1
|
Yoldas Celik M, Canda E, Yazici H, Erdem F, Yuksel Yanbolu A, Atik Altınok Y, Eraslan C, Aykut A, Durmaz A, Habif S, Kalkan Ucar S, Coker M. Glutaric aciduria type 1: Insights into diagnosis and neurogenetic outcomes. Eur J Pediatr 2024; 184:72. [PMID: 39658645 DOI: 10.1007/s00431-024-05907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Glutaric aciduria type 1 (GA1) is a rare metabolic disorder characterized by a deficiency in the enzyme glutaryl-CoA dehydrogenase. This study aims to present the clinical, biochemical, genetic, and neuroimaging findings of GA1 patients, emphasizing the importance of early detection and the potential benefits of incorporating GA1 into NBS programs. The demographic, clinical, and laboratory findings of GA1 patients were reviewed retrospectively. This study presents the clinical, biochemical, genetic, and neuroimaging findings of 15 patients (six males, nine females) from 13 families diagnosed with GA1. The median age at diagnosis was 20 months, and the median follow-up period was 72 months. Developmental delay was observed in 66.7% of patients, with 46.7% experiencing seizures and 33.3% suffering from encephalopathic crises. Biochemical analyses showed elevated levels of glutaric acid and 3-hydroxyglutaric acid in 93.3% and 80% of patients, respectively. Genetic testing identified the p.Arg402Trp variant in 53.3% of patients. Neurological evaluations revealed delays in motor and speech development, with 66.7% of patients never achieving the ability to walk. Cranial MRI indicated white matter changes in all patients and basal ganglia involvement in 93.3%. Despite significant biochemical improvements with treatment in glutaric acid levels and head circumference over time, neurological deficits remain unchanged. Growth parameters such as body weight showed significant decreases due to poor neurological outcomes. CONCLUSION The study underscores the importance of early diagnosis and intervention to mitigate severe neurological outcomes. Our findings highlight the need for incorporating GA1 into newborn screening programs to ensure timely diagnosis and treatment. WHAT IS KNOWN • Glutaric aciduria type 1 (GA1) is a rare metabolic disorder caused by a deficiency of glutaryl-CoA dehydrogenase. If untreated, it often leads to severe neurological complications. Early diagnosis and treatment are crucial for improving clinical outcomes in GA1 patients. WHAT IS NEW • This study presents comprehensive data from a cohort of 15 Glutaric aciduria type 1 (GA1) patients, detailing their biochemical, genetic, clinical, and neuroimaging findings. Drawing attention to the severe neurological findings in late-diagnosed patients underscores the critical importance of including GA1 in newborn screening programs to enhance early diagnosis and prevent severe outcomes.
Collapse
Affiliation(s)
- Merve Yoldas Celik
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Ebru Canda
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey.
| | - Havva Yazici
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Fehime Erdem
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Ayse Yuksel Yanbolu
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Yasemin Atik Altınok
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Cenk Eraslan
- Department of Radiology, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Ayca Aykut
- Department of Medical Genetics, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Asude Durmaz
- Department of Medical Genetics, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Sara Habif
- Department of Medical Biochemistry, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Sema Kalkan Ucar
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| | - Mahmut Coker
- Department of Pediatric Metabolism and Nutrition, Medical Faculty, Ege University, Izmir, 35040, Turkey
| |
Collapse
|
2
|
Castro ET, Ribeiro RT, Carvalho AVS, Machado DN, Zemniaçak ÂB, Palavro R, de Azevedo Cunha S, Tavares TQ, de Souza DOG, Netto CA, Leipnitz G, Amaral AU, Wajner M. Impairment of neuromotor development and cognition associated with histopathological and neurochemical abnormalities in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase deficient mice. Neurochem Int 2024; 181:105898. [PMID: 39522695 DOI: 10.1016/j.neuint.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Patients with glutaric acidemia type I (GA I) manifest motor and intellectual disabilities whose pathogenesis has been so far poorly explored. Therefore, we evaluated neuromotor and cognitive abilities, as well as histopathological and immunohistochemical features in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase (GCDH) deficient knockout mice (Gcdh-/-), a well-recognized model of GA I. The effects of a single intracerebroventricular glutaric acid (GA) injection in one-day-old pups on the same neurobehavioral and histopathological/immunohistochemical endpoints were also investigated. Seven-day-old Gcdh-/- mice presented altered gait, whereas those receiving a GA neonatal administration manifested other sensorimotor deficits, including an abnormal response to negative geotaxis, cliff aversion and righting reflex, and muscle tone impairment. Compared to the WT mice, adult Gcdh-/- mice exhibited motor impairment, evidenced by poor performance in the Rota-rod test. Furthermore, neonatal GA administration provoked long-standing short- and long-term memory impairment in adult Gcdh-/- mice. Regarding the histopathological features, a significant increase in vacuoles and neurodegenerative cells was observed in both the cerebral cortex and striatum of 15- and 60-day-old Gcdh-/- mice and was more pronounced in mice injected with GA. Neuronal loss (decrease of NeuN staining) was also significantly increased in the cerebral cortex and striatum of Gcdh-/- mice, particularly in those neonatally injected with GA. In contrast, immunohistochemistry of MBP, astrocytic proteins GFAP and S100B, and the microglial marker Iba1 was not changed in 60-day-old Gcdh-/- mice, suggesting no myelination disturbance, reactive astrogliosis, and microglia activation, respectively. These data highlight the neurotoxicity of GA and the importance of early treatment aiming to decrease GA accumulation at early stages of development to prevent brain damage and learning/memory disabilities in GA I patients.
