Collapse
Affiliation(s)
- Jane R Engler
- Department of Haematology, SA Pathology (RAH Campus), Frome Road, Adelaide. Australia
| | | | | | | | | | | |
Collapse
|
22
|
Parker DG, Coster DJ, Brereton HM, Hart PH, Koldej R, Anson DS, Williams KA. Lentivirus-mediated gene transfer of interleukin 10 to the ovine and human cornea. Clin Exp Ophthalmol 2010; 38:405-13. [DOI: 10.1111/j.1442-9071.2010.02261.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Stocker AG, Kremer KL, Koldej R, Miller DS, Anson DS, Parsons DW. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med 2009; 11:861-7. [PMID: 19634193 DOI: 10.1002/jgm.1368] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is caused by a defect in cystic fibrosis transmembrane conductance regulator (CFTR) activity, often resulting in an incurable airway disease. Gene therapy into the conducting airway epithelium is a potential cure for CF; however, most gene vectors do not result in long-lived expression, and require re-dosing. Perversely, intrinsic host immune responses can then block renewed gene transfer. METHODS To investigate whether persistent gene expression could be achieved after a single dosing event, thus avoiding the issue of blocking host responses, we used a gene transfer protocol that combined an airway pretreatment using lysophosphatidylcholine with a human immunodeficiency virus type-1 (vesicular stomatitis virus G pseudotype) derived lentiviral vector to test whether an integrating vector could produce gene expression able to last for a substantial part of the lifetime of the laboratory mouse. RESULTS We found that a single dose of LV-LacZ produced immediate as well as lifetime mouse airway expression, confirming our hypothesis that use of an integrating vector extends transgene expression. Importantly, LV-CFTR dosing achieved at least 12 months of CFTR expression, representing partial functional correction of the CFTR defect in CF-null mice. CONCLUSIONS These findings validate the potential of this methodology for developing a gene transfer treatment for CF airway disease.
Collapse
Affiliation(s)
- Alice G Stocker
- Department of Respiratory and Sleep Medicine, Women's & Children's Hospital, Children, Youth & Women's Health Service, North Adelaide 5006, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Koldej RM, Anson DS. Refinement of lentiviral vector for improved RNA processing and reduced rates of self inactivation repair. BMC Biotechnol 2009; 9:86. [PMID: 19811661 PMCID: PMC2765960 DOI: 10.1186/1472-6750-9-86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 10/07/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lentiviral gene therapy vectors are now finding clinical application. In order to fully exploit their potential it is important that vectors are made as efficient and as safe as possible. Accordingly, we have modified a previously reported vector to improve RNA processing, minimise Human Immunodeficiency Virus Type-1 (HIV-1) sequence content and reduce repair of the self inactivating (SIN) deletion. RESULTS HIV-1 sequence in the vector was reduced by substituting the polyadenylation signal with a heterologous signal. Mutation of splice donor sites was undertaken to prevent the majority of splicing within the vector genomic RNA. In addition, a number of other sequences within the vector were deleted. The combination of these modifications was able to significantly reduce the rates of both vector mobilisation and repair of the self inactivating deletion after two rounds of marker rescue. CONCLUSION RNA processing can be improved by mutation of the major and minor HIV-1 splice donor sites in the vector. In addition the rate of vector mobilisation and repair of SIN vectors can be successfully reduced by careful vector design that reduces homology between the 5' and 3' long terminal repeats (LTRs) to a minimum.
Collapse
|
25
|
Kaidonis X, Liaw WC, Roberts AD, Ly M, Anson D, Byers S. Gene silencing of EXTL2 and EXTL3 as a substrate deprivation therapy for heparan sulphate storing mucopolysaccharidoses. Eur J Hum Genet 2009; 18:194-9. [PMID: 19690583 DOI: 10.1038/ejhg.2009.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological pathology is characteristic of the mucopolysaccharidoses (MPSs) that store heparan sulphate (HS) glycosaminoglycan (gag) and has been proven to be refractory to systemic therapies. Substrate deprivation therapy (SDT) using general inhibitors of gag synthesis improves neurological function in mouse models of MPS, but is not specific to an MPS type. We have investigated RNA interference (RNAi) as a method of targeting SDT to the HS synthesising enzymes, EXTL2 and EXTL3. Multiple shRNA molecules specific to EXTL2 or EXTL3 were designed and validated in a reporter gene assay, with four out of six shRNA constructs reducing expression by over 90%. The three EXTL2-specific shRNA constructs reduced endogenous target gene expression by 68, 32 and 65%, and decreased gag synthesis by 46, 50 and 27%. One EXTL3-specific shRNA construct reduced endogenous target gene expression by 14% and gag synthesis by 39%. Lysosomal gag levels in MPS IIIA and MPS I fibroblasts were also reduced by EXTL2 and EXTL3-specific shRNA. Incorporation of shRNAs into a lentiviral expression system reduced gene expression, and one EXTL2-specific shRNA reduced gag synthesis. These results indicate that deprivation therapy through shRNA-mediated RNAi has potential as a therapy for HS-storing MPSs.
