1
|
Balamon MG, Hamed AA, El-Bordany EA, Swilem AE, Mahmoud NFH. Elaboration of newly synthesized tetrahydrobenzo[b]thiophene derivatives and exploring their antioxidant evaluation, molecular docking, and DFT studies. Sci Rep 2024; 14:27339. [PMID: 39521808 PMCID: PMC11550804 DOI: 10.1038/s41598-024-74275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Herein, 2-amino-6-(tert-butyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (1) was synthesized in excellent yield through gewald reaction in multi components one pot reaction. Compound 1 was utilized as a building block to synthesize a new group of tetrahydro benzo[b] thiophene congeners. The chemical structure of all the novel tetrahydro benzo[b]thiophene derivatives were elucidated through the melting point, elemental analysis, FT-IR, 1H-NMR, and mass spectroscopy. Furthermore, the total antioxidant capacity (TAC) of all the newly synthesized heterocyclic derivatives was evaluated according to the phosphomolybdenum method using ascorbic acid as standard. The findings revealed that compounds 1, 16, and 17 demonstrated significant antioxidant potency comparable to that of ascorbic acid. This suggests the potential of these heterocycles as promising candidates for antioxidant drugs in the treatment of oxidative stress-related diseases. Finally, molecular docking was conducted to study the binding affinity for the most potent antioxidant compounds 1, 16, 17 and ascorbic acid inside the interactions of compounds 1, 16, and 17 with the Keap1 (Kelch-like ECH-associated protein 1) protein (PDB: 7C5E), compared to the co-crystallized ligand triethylene glycol (PGE) and ascorbic acid as a reference drug for antioxidants. DFT calculations and global descriptors were calculated for the most potent compounds to correlate the relation between chemical structure and reactivity.
Collapse
Affiliation(s)
- Mina G Balamon
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Eman A El-Bordany
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed E Swilem
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Naglaa F H Mahmoud
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Algohary AM, Al-Ghamdi YO, Babaker MA, Rizk SA. One Pot Synthesis of Thiopyrimidine Derivatives from Lignin Reproductions by Microwave-Assisted Ultrasonic Microscopy with DFT Description for Clarifying the Mass Spectrum. Polycycl Aromat Compd 2024:1-20. [DOI: 10.1080/10406638.2024.2401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 11/12/2024]
Affiliation(s)
- Ayman M. Algohary
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Youssef O. Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Manal A. Babaker
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sameh A. Rizk
- Department of Chemistry, Science Faculty, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Alzahrani AY, Gomha SM, Zaki ME, Farag B, Abdelgawad FE, Mohamed MA. Chitosan-sulfonic acid-catalyzed green synthesis of naphthalene-based azines as potential anticancer agents. Future Med Chem 2024; 16:647-663. [PMID: 38385167 DOI: 10.4155/fmc-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Aim: This study focuses on advancing green chemistry in anticancer drug discovery, particularly through the synthesis of azine derivatives with a naphthalene core using CS-SO3H as a catalyst. Methods: Novel benzaldazine and ketazine derivatives were synthesized using (E)-(naphthalen-1-ylmethylene)hydrazine and various carbonyl compounds. The methods employed included thermal and grinding techniques, utilizing CS-SO3H as an eco-friendly and cost-effective catalyst. Results: The approach resulted in high yields, short reaction times and demonstrated catalyst reusability. Cytotoxicity tests highlighted compounds 3b, 11 and 13 as potent against the HEPG2-1. Conclusion: This study successfully aligns with the objectives of eco-conscious drug development in organic chemistry. Molecular docking and in silico studies further indicate the potential of these ligands as antitumor medicines, with favorable oral bioavailability properties.