Collapse
Affiliation(s)
- Ediandra Tissot Castro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Rafael Teixeira Ribeiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | - Diorlon Nunes Machado
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Ângela Beatris Zemniaçak
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Rafael Palavro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Sâmela de Azevedo Cunha
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Tailine Quevedo Tavares
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | - Carlos Alexandre Netto
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; PPG Atenção Integral à Saúde (UNICRUZ/URI-Erechim/UNIJUÍ), URI, Erechim, Brazil
| | - Moacir Wajner
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Tibelius A, Evers C, Oeser S, Rinke I, Jauch A, Hinderhofer K. Compilation of Genotype and Phenotype Data in GCDH-LOVD for Variant Classification and Further Application. Genes (Basel) 2023; 14:2218. [PMID: 38137040 PMCID: PMC10742628 DOI: 10.3390/genes14122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Glutaric aciduria type 1 (GA-1) is a rare but treatable autosomal-recessive neurometabolic disorder of lysin metabolism caused by biallelic pathogenic variants in glutaryl-CoA dehydrogenase gene (GCDH) that lead to deficiency of GCDH protein. Without treatment, this enzyme defect causes a neurological phenotype characterized by movement disorder and cognitive impairment. Based on a comprehensive literature search, we established a large dataset of GCDH variants using the Leiden Open Variation Database (LOVD) to summarize the known genotypes and the clinical and biochemical phenotypes associated with GA-1. With these data, we developed a GCDH-specific variation classification framework based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. We used this framework to reclassify published variants and to describe their geographic distribution, both of which have practical implications for the molecular genetic diagnosis of GA-1. The freely available GCDH-specific LOVD dataset provides a basis for diagnostic laboratories and researchers to further optimize their knowledge and molecular diagnosis of this rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Katrin Hinderhofer
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Barroso M, Gertzen M, Puchwein-Schwepcke AF, Preisler H, Sturm A, Reiss DD, Danecka MK, Muntau AC, Gersting SW. Glutaryl-CoA Dehydrogenase Misfolding in Glutaric Acidemia Type 1. Int J Mol Sci 2023; 24:13158. [PMID: 37685964 PMCID: PMC10487539 DOI: 10.3390/ijms241713158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Marcus Gertzen
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Alexandra F. Puchwein-Schwepcke
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Department of Pediatric Neurology and Developmental Medicine, University of Basel Children’s Hospital, 4056 Basel, Switzerland
| | - Heike Preisler
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Andreas Sturm
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
| | - Dunja D. Reiss
- Department of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; (M.G.); (A.F.P.-S.); (H.P.); (A.S.); (D.D.R.)