Collapse
Affiliation(s)
- Xenia Kaidonis
- Department of Genetics and Molecular Pathology, SA Pathology (WCH site), North Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Byers S, Rothe M, Lalic J, Koldej R, Anson DS. Lentiviral-mediated correction of MPS VI cells and gene transfer to joint tissues. Mol Genet Metab 2009; 97:102-8. [PMID: 19307142 DOI: 10.1016/j.ymgme.2009.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
Abstract
Joint disease in mucopolysaccharidosis type VI (MPS VI) remains difficult to treat despite the success of enzyme replacement therapy in treating other symptoms. In this study, the efficacy of a lentiviral vector to transduce joint tissues and express N-acetylgalactosamine-4-sulphatase (4S), the enzyme deficient in MPS VI, was evaluated in vitro and the expression of beta-galactosidase was used to evaluate transduction in vivo. High viral copy number was achieved in MPS VI fibroblasts and 4-sulphatase activity reached 12 times the normal level. Storage of accumulated glycosaminoglycan was reduced in a dose dependent manner in both MPS VI skin fibroblasts and chondrocytes. Enzyme expression was maintained in skin fibroblasts for up to 41 days. Comparison of two promoters; the murine phosphoglycerate kinase gene promoter (pgk) and the myeloproliferative sarcoma virus long terminal repeat promoter (mpsv), demonstrated a higher level of marker gene expression driven by the mpsv promoter in both chondrocytes and synoviocytes in vitro. When injected into the rat knee, the expression of beta-galactosidase from the mpsv promoter was widespread across the synovial membrane and the fascia covering the cruciate ligaments and meniscus. No transduction of chondrocytes or ligament cells was observed. Transduction was maintained for at least 8 weeks after injection. These results indicate that the lentiviral vector can be used to deliver 4S to a range of joint tissues in vitro and efficiently transduce synovial cells and express beta-galactosidase in vivo.
Collapse
Affiliation(s)
- Sharon Byers
- Matrix Biology Unit, Department of Genetics, SA Pathology, Women's and Children's Hospital, 72 King William Rd., Nth. Adelaide, SA 5006, Australia.
| | | | | | | | | |
Collapse
|
27
|
Kutner RH, Puthli S, Marino MP, Reiser J. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol 2009; 9:10. [PMID: 19220915 PMCID: PMC2649911 DOI: 10.1186/1472-6750-9-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 02/16/2009] [Indexed: 12/14/2022] Open
Abstract
Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols.
Collapse
Affiliation(s)
- Robert H Kutner
- Gene Therapy Program, Vector Core, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
28
|
Smith SL, Shioda T. Advantages of COS-1 monkey kidney epithelial cells as packaging host for small-volume production of high-quality recombinant lentiviruses. J Virol Methods 2009; 157:47-54. [PMID: 19118578 DOI: 10.1016/j.jviromet.2008.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
The HEK293T human embryonic kidney cells have been used widely as a packaging host for transfection-based production of recombinant lentiviruses. The present study describes advantages of using COS-1 African green monkey kidney cells versus HEK293T cells as a packaging host for small-volume production of high-quality recombinant lentiviruses. The particle performance index, defined as the ratio of infection-competent viral particles to the total number of particles, was three- to four-fold greater in transfection supernatants generated using COS-1 cells than that generated using HEK293T cells. Adhesion of HEK293T cells to the cell culture-treated plastic surface was weak, causing significant HEK293T cell contamination in the transfection supernatants produced by laboratory automation using the 96-well cell culture plates. In contrast, COS-1 cells adhered strongly to the plastic surface, and cell contamination was not detected in the transfection supernatants. These results suggest that COS-1 cells may be a useful alternative packaging host for use for automated generation of large numbers of high-quality lentivirus reagents, particularly because they eliminate the need for additional purification steps to remove viral particles from cell culture supernatant.