Collapse
Affiliation(s)
- Abdullah Ya Alzahrani
- Department of Chemistry, Faculty of Science & Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Magdi Ea Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy E Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Mahmoud A Mohamed
- Technology of Textile Department, Faculty of Technology & Education, Beni-Suef University, Beni-Suef, 62521, Egypt
- Chemistry Department, Faculty of Science & Humanity study-Afif, Shaqra University, 11911, Saudi Arabia
| |
Collapse
|
4
|
Abu-Hashem AA, Hakami O, Amri N. Synthesis, anticancer activity and molecular docking of new quinolines, quinazolines and 1,2,4-triazoles with pyrido[2,3- d] pyrimidines. Heliyon 2024; 10:e26735. [PMID: 38468950 PMCID: PMC10925991 DOI: 10.1016/j.heliyon.2024.e26735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Recently, heterocyclic compounds such as pyrido [2,3-d] pyrimidinones, 1,2,4-triazolopyrimidines, pyrimidoquinazolines, and quinoline derivatives have gained attention from researchers due to their pharmacological and biological activities. To synthesize new compounds, quinoline-2-thioxopyrido [2,3-d] pyrimidinone (1) and methylthioquinoline-pyrido [2,3-d] pyrimidinones (2) were used as starting materials. The new compounds synthesized were quinoline-pyrido [2,3-d] (DeGoey et al., 2013; Gouda et al., 2020; Dangolani et al., 2018) [1, 2,4]triazolopyrimidinones (5a-d), 2-methylsulfonyl-quinoline-pyrido [2,3-d]pyrimidinone (6), pyrido [2,3-d]pyrimidine derivatives, pyridopyrimido (Gouda et al., 2020; DeGoey et al., 2013) 2,12,1-b] quinazoline (9), pyrido [(Khajouei et al., 2021; Gouda et al., 2020) 3,23,2-e]bis (1,2,4-triazole)pyrimidine (12a,b) and pyridopyrimido-diquinazoline-dione (16) derivatives. These compounds were synthesized with high efficiency, producing yields ranging from 69% to 90%, under moderate conditions, through treating (2) or (10) with various reagents such as anthranilic acid, phosphorus oxychloride, hydrazine hydrate, formic acid, glacial acetic acid, arylamine (aniline, 4-chloroaniline, or 4-methoxyaniline), and sec-amine (piperazine or morpholine). The new structures of the synthesized compounds were verified using various spectroscopic procedures, such as IR, NMR, and mass spectra. Molecular docking studies were carried out to investigate and discuss how the prepared compounds bind to amino acids such as Estrogen Receptor alpha, EGFR, and NADPH oxidase protein. Also, the synthesized products were tested for their anticancer and antioxidant activities against the (MCF-7) breast carcinoma cell line and human normal Retina pigmented epithelium cells (RPE-1). The study on the structure-activity relationship (SAR) established a correlation between the chemical structure of the newly synthesized compounds and their anticancer activity. The findings suggest that compounds 5a-d, 9,12a-b, and 16 exhibited promising anticancer activity and antioxidant effects as measured by DPPH inhibition.
Collapse
Affiliation(s)
- Ameen Ali Abu-Hashem
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Nasser Amri
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Abu‐Hashem AA, Yousif MNM, El‐Gazzar ABA, Hafez HN. Synthesis, design, and antimicrobial activity of pyrido[2,3‐ d][1,2,4]triazolo[4,3‐a]pyrimidinones based on quinoline derivatives. J CHIN CHEM SOC-TAIP 2023; 70:2187-2205. [DOI: 10.1002/jccs.202300212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 07/10/2024]
Abstract
AbstractThe pyrido[2,3‐d]pyrimidine moieties are one of the most biologically widespread heterocyclic compounds as antimicrobial, antioxidant, antitubercular, antiviral and anti‐inflammatory. Hence, we synthesized an efficient new series of 2‐thioxo‐pyrido[2,3‐d]pyrimidinone, 2‐hydrazinyl‐(quinolin‐2‐yl)pyrido[2,3‐d]pyrimidinone,N′‐(quinolin‐2‐yl)‐pyrido[2,3‐d]pyrimidine‐(formo/aceto)‐hydrazide and substituted‐(quinolin‐2‐yl)pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidinone derivatives. The characterization of new compounds was corresponded by using spectroscopic techniques, IR, NMR and Mass spectra. In vitro, all compounds were evaluated as antimicrobial activity compared with cefotaxime sodium and nystatin as the standard drug. This work deals with the exploration of the new heterocyclic compounds and medicinal diversity of quinoline‐pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine derivatives that might pave the way for long in the discovery of therapeutic medicine for future drug design.