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 81377 Munich, Germany
| | - Marta K. Danecka
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| | - Ania C. Muntau
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
- University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W. Gersting
- University Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (M.K.D.); (A.C.M.)
| |
Collapse
|
5
|
Zhou J, Li G, Deng L, Zhao P, Zeng Y, Qiu X, Luo J, Xu L. Biochemical and molecular features of chinese patients with glutaric acidemia type 1 from Fujian Province, southeastern China. Orphanet J Rare Dis 2023; 18:215. [PMID: 37496092 PMCID: PMC10373284 DOI: 10.1186/s13023-023-02833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Glutaric acidemia type 1 (GA1) is a rare autosomal recessive inherited metabolic disorder caused by variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). The estimated prevalence of GA1 and the mutational spectrum of the GCDH gene vary widely according to race and region. The aim of this study was to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 in Fujian Province, southeastern China. RESULTS From January 2014 to December 2022, a total of 1,151,069 newborns (631,016 males and 520,053 females) were screened using MS/MS in six newborn screening (NBS) centers in Fujian Province and recruited for this study. Through NBS, 18 newborns (13 females and 5 males) were diagnosed with GA1. Thus, the estimated incidence of GA1 was 1 in 63,948 newborns in Fujian province. In addition, 17 patients with GA1 were recruited after clinical diagnosis. All but one patient with GA1 had a remarkable increase in glutarylcarnitine (C5DC) concentrations. The results of urinary organic acid analyses in 33 patients showed that the concentration of glutaric acid (GA) increased in all patients. The levels of C5DC and GA in patients identified via NBS were higher than those in patients identified via clinical diagnosis (P < 0.05). A total of 71 variants of 70 alleles were detected in patients with GA1, with 19 different pathogenic variants identified. The three most prevalent variants represented 73.23% of the total and were c.1244-2 A > C, p.(?) (63.38%), c.1261G > A, p.Ala421Thr (5.63%), and c.406G > T, p.Gly136Cys (4.22%). The most abundant genotype observed was c.[1244-2 A > C]; [1244-2 A > C] (18/35, 52.43%) and its phenotype corresponded to high excretors (HE, GA > 100 mmol/mol Cr). CONCLUSIONS In conclusion, we investigated the biochemical and molecular features of 35 unrelated patients with GA1. C5DC concentrations in dried blood spots and urinary GA are effective indicators for a GA1 diagnosis. Our study also identified a GCDH variant spectrum in patients with GA1 from Fujian Province, southeastern China. Correlation analysis between genotypes and phenotypes provides preliminary and valuable information for genetic counseling and management.
Collapse
Affiliation(s)
- Jinfu Zhou
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Lin Deng
- Obstetrics and Gynecology Department, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Peiran Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yinglin Zeng
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Xiaolong Qiu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
6
|
Shlobin NA, Hofmann K, Keating RF, Oluigbo CO. Deep brain stimulation and intrathecal/intraventricular baclofen for glutaric aciduria type 1: A scoping review, individual patient data analysis, and clinical trials review. J Inherit Metab Dis 2023; 46:543-553. [PMID: 37254447 DOI: 10.1002/jimd.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Glutaric aciduria type 1 (GA1) is an autosomal recessive disease frequently leading to dystonia. Deep brain stimulation (DBS), intrathecal baclofen (ITB), and intraventricular baclofen (IVB) are the current interventional treatment options for refractory dystonia. We performed a scoping review, individual patient data (IPD) analysis, and clinical trials review to summarize the existing literature on these interventions in this population, characterize outcomes, and suggest directions for future investigation. PubMed, Embase, and Scopus were searched following PRISMA guidelines. IPD were extracted from studies providing IPD for GA1 patients. ClinicalTrials.gov was reviewed. Of 139 articles, 7 studies with 10 patients were included. In study-level data, 2/4 (50.0%) DBS studies found no improvement in dystonia and 3/3 (100%) on baclofen found decreased dystonia and enteral medication regimen. In the IPD analysis, four studies with 5 patients (2 IVB, 2 DBS, 1 ITB) were included. The average percent reduction in dystonia was 29.9% ± 32.5% (median:18%, IQR:18%-29.2%). Function improved in 4 (80.0%) patients. All patients with reported changes in enteral dystonia-related medication regimen (3/3, 100%) reported reduction in medication usage. No patients (0%) had perioperative complications. Mean follow-up length was 14.8 ± 12.2 months. No interventional clinical trials were found. ITB, IVB, and DBS represent present neuromodulatory approaches for the treatment of GA1. ITB and IVB reduce dystonia, while DBS has a heterogeneous effect. ITB and IVB improved function and reduced enteral medication regimens. These findings must be viewed with caution considering limited data and a serious risk of bias. Further large-scale studies are necessary to determine indications for ITB, IVB, and DBS and elucidate treatment algorithms.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Katherine Hofmann
- Deparment of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Robert F Keating
- Deparment of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Chima O Oluigbo
- Deparment of Neurosurgery, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
7
|
