1
|
Magdy Eldaly S, Salama Zakaria D, Hanafy Metwally N. Design, Synthesis, Anticancer Evaluation and Molecular Modeling Studies of New Thiazolidinone-Benzoate Scaffold as EGFR Inhibitors, Cell Cycle Interruption and Apoptosis Inducers in HepG2. Chem Biodivers 2023; 20:e202300138. [PMID: 37695095 DOI: 10.1002/cbdv.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
Synthesis of new anticancer candidates with protein kinases inhibitory potency is a major goal of pharmaceutical science and synthetic research. This current work represents the synthesis of a series of substituted benzoate-thiazolidinones. Most prepared thiazolidinones were evaluated in vitro for their potential anticancer activity against three cell lines by MTT assay, and they found to be more effective against cancer cell lines with no harm toward normal cells. Thiazolidinones 5 c and 5 h were further evaluated to be kinase inhibitors against EGFR showing effective inhibitory impact (with IC50 value; 0.2±0.009 and 0.098±0.004 μM, for 5 c and 5 h, respectively). Furthermore, 5 c and 5 h have effects on cell cycle and apoptosis induction capability in HepG2 cell lines by DNA-flow cytometry analysis and annexin V-FITC apoptosis assay, respectively. The results showed that they have effect of disrupting the cell cycle and causing cell mortality by apoptosis in the treated cells. Moreover, molecular docking studies showed better binding patterns for 5 c and 5 h with the active site of the epidermal growth factor receptor (EGFR) protein kinase (PDB code 1M17). Finally, toxicity risk and physicochemical characterization by Osiris method was performed on most of the compounds, revealing excellent properties as possible drugs.
Collapse
Affiliation(s)
- Salwa Magdy Eldaly
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Dalia Salama Zakaria
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | |
Collapse
|
2
|
Metwally NH, Koraa TH, Sanad SMH. Green one-pot synthesis and in vitro antibacterial screening of pyrano[2,3- c]pyrazoles, 4 H-chromenes and pyrazolo[1,5- a]pyrimidines using biocatalyzed pepsin. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2074301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Soror S, Fahim AM, Elabbady S, Nassar E, Aboelnaga A. Synthesis, antimicrobial activities, docking studies and computational calculations of new bis-1,4-phenylene -1 H-1,2,3-triazole derivatives utilized ultrasonic energy. J Biomol Struct Dyn 2021; 40:5409-5426. [PMID: 33522432 DOI: 10.1080/07391102.2021.1875051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this elucidation, we studied the utility of condensation reaction between 1,4-phenylenediamine (1) with acetyl acetone (2) with hydrazine hydrate utilized ultrasonic energy in one step reaction to afford the corresponding 1,1'-(1,4-phenylenebis (5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(ethan-1-one) (4) in excellent yield. The ethanol solution of bis triazole (4) and different aldehyde derivatives were sonicated at 75 °C for 2 h to afford chalcone derivatives 5a-d which were confirmed via spectral data such as FTIR, 1HNMR, 13CNMR and mass spectra. Moreover, the intermolecular cyclization of chalcone (5a) with NH2NH2 in sodium hydroxide solution to give the corresponding 4,5-dihydro-1H-pyrazol-5-yl)-1H-indole (6) using ultrasonic energy for 4 h, while the Michael addition of chalcones (5a) and (5 b) with thiourea in basic condition to afford the corresponding pyrimidine-2-thiol derivatives (7) and (9). Treatment of compound (7) with NH2NH2 to afford 1,4-bis(4-(2-hydrazineyl-6-(1H-indol-3-yl)pyrimidin-4-yl) derivatives (8). The synthesized compounds were screened against various microbial strains and displayed excellent antimicrobial potential. Additionally, the docking studies of these nine compounds were carried out with (PDB ID:3t88), (PDB ID:2wje), (PDB ID:4ynt) and (PDB ID:1tgh) which were attached with different amino acids with shortage bond length, and it was noticed that PMTS1, PMTS2 and PMTS3 were the most stable compounds with the lowest energy affinity which is compatible with biological study. Furthermore, the theoretical investigation of bis-triazole compounds were optimized via DFT/B3LYP/6-31G(d) level which showed the hyperconjugation of nitrogen atoms and elucidated their physical parameters and NBO charges and confirmed their stability and biological activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sahar Soror
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| | - Asmaa M Fahim
- Green Chemistry Department, National Research Center, Cairo, Egypt
| | - Samia Elabbady
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| | - Ekhlass Nassar
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| | - Asmaa Aboelnaga
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| |
Collapse
|
4
|
Almarhoon Z, Al Rasheed HH, El-Faham A. Ultrasonically Assisted N-Cyanoacylation and Synthesis of Alkyl(4-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2 H)-yl)benzoyl)amino Acid Ester Derivatives. ACS OMEGA 2020; 5:30671-30678. [PMID: 33283115 PMCID: PMC7711942 DOI: 10.1021/acsomega.0c04730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
This work represents the use of N-3-(3,5-dimethyl-1H-pyrazol-1-yl)-3-oxopropanenitrile as a cyanoacetylating agent for the synthesis of cyanoacetamide benzoic acid and benzophenone derivatives by two different methods, namely, conventional heating and ultrasonication. The cyanoacetamide derivatives were subjected to cyclization to produce N-substituted 2-pyridone derivatives under conventional heating and by an ultrasonic method as well. The ultrasonic method afforded the products in less reaction time with high yields and purities compared to the conventional method, as observed from their spectral data. N-(4-Carboxy phenyl)-4,6-dimethyl-3-cyano-2-pyridone was coupled with different amino acid esters by the OxymaPure/DIC methodology under traditional and ultrasonic conditions. Again, ultrasonication assisted the coupling step and afforded the products with higher yields and purities compared to the traditional method. Fourier transform infrared spectroscopy, NMR (1H and 13C), elemental analysis, and LC-MS were used to determine the structures of all compounds. Finally, a feature of this protocol is exploring the utilization of ultrasonication as an eco-friendly alternative conventional heating method for N-cyanoacylation and synthesis of N-substituted pyridinone derivatives and as a coupling method for the formation of an amide bond, which might be of interest for many researchers.
Collapse
Affiliation(s)
- Zainab Almarhoon
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al Rasheed
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayman El-Faham
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Chemistry
Department, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia 12321, Alexandria, Egypt
| |
Collapse
|
5
|
Gerndt S, Chen CC, Chao YK, Yuan Y, Burgstaller S, Scotto Rosato A, Krogsaeter E, Urban N, Jacob K, Nguyen ONP, Miller MT, Keller M, Vollmar AM, Gudermann T, Zierler S, Schredelseker J, Schaefer M, Biel M, Malli R, Wahl-Schott C, Bracher F, Patel S, Grimm C. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. eLife 2020; 9:54712. [PMID: 32167471 PMCID: PMC7108868 DOI: 10.7554/elife.54712] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.
Collapse
Affiliation(s)
- Susanne Gerndt
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna Scotto Rosato
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Einar Krogsaeter
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Universität Leipzig, Leipzig, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ong Nam Phuong Nguyen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Meghan T Miller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Marco Keller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johann Schredelseker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Schaefer
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.,Rudolf-Boehm-Institute for Pharmacology and Toxicology, Universität Leipzig, Leipzig, Germany
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|