Collapse
Affiliation(s)
- Ameen A. Abu‐Hashem
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
| | - Mahmoud N. M. Yousif
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
| | | | - Hend N. Hafez
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
| |
Collapse
|
6
|
Balamon MG, El-Bordany EA, Mahmoud NFH, Hamed AA, Swilem AE. Exploring the Antioxidant Potency of New Naphthalene-Based Chalcone Derivatives: Design, Synthesis, Antioxidant Evaluation, Docking Study, DFT Calculations. Chem Biodivers 2023; 20:e202301344. [PMID: 37909089 DOI: 10.1002/cbdv.202301344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Naphthalene-based chalcone derivative was successfully synthesized through the condensation of 2,4-dichlorobenzaldehyde with 2-acetylnaphthalene. This chalcone, denoted as compound 1, demonstrated a versatile reactivity upon treatment with both nitrogen and carbon nucleophiles, and yielded diverse heterocyclic scaffolds such as pyrazoline, thiazole, pyrimidine, pyran, and pyridine derivatives. The pyrazoline aldehyde derivative 7 was further derivatized to produce the hydrazide-hydrazone 13, namely, (1H-pyrazol-1-yl)methylene)acetohydrazide, which was exploited to synthesize derivatives of 2-oxo-2H-chromene-3-carbohydrazide 14, 2-(4-oxo-4,5-dihydrothiazol-2-yl)acetohydrazide 15, and 3-(4-nitrophenyl)acrylohydrazide 16. All the newly synthesized compounds were characterized by melting point, elemental analysis, as well as FT-IR, 1 H-NMR and mass spectroscopy. Furthermore, these heterocyclic derivatives were screened for their antioxidant capacities using the DPPH radical assay. The results showed that compounds 5 and 10 are the most potent antioxidants with IC50 values 178, 177(μM), respectively. comparable to that of ascorbic acid which has IC50 value 148. Meanwhile, compounds 2, 12, 13, 14, 15, and 16 exhibited moderate antioxidant activities with IC50 values ranged from 266 to 291(μM). Thus, these heterocycles could emerge as promising antioxidant drugs for the treatment of oxidative stress-related diseases. Finally, molecular docking was conducted to study the binding affinity for the most potent antioxidant compounds 5, 10, and ascorbic acid inside the active pocket of Human Peroxiredoxin 5 (1HD2). DFT calculations and global descriptors were calculated for the most potent compounds to correlate the relation between chemical structure and reactivity.
Collapse
Affiliation(s)
- Mina G Balamon
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Eman A El-Bordany
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Naglaa F H Mahmoud
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed E Swilem
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
7
|
El-Sewedy A, El-Bordany EA, Mahmoud NFH, Ali KA, Ramadan SK. One-pot synthesis, computational chemical study, molecular docking, biological study, and in silico prediction ADME/pharmacokinetics properties of 5-substituted 1H-tetrazole derivatives. Sci Rep 2023; 13:17869. [PMID: 37857636 PMCID: PMC10587066 DOI: 10.1038/s41598-023-44615-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
An efficient synthesis of 5-substituted 1H-tetrazoles was successfully achieved through one-pot multi-component condensation reactions of some aromatic aldehydes or indolin-2,3-dione with malononitrile and sodium azide using diverse reaction conditions to obtain considerable product yields. Furthermore, it has been achieved for the first time to construct desired products under neat condition. Molecular docking studies with CSNK2A1 receptor disclosed the lowest binding energy displayed by the dimethoxyphenyl derivative 4c with - 6.8687 kcal/mol. The synthesized tetrazoles were screened for their in-vitro cytotoxic activity against epidermoid cancer cell line (A431) and colon cancer line (HCT116) with respect to normal skin fibroblast cell line (BJ-1) using MTT assay, and antimicrobial activity against the bacteria: K. pneumonia, S. aureus, and the fungi: Candida albicans, as well as their antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl assay. In addition, the toxicity of tetrazole derivative was assessed by determination of their approximate lethal dose fifty (LD50), calculated via an oral administration to rats, through measurement of ALT and bilirubin levels in serum. The antitumor results can suggest that the potent tetrazole derivative namely, 3-(3,4-dimethoxyphenyl)-2-(1H-tetrazol-5-yl)acrylonitrile (4c) could be a potential drug against epidermoid carcinoma. The antioxidant results indicated to tetrazoles exhibited great antioxidant properties even at very low doses. A molecular dynamics simulation was performed for the synthesized compounds (ligands) to investigate their tendency for binding with the active sites of protein.