Guo Z, Gong A, Liu S, Liang H. Two novel compound heterozygous variants of the GCDH gene in two Chinese families with glutaric acidaemia type I identified by high-throughput sequencing and a literature review. Mol Genet Genomics 2023; 298:603-614. [PMID: 36906724 DOI: 10.1007/s00438-023-02002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Autosomal recessive glutaric acidaemia type I (GA-I) is a rare hereditary metabolic disease characterized by increased organic acids and neurologic symptoms. Although numerous variants in the GCDH gene have been identified to be connected with the pathogenesis of GA-I, the relationship between genotype and phenotype remains uncertain. In this study, we evaluated genetic data for two GA-I patients from Hubei, China, and we reviewed the previous research findings to clarify the genetic heterogeneity of GA-I and identify the potential causative variants. After we extracted genomic DNA from peripheral blood samples obtained from two unrelated Chinese families, we used target capture high-throughput sequencing combined with Sanger sequencing to determine likely pathogenic variants in the two probands. Electronic databases were also searched for the literature review. The genetic analysis revealed two compound heterozygous variants in the GCDH gene expected to lead to GA-I in the two probands (P1 and P2), with P1 carrying two known variants (c.892G > A/p. A298T and c.1244-2A > C/IVS10-2A > C) and P2 harbouring two novel variants (c.370G > T/p.G124W and c.473A > G/p.E158G). In the literature review, the most common alleles in low excretors (i.e., individuals with low excretion of GA) were R227P, V400M, M405V, and A298T, with variation in the severity of clinical phenotypes. Overall, we identified two novel GCDH gene candidate pathogenic variants in a Chinese patient, enriching the GCDH gene mutational spectrum and providing a solid foundation for the early diagnosis of GA-I patients with low excretion.
Collapse
Affiliation(s)
- Zihan Guo
- The Institute of Human Nutrition, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, Shandong, China
| | - Anyue Gong
- Neonatal Screening Center, Maternal and Child Health Hospital of Xiangyang, Xiangyang, China
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China. .,Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, China.
| | - Hui Liang
- The Institute of Human Nutrition, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, Shandong, China.
| |
Collapse
|
8
|
Forny P, Hörster F, Baumgartner MR, Kölker S, Boy N. How guideline development has informed clinical research for organic acidurias (et vice versa). J Inherit Metab Dis 2023; 46:520-535. [PMID: 36591944 DOI: 10.1002/jimd.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organic acidurias, such as glutaric aciduria type 1 (GA1), methylmalonic (MMA), and propionic aciduria (PA) are a prominent group of inherited metabolic diseases involving accumulation of eponymous metabolites causing endogenous intoxication. For all three conditions, guidelines for diagnosis and management have been developed and revised over the last years, resulting in three revisions for GA1 and one revision for MMA/PA. The process of clinical guideline development in rare metabolic disorders is challenged by the scarcity and limited quality of evidence available. The body of literature is often fragmentary and where information is present, it is usually derived from small sample sizes. Therefore, the development of guidelines for GA1 and MMA/PA was initially confronted with a poor evidence foundation that hindered formulation of concrete recommendations in certain contexts, triggering specific research projects and initiation of longitudinal, prospective observational studies using patient registries. Reversely, these observational studies contributed to evaluate the value of newborn screening, phenotypic diversities, and treatment effects, thus significantly improving the quality of evidence and directly influencing formulation and evidence levels of guideline recommendations. Here, we present insights into interactions between guideline development and (pre)clinical research for GA1 and MMA/PA, and demonstrate how guidelines gradually improved from revision to revision. We describe how clinical studies help to unravel the relative impact of therapeutic interventions on outcome and conclude that despite new and better quality of research data over the last decades, significant shortcomings of evidence regarding prognosis and treatment remain. It appears that development of clinical guidelines can directly help to guide research, and vice versa.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Friederike Hörster
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Mütze U, Garbade SF, Gleich F, Lindner M, Freisinger P, Hennermann JB, Thimm E, Gramer G, Posset R, Krämer J, Grünert SC, Hoffmann GF, Kölker S. Long-term anthropometric development of individuals with inherited metabolic diseases identified by newborn screening. J Inherit Metab Dis 2023; 46:15-27. [PMID: 36134599 DOI: 10.1002/jimd.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023]
Abstract