Collapse
Affiliation(s)
- Shannon L Smith
- Molecular Profiling Laboratory, Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
29
|
Foster H, Sharp PS, Athanasopoulos T, Trollet C, Graham IR, Foster K, Wells DJ, Dickson G. Codon and mRNA Sequence Optimization of Microdystrophin Transgenes Improves Expression and Physiological Outcome in Dystrophic mdx Mice Following AAV2/8 Gene Transfer. Mol Ther 2008; 16:1825-32. [DOI: 10.1038/mt.2008.186] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease. Eur J Radiol 2008; 68:S22-6. [PMID: 18599234 DOI: 10.1016/j.ejrad.2008.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 11/20/2022]
Abstract
We seek to establish non-invasive imaging able to detect and measure aspects of the biology and physiology of surface fluids present on airways, in order to develop novel outcome measures able to validate the success of proposed genetic or pharmaceutical therapies for cystic fibrosis (CF) airway disease. Reduction of the thin airway surface liquid (ASL) is thought to be a central pathophysiological process in CF, causing reduced mucociliary clearance that supports ongoing infection and destruction of lung and airways. Current outcome measures in animal models, or humans, are insensitive to the small changes in ASL depth that ought to accompany successful airway therapies. Using phase contrast X-ray imaging (PCXI), we have directly examined the airway surfaces in the nasal airways and tracheas of anaesthetised mice, currently to a resolution of approximately 2 microm. We have also achieved high resolution three-dimensional (3D) imaging of the small airways in mice using phase-contrast enhanced computed tomography (PC-CT) to elucidate the structure-function relationships produced by airway disease. As the resolution of these techniques improves they may permit non-invasive monitoring of changes in ASL depth with therapeutic intervention, and the use of 3D airway and imaging in monitoring of lung health and disease. Phase contrast imaging of airway surfaces has promise for diagnostic and monitoring options in animal models of CF, and the potential for future human airway imaging methodologies is also apparent.
Collapse
|
31
|
|
32
|
ter Brake O, Berkhout B. Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 2008; 9:743-50. [PMID: 17628029 DOI: 10.1002/jgm.1078] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND HIV-1 replication can be inhibited with RNA interference (RNAi) by expression of short hairpin RNA (shRNA) from a lentiviral vector. Because lentiviral vectors are based on HIV-1, viral sequences in the vector system are potential targets for the antiviral shRNAs. Here, we investigated all possible routes by which shRNAs can target the lentiviral vector system. METHODS Expression cassettes for validated shRNAs with targets within HIV-1 Leader, Gag-Pol, Tat/Rev and Nef sequences were inserted in the lentiviral vector genome. Third-generation self-inactivating HIV-1-based lentiviral vectors were produced and lentiviral vector capsid production and transduction titer determined. RESULTS RNAi against HIV-1 sequences within the vector backbone results in a reduced transduction titer while capsid production was unaffected. The notable exception is self-targeting of the shRNA encoding sequence, which does not affect transduction titer. This is due to folding of the stable shRNA hairpin structure, which masks the target for the RNAi machinery. Targeting of Gag-Pol mRNA reduces both capsid production and transduction titer, which was improved with a human codon-optimized Gag-Pol construct. When Rev mRNA was targeted, no reduction in capsid production and transduction titer was observed. CONCLUSIONS Lentiviral vector titers can be negatively affected when shRNAs against the vector backbone and the Gag-Pol mRNA are expressed during lentiviral vector production. Titer reductions due to targeting of the Gag-Pol mRNA can be avoided with a human codon-optimized Gag-Pol packaging plasmid. The remaining targets in the vector backbone may be modified by point mutations to resist RNAi-mediated degradation during vector production.
Collapse
Affiliation(s)
- Olivier ter Brake
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, The Netherlands
| | | |
Collapse
|
33
|
Broussau S, Jabbour N, Lachapelle G, Durocher Y, Tom R, Transfiguracion J, Gilbert R, Massie B. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 2008; 16:500-7. [PMID: 18180776 DOI: 10.1038/sj.mt.6300383] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have developed new packaging cell lines (293SF-PacLV) that can produce lentiviral vectors (LVs) in serum-free suspension cultures. A cell line derived from 293SF cells, expressing the repressor (CymR) of the cumate switch and the reverse transactivator (rtTA2(S)-M2) of the tetracycline (Tet) switch, was established first. We next generated clones stably expressing the Gag/Pol and Rev genes of human immunodeficiency virus-1, and the glycoprotein of vesicular stomatitis virus (VSV-G). Expression of Rev and VSV-G was tightly regulated by the cumate and Tet switches. Our best packaging cells produced up to 2.6 x 10(7) transducing units (TU)/ml after transfection with the transfer vector. Up to 3.4 x 10(7) TU/ml were obtained using stable producers generated by transducing the packaging cells with conditional-SIN-LV. The 293SF-PacLV was stable, as shown by the fact that some producers maintained high-level LV production for 18 weeks without selective pressure. The utility of the 293SF-PacLV for scaling up production in serum-free medium was demonstrated in suspension cultures and in a 3.5-L bioreactor. In shake flasks, the best packaging cells produced between 3.0 and 8.0 x 10(6) TU/ml/day for 3 days, and the best producer cells, between 1.0 and 3.4 x 10(7) TU/ml/day for 5 days. In the bioreactor, 2.8 liters containing 2.0 x 10(6) TU/ml was obtained after 3 days of batch culture following the transfection of packaging cells. In summary, the 293SF-PacLV possesses all the attributes necessary to become a valuable tool for scaling up LV production for preclinical and clinical applications.