Collapse
Affiliation(s)
- Ahmed El-Sewedy
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Eman A El-Bordany
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Naglaa F H Mahmoud
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Kholoud A Ali
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sayed K Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Gouda MAS, Salem MAI, Marzouk MI, Mahmoud NFH, Ismail MF. Synthesis, Antioxidant and Antiproliferative Evaluation, Molecular Docking and DFT Studies of Some Novel Coumarin and Fused Coumarin Derivatives. Chem Biodivers 2023; 20:e202300706. [PMID: 37321977 DOI: 10.1002/cbdv.202300706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
N'-[(4-Chloro-2-oxo-2H-chromen-3-yl)methylene]-2-cyanoacetohydrazide (3) was synthesized in excellent yield from the condensation of 4-Chloro-2-oxo-2H-chromene-3-carbaldehyde with cyanoacetohydrazide. Compound 3 was utilized as a building block to synthesize novel coumarin and heterocycle-fused coumarin derivatives. The chemical structures of all the new coumarin compounds were identified by spectral analyses. Some of the new coumarins compounds were screened in human cancer cell lines (HEPG-2, MCF-7, HCT-116 and PC-3) to learn about their cytotoxic effects in addition to the study of their DNA damage and antioxidant activity. Three of these compounds exhibited remarkable antioxidant and anti-proliferative activities. Moreover, they have the capability to protect DNA from damage induced by bleomycin. Molecular docking, DFT and molecular electrostatic potential studies were performed on the compounds in vitro.
Collapse
Affiliation(s)
- Mustafa A S Gouda
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mounir A I Salem
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Magda I Marzouk
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Naglaa F H Mahmoud
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mahmoud F Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
9
|
Myriagkou M, Papakonstantinou E, Deligiannidou GE, Patsilinakos A, Kontogiorgis C, Pontiki E. Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies. Molecules 2023; 28:molecules28093913. [PMID: 37175322 PMCID: PMC10180197 DOI: 10.3390/molecules28093913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The heterocyclic ring system of pyrido [2,3-d]pyrimidines is a privileged scaffold in medicinal chemistry, possessing several biological activities. The synthesis of the pyrimidine derivatives was performed via the condensation of a suitable α,β-unsaturated ketone with 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate in glacial acetic acid. Chalcones were synthesized, as starting materials, via the Claisen-Schmidt condensation of an appropriately substituted ketone and an appropriately substituted aldehyde in the presence of aqueous KOH 40% w/v in ethanol. All the synthesized compounds were characterized using IR, 1H-NMR, 13C-NMR, LC-MS and elemental analysis. The synthesized compounds were evaluated for their antioxidant (DPPH assay), anti-lipid peroxidation (AAPH), anti-LOX activities and ability to interact with glutathione. The compounds do not interact significantly with DPPH but strongly inhibit lipid peroxidation. Pyrimidine derivatives 2a (IC50 = 42 μΜ), 2f (IC50 = 47.5 μΜ) and chalcone 1g (IC50 = 17 μM) were the most potent lipoxygenase inhibitors. All the tested compounds were found to interact with glutathione, apart from 1h. Cell viability and cytotoxicity assays were performed with the HaCaT and A549 cell lines, respectively. In the MTT assay towards the HaCaT cell line, none of the compounds presented viability at 100 μM. On the contrary, in the MTT assay towards the A549 cell line, the tested compounds showed strong cytotoxicity at 100 μM, with derivative 2d presenting the strongest cytotoxic effects at the concentration of 50 μΜ.
Collapse
Affiliation(s)
- Malama Myriagkou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelia Papakonstantinou
- Laboratory of Hygiene and Environmental Protection, School of Medicine, Democritus University of Thrace, 25510 Alexandroupoli, Greece
| | - Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, School of Medicine, Democritus University of Thrace, 25510 Alexandroupoli, Greece
| | | | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, School of Medicine, Democritus University of Thrace, 25510 Alexandroupoli, Greece
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Ibrahim MS, Farag B, Y. Al-Humaidi J, Zaki MEA, Fathalla M, Gomha SM. Mechanochemical Synthesis and Molecular Docking Studies of New Azines Bearing Indole as Anticancer Agents. Molecules 2023; 28:3869. [PMID: 37175279 PMCID: PMC10180502 DOI: 10.3390/molecules28093869] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
The development of new approaches for the synthesis of new bioactive heterocyclic derivatives is of the utmost importance for pharmaceutical industry. In this regard, the present study reports the green synthesis of new benzaldazine and ketazine derivatives via the condensation of various carbonyl compounds (aldehydes and ketones with the 3-(1-hydrazineylideneethyl)-1H-indole using the grinding method with one drop of acetic acid). Various spectroscopic techniques were used to identify the structures of the synthesized derivatives. Furthermore, the anticancer activities of the reported azine derivatives were evaluated against colon, hepatocellular, and breast carcinoma cell lines using the MTT technique with doxorubicin as a reference medication. The findings suggested that the synthesized derivatives exhibited potential anti-tumor activities toward different cell lines. For example, 3c, 3d, 3h, 9, and 13 exhibited interesting activity with an IC50 value of 4.27-8.15 µM towards the HCT-116 cell line as compared to doxorubicin (IC50 = 5.23 ± 0.29 µM). In addition, 3c, 3d, 3h, 9, 11, and 13 showed excellent cytotoxic activities (IC50 = 4.09-9.05 µM) towards the HePG-2 cell line compared to doxorubicin (IC50 = 4.50 ± 0.20 µM), and 3d, 3h, 9, and 13 demonstrated high potency (IC50 = 6.19-8.39 µM) towards the breast cell line (MCF-7) as compared to the reference drug (IC50 = 4.17 ± 0.20 µM). The molecular interactions between derivatives 3a-h, 7, 9, 11, 13, and the CDK-5 enzyme (PDB ID: 3IG7) were studied further using molecular docking indicating a high level of support for the experimental results. Furthermore, the drug-likeness analysis of the reported derivatives indicated that derivative 9 (binding affinity = -8.34 kcal/mol) would have a better pharmacokinetics, drug-likeness, and oral bioavailability as compared to doxorubicin (-7.04 kcal/mol). These results along with the structure-activity relationship (SAR) of the reported derivatives will pave the way for the design of additional azines bearing indole with potential anticancer activities.