Newborn screening (NBS) for inherited metabolic diseases (IMDs) substantially shortens a patient's journey. It enables the early start of metabolic treatment which might prevent potentially lethal neonatal disease manifestations, while promoting favorable development and long-term clinical outcomes. This study aims to assess growth in screened individuals with IMDs under different dietary regimes. Anthropometric data (3585 prospective measures) of 350 screened individuals with IMDs born between 1999 and 2018 and participating in a German prospective multicenter observational study were evaluated. Overall, birth measures were within the reference ranges, suggesting unaffected prenatal growth, except for phenylketonuria (weight) and glutaric aciduria Type 1 (head circumference). After birth, longitudinal analysis of anthropometric measures revealed a loss of height standard deviation score (SDS; -0.5 SDS; p < 0.0001), head circumference SDS (-0.2 SDS; p = 0.0028), but not for weight SDS (0.1 SDS; p = 0.5097) until the age of 18 years, while BMI SDS increased (0.4 SDS; p < 0.0001). The significant interaction with age and diet groups was pronounced for the linear growth in individuals receiving diets being low in protein, long-chain triglycerides, and galactose (p < 0.001). Identification by NBS and subsequent early (dietary) treatment cannot completely protect against alterations in growths. Disease-specific (e.g., metabolic impairments, neurotoxins) and dietary-specific (e.g., diets reduced in protein) factors may have an amplified impact on longitudinal growth. Therefore, alongside other important follow-ups, the continuous observation of the anthropometric development of screened individuals with IMDs needs special attention to early identify and support individuals at risk.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Roland Posset
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Johannes Krämer
- Ulm Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Boy N, Mühlhausen C, Maier EM, Ballhausen D, Baumgartner MR, Beblo S, Burgard P, Chapman KA, Dobbelaere D, Heringer-Seifert J, Fleissner S, Grohmann-Held K, Hahn G, Harting I, Hoffmann GF, Jochum F, Karall D, Konstantopoulous V, Krawinkel MB, Lindner M, Märtner EMC, Nuoffer JM, Okun JG, Plecko B, Posset R, Sahm K, Scholl-Bürgi S, Thimm E, Walter M, Williams M, Vom Dahl S, Ziagaki A, Zschocke J, Kölker S. Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: Third revision. J Inherit Metab Dis 2022; 46:482-519. [PMID: 36221165 DOI: 10.1002/jimd.12566] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Chris Mühlhausen
- Department of Paediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Esther M Maier
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Diana Ballhausen
- Paediatric Metabolic Unit, Paediatrics, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Centre for Paediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia, USA
| | - Dries Dobbelaere
- Department of Paediatric Metabolism, Reference Centre of Inherited Metabolic Disorders, Jeanne de Flandre Hospital, Lille, France
| | - Jana Heringer-Seifert
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Fleissner
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Karina Grohmann-Held
- Centre for Child and Adolescent Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Gabriele Hahn
- Department of Radiological Diagnostics, UMC, University of Dresden, Dresden, Germany
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Jochum
- Evangelisches Waldkrankenhaus Spandau, Berlin, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael B Krawinkel
- Institute of Nutritional Science, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Lindner
- Division of Metabolic Diseases, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - E M Charlotte Märtner
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Plecko
- Department of Paediatrics and Adolescent Medicine, Division of General Paediatrics, University Children's Hospital Graz, Medical University Graz, Graz, Austria
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eva Thimm
- Division of Experimental Paediatrics and Metabolism, Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Magdalena Walter
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Monique Williams
- Department of Paediatrics, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Stephan Vom Dahl
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, University of Düsseldorf, Düsseldorf, Germany
| | - Athanasia Ziagaki
- Centre of Excellence for Rare Metabolic Diseases, Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, University-Medicine Berlin, Berlin, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Kölker S, Gleich F, Mütze U, Opladen T. Rare Disease Registries Are Key to Evidence-Based Personalized Medicine: Highlighting the European Experience. Front Endocrinol (Lausanne) 2022; 13:832063. [PMID: 35317224 PMCID: PMC8934440 DOI: 10.3389/fendo.2022.832063] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Rare diseases, such as inherited metabolic diseases, have been identified as a health priority within the European Union more than 20 years ago and have become an integral part of EU health programs and European Reference Networks. Having the potential to pool data, to achieve sufficient sample size, to overcome the knowledge gap on rare diseases and to foster epidemiological and clinical research, patient registries are recognized as key instruments to evidence-based medicine for individuals with rare diseases. Patient registries can be used for multiple purposes, such as (1) describing the natural history and phenotypic diversity of rare diseases, (2) improving case definition and indication to treat, (3) identifying strategies for risk stratification and early prediction of disease severity (4), evaluating the impact of preventive, diagnostic, and therapeutic strategies on individual health, health economics, and the society, and (5) informing guideline development and policy makers. In contrast to clinical trials, patient registries aim to gather real-world evidence and to achieve generalizable results based on patient cohorts with a broad phenotypic spectrum. In order to develop a consistent and sustained framework for rare disease registries, uniform core principles have been formulated and have been formalized through the European Rare Disease Registration Infrastructure. Adherence to these core principles and compliance with the European general data protection regulations ensures that data collected and stored in patient registries can be exchanged and pooled in a protected environment. To illustrate the benefits and limitations of patient registries on rare disease research this review focuses on inherited metabolic diseases.