Collapse
Affiliation(s)
- Sophie Broussau
- Groupe de Vecteurs de Génomique et Thérapie Génique, Institut de Recherche en Biotechnologie, Conseil National de Recherches Canada, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Segura MM, Garnier A, Durocher Y, Coelho H, Kamen A. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol Bioeng 2007; 98:789-99. [PMID: 17461423 DOI: 10.1002/bit.21467] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of lentiviral vectors as gene delivery vehicles has become increasingly popular in recent years. The growing interest in these vectors has created a strong demand for large volumes of vector stocks, which entails the need for scaleable vector manufacturing procedures. In this work, we present a simple and robust process for the production of lentiviral vectors using scaleable production and purification methodologies. Lentivirus particles were produced by transient transfection of serum-free suspension-growing 293 EBNA-1 cells with four plasmids encoding the vector components using linear polyethylenimine (PEI) as transfection reagent. This process was successfully scaled-up from shake flasks to a 3-L bioreactor from which 10(10) IVP were recovered. In addition, an affinity chromatography protocol designed for purification of bioactive oncoretroviral vectors has been adapted in this work for the purification of VSV-G pseudotyped lentiviral vectors. Using heparin affinity chromatography, lentiviral particles were concentrated and purified directly from the clarified supernatants. During this step, a recovery of 53% of infective lentiviral particles was achieved while removing 94% of the impurities contained in the supernatant.
Collapse
Affiliation(s)
- María Mercedes Segura
- Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Kremer KL, Dunning KR, Parsons DW, Anson DS. Gene delivery to airway epithelial cells in vivo: a direct comparison of apical and basolateral transduction strategies using pseudotyped lentivirus vectors. J Gene Med 2007; 9:362-8. [PMID: 17380490 DOI: 10.1002/jgm.1025] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Lentivirus vectors are being investigated as gene delivery vehicles for cystic fibrosis airway gene therapy. Vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped vectors transduce airway epithelia via receptors that are located predominantly on the basolateral surface of the airway epithelium. Effective transduction with VSV-G-pseudotyped vectors requires the use of a pre-treatment that disrupts epithelial tight junctions, allowing access to these basolateral receptors. In contrast, it has been reported that apically targeted lentiviral vectors allow efficient gene transfer in the absence of any pre-treatment. In a direct comparison of transduction by a VSV-G-pseudotyped vector, in combination with a pre-treatment with lysophosphatidylcholine (LPC), and the same vector pseudotyped with the apically targeted baculovirus GP64 envelope (without any pre-treatment), the GP64 vector was found to be significantly less efficient. However, when a pre-treatment with LPC was used the level of transduction with the GP64-pseudotyped lentiviral vector was not significantly different to that resulting from the VSV-G-pseudotyped vector. The cell types transduced with each vector were essentially the same, with the majority of cells transduced being respiratory (ciliated cells). However, unlike the VSV-G-pseudotyped vector, which results in persisting gene expression, transduction with the GP64-pseudotyped vector resulted in gene expression that declined to undetectable levels over six months, whether or not an LPC pre-treatment was used.
Collapse
Affiliation(s)
- Karlea L Kremer
- Department of Genetic Medicine, Women's and Children's Hospital, CYWHS, 72 King William Road, North Adelaide, South Australia
| | | | | | | |
Collapse
|
36
|
Parker DGA, Kaufmann C, Brereton HM, Anson DS, Francis-Staite L, Jessup CF, Marshall K, Tan C, Koldej R, Coster DJ, Williams KA. Lentivirus-mediated gene transfer to the rat, ovine and human cornea. Gene Ther 2007; 14:760-7. [PMID: 17301843 DOI: 10.1038/sj.gt.3302921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy of the cornea shows promise for modulating corneal transplant rejection but the most appropriate vector for gene transfer has yet to be determined. We investigated a lentiviral vector (LV) for its ability to transduce corneal endothelium. A lentivector expressing enhanced yellow fluorescent protein (eYFP) under the control of the Simian virus type 40 early promoter (LV-SV40-eYFP) transduced 80-90% of rat, ovine and human corneal endothelial cells as detected by fluorescence microscopy. The kinetics of gene expression varied among species, with ovine corneal endothelium showing a relative delay in detectable reporter gene expression compared with the rat or human corneal endothelium. Vectors containing the myeloproliferative sarcoma virus promoter or the phosphoglycerate kinase promoter were not significantly more effective than LV-SV40-eYFP. The stability of eYFP expression in rat and ovine corneas following ex vivo transduction of the donor cornea was assessed following orthotopic corneal transplantation. Following transduction ex vivo, eYFP expression was maintained in corneal endothelial cells for at least 28 days after corneal transplantation in the sheep and >60 days in the rat. Thus, rat, ovine and human corneal endothelial cells were efficiently transduced by the LV, and gene expression appeared stable over weeks in vivo.