Collapse
Affiliation(s)
- Mohamed S. Ibrahim
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Jehan Y. Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Maher Fathalla
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.S.I.); (M.F.)
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
11
|
Farag PS, AboulMagd AM, Hemdan MM, Hassaballah AI. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study. Bioorg Chem 2022; 130:106231. [DOI: 10.1016/j.bioorg.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
|
12
|
Elsayed GA, Mahmoud NFH. Synthesis and Biological Assessment of New Nucleosides of Pyrido[2,3-d]pyrimidine Derivatives Bearing Ribose and 2-Deoxyribose Moieties. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2074476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Galal A. Elsayed
- Synthetic Carbohydrates Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Naglaa F. H. Mahmoud
- Synthetic Carbohydrates Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
13
|
Synthesis and Antimicrobial, Anticancer and Anti-Oxidant Activities of Novel 2,3-Dihydropyrido[2,3-d]pyrimidine-4-one and Pyrrolo[2,1-b][1,3]benzothiazole Derivatives via Microwave-Assisted Synthesis. Molecules 2022; 27:molecules27041246. [PMID: 35209034 PMCID: PMC8880104 DOI: 10.3390/molecules27041246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
In our attempt towards the synthesis and development of effective antimicrobial, anticancer and antioxidant agents, a novel series of 2,3-dihydropyrido[2,3-d]pyrimidin-4-one 7a–e and pyrrolo[2,1-b][1,3]benzothiazoles 9a–e were synthesized. The synthesis of 2-(1,3-benzo thiazol-2-yl)-3-(aryl)prop-2-enenitrile (5a–e) as the key intermediate was accomplished by a microwave efficient method. Via a new variety oriented synthetic microwave pathway, these highly functionalized building blocks allowed access to numerous fused heteroaromatic such as 7-amino-6-(1,3-benzo thiazol-2-yl)-5-(aryl)-2-thioxo-2,3dihydropyrido [2,3-d]pyrimidin-4(1H)-one 7a–e and 1-amino-2-(aryl)pyrrolo[2,1-b][1,3]benzothiazole-3-carbonitrile derivatives 9a–e in order to study their antimicrobial and anticancer activity. The present investigation offers effective and rapid new procedures for the synthesis of the newly polycondensed heterocyclic ring systems. All the newly synthesized compounds were evaluated for antimicrobial, anticancer and antioxidant activity. Compounds 7a,d, and 9a,d showed higher antimicrobial activity than cefotaxime and fluconazole while the remaining compounds exhibited good to moderate activity against bacteria and fungi. An anticancer evaluation of the newly synthesized compounds against the three tumor cell lines (lung cell NCI-H460, liver cancer HepG2 and colon cancer HCT-116) exhibited that compounds 7a, d, and 9a,d have higher cytotoxicity against the three human cell lines compared to doxorubicin as a reference drug. These compounds also exhibited higher antioxidant activity and a great ability to protect DNA from damage induced by bleomycin.
Collapse
|
14
|
Osyanin VA, Semenova IA, Groshev AG, Osipov DV, Klimochkin YN. A cascade formation of N-pyridylacrylamides from pyrido[1,2-a]pyrimidine diones and chromene aldehydes. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|