Collapse
|
12
|
Boy N, Mohr A, Garbade SF, Freisinger P, Heringer-Seifert J, Seitz A, Kölker S, Harting I. Subdural hematoma in glutaric aciduria type 1: High excreters are prone to incidental SDH despite newborn screening. J Inherit Metab Dis 2021; 44:1343-1352. [PMID: 34515344 DOI: 10.1002/jimd.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
Subdural hematoma (SDH) was initially reported in 20% to 30% of patients with glutaric aciduria type 1 (GA1). A recent retrospective study found SDH in 4% of patients, but not in patients identified by newborn screening (NBS). 168 MRIs of 69 patients with GA1 (age at MRI 9 days - 73.8 years, median 3.2 years) were systematically reviewed for presence of SDH, additional MR and clinical findings in order to investigate the frequency of SDH and potential risk factors. SDH was observed in eight high-excreting patients imaged between 5.8 and 24.4 months, namely space-occupying SDH in two patients after minor accidental trauma and SDH as an incidental finding in six patients without trauma. In patients without trauma imaged at 3 to 30 months (n = 36, 25 NBS, 27/9 high/low excreters), incidence of SDH was 16.7% (16% in NBS). SDH was more common after acute (33.3%) than insidious onset of dystonia (14.3%) or in asymptomatic patients (5.9%). It was only seen in patients with wide frontoparietal CSF spaces and frontotemporal hypoplasia. High excreters were over-represented among patients with SDH (6/27 vs 0/9 low excreters), acute onset (10/12), and wide frontoparietal CSF spaces (16/19). Incidental SDH occurs despite NBS and early treatment in approximately one in six patients with GA1 imaged during late infancy and early childhood. Greater risk of high excreters is morphologically associated with more frequent enlargement of external CSF spaces including frontotemporal hypoplasia, and may be furthered aggravated by more pronounced alterations of cerebral blood volume and venous pressure.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Mohr
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jana Heringer-Seifert
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
The biochemical subtype is a predictor for cognitive function in glutaric aciduria type 1: a national prospective follow-up study. Sci Rep 2021; 11:19300. [PMID: 34588557 PMCID: PMC8481501 DOI: 10.1038/s41598-021-98809-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
The aim of the study was a systematic evaluation of cognitive development in individuals with glutaric aciduria type 1 (GA1), a rare neurometabolic disorder, identified by newborn screening in Germany. This national, prospective, observational, multi-centre study includes 107 individuals with confirmed GA1 identified by newborn screening between 1999 and 2020 in Germany. Clinical status, development, and IQ were assessed using standardized tests. Impact of interventional and non-interventional parameters on cognitive outcome was evaluated. The majority of tested individuals (n = 72) showed stable IQ values with age (n = 56 with IQ test; median test age 11 years) but a significantly lower performance (median [IQR] IQ 87 [78-98]) than in general population, particularly in individuals with a biochemical high excreter phenotype (84 [75-96]) compared to the low excreter group (98 [92-105]; p = 0.0164). For all patients, IQ results were homogenous on subscale levels. Sex, clinical motor phenotype and quality of metabolic treatment had no impact on cognitive functions. Long-term neurologic outcome in GA1 involves both motor and cognitive functions. The biochemical high excreter phenotype is the major risk factor for cognitive impairment while cognitive functions do not appear to be impacted by current therapy and striatal damage. These findings implicate the necessity of new treatment concepts.
Collapse
|