Collapse
Affiliation(s)
- D G A Parker
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Anson DS, McIntyre C, Thomas B, Koldej R, Ranieri E, Roberts A, Clements PR, Dunning K, Byers S. Lentiviral-mediated gene correction of mucopolysaccharidosis type IIIA. GENETIC VACCINES AND THERAPY 2007; 5:1. [PMID: 17227588 PMCID: PMC1783652 DOI: 10.1186/1479-0556-5-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/16/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type IIIA (MPS IIIA) is the most common of the mucopolysaccharidoses. The disease is caused by a deficiency of the lysosomal enzyme sulphamidase and results in the storage of the glycosaminoglycan (GAG), heparan sulphate. MPS IIIA is characterised by widespread storage and urinary excretion of heparan sulphate, and a progressive and eventually profound neurological course. Gene therapy is one of the few avenues of treatment that hold promise of a sustainable treatment for this disorder. METHODS The murine sulphamidase gene cDNA was cloned into a lentiviral vector and high-titre virus produced. Human MPS IIIA fibroblast cultures were transduced with the sulphamidase vector and analysed using molecular, enzymatic and metabolic assays. High-titre virus was intravenously injected into six 5-week old MPS IIIA mice. Three of these mice were pre-treated with hyperosmotic mannitol. The weight of animals was monitored and GAG content in urine samples was analysed by polyacrylamide gel electrophoresis. RESULTS Transduction of cultured MPS IIIA fibroblasts with the sulphamidase gene corrected both the enzymatic and metabolic defects. Sulphamidase secreted by gene-corrected cells was able to cross correct untransduced MPS IIIA cells. Urinary GAG was found to be greatly reduced in samples from mice receiving the vector compared to untreated MPS IIIA controls. In addition, the weight of treated mice became progressively normalised over the 6-months post-treatment. CONCLUSION Lentiviral vectors appear promising vehicles for the development of gene therapy for MPS IIIA.
Collapse
Affiliation(s)
- Donald S Anson
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
- Department of Biotechnology, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
- School of Pharmacy & Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Chantelle McIntyre
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
| | - Belinda Thomas
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, VIC 3168, Australia
| | - Rachel Koldej
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
| | - Enzo Ranieri
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
| | - Ainslie Roberts
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
| | - Peter R Clements
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
| | - Kylie Dunning
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Obstetrics and Gynaecology, University of Adelaide, SA 5005, Australia
| | - Sharon Byers
- Department of Genetic Medicine, Women's and Children's Hospital, Children, Youth and Women's Health Service, 72 King William Road, North Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, SA 5005, Australia
| |
Collapse
|
38
|
Abstract
The unique spectral properties and versatility of autofluorescent proteins have facilitated their widespread use in flow cytometric applications. The ability to analyze heterologous fluorescent protein expression conveniently and noninvasively by individually interrogating cells has facilitated increasingly more sophisticated experimental designs to address important biological questions. Improved multilaser flow cytometers have allowed the fluorescent protein field to flourish by permitting high-speed, multiparametric analysis of biological samples. Fluorescent proteins are well suited for either transient or stable expression analysis. Therefore, achieving efficient gene transfer and expression in cells by transfection or viral transduction is paramount to the optimal use of fluorescent proteins in flow cytometry. The archetypal autofluorescent protein, enhanced green fluorescent protein (eGFP), can be used successfully in combination with other fluorescent protein variants. Two such variants, Cerianthus sp. orange fluorescent protein (cOFP) and a fast maturing variant of Discosoma sp. red protein (DsREDExpress), are well suited for flow cytometric applications in combination with eGFP and do not require special filters for optimal excitation and detection.
Collapse
Affiliation(s)
- Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute of Cancer Medicine and Cell Biology, Australia
| | | |
Collapse
|