1
|
Hammann N, Lenz D, Bianzano A, Husain RA, Forman E, Bernstein JA, Dattner T, Engelen M, Hanson-Kahn AK, Isidor B, Kotzaeridou U, Tietze A, Trollmann R, Weiß C, Wolffenbuttel BHR, Kölker S, Hoffmann GF, Crushell E, Staufner C, Mohr A, Harting I. MRI in LARS1 deficiency-Spectrum, patterns, and correlation with acute neurological deterioration. J Inherit Metab Dis 2024; 47:1028-1046. [PMID: 38951950 DOI: 10.1002/jimd.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
Leucine aminoacyl tRNA-synthetase 1 (LARS1)-deficiency (infantile liver failure syndrome type 1 (ILFS1)) has a multisystemic phenotype including fever-associated acute liver failure (ALF), chronic neurologic abnormalities, and encephalopathic episodes. In order to better characterize encephalopathic episodes and MRI changes, 35 cranial MRIs from 13 individuals with LARS1 deficiency were systematically assessed and neurological phenotype was analyzed. All individuals had developmental delay and 10/13 had seizures. Encephalopathic episodes in 8/13 were typically associated with infections, presented with seizures and reduced consciousness, mostly accompanied by hepatic dysfunction, and recovery in 17/19 episodes. Encephalopathy without hepatic dysfunction occurred in one individual after liver transplantation. On MRI, 5/7 individuals with MRI during acute encephalopathy had deep gray matter and brainstem changes. Supratentorial cortex involvement (6/13) and cerebellar watershed injury (4/13) occurred with seizures and/or encephalopathy. Abnormal brainstem contour on sagittal images (8/13), atrophy (8/13), and myelination delay (8/13) were not clearly associated with encephalopathy. The pattern of deep gray matter and brainstem changes are apparently characteristic of encephalopathy in LARS1-deficiency, differing from patterns of hepatic encephalopathy or metabolic stroke in organic acidurias and mitochondrial diseases. While the pathomechanism remains unclear, fever and energy deficit during infections might be causative; thus, sufficient glucose and protein intake along with pro-active fever management is suggested. As severe episodes were observed during influenza infections, we strongly recommend seasonal vaccination.
Collapse
Affiliation(s)
- Nicole Hammann
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Dominic Lenz
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Alyssa Bianzano
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Ralf A Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Eva Forman
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street and Crumlin, Dublin, Ireland
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford School of Medicine, Stanford, California, USA
- Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Tal Dattner
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC Location, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Andrea K Hanson-Kahn
- Department of Genetics, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale, Nantes, France
- INSERM, CNRS, UNIV Nantes, l'institut du thorax, Nantes, France
| | - Urania Kotzaeridou
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Regina Trollmann
- Department of Neuropaediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Claudia Weiß
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum (SPZ), Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan Kölker
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Georg F Hoffmann
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street and Crumlin, Dublin, Ireland
| | - Christian Staufner
- Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Alexander Mohr
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Gonzalez-Rodriguez M, Marin-Valencia I. Metabolic Determinants of Cerebellar Circuit Formation and Maintenance. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1626-1641. [PMID: 38123901 DOI: 10.1007/s12311-023-01641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Cells configure their metabolism in a synchronized and timely manner to meet their energy demands throughout development and adulthood. Transitions of developmental stages are coupled to metabolic shifts, such that glycolysis is highly active during cell proliferation, whereas oxidative phosphorylation prevails in postmitotic states. In the cerebellum, metabolic transitions are remarkable given its protracted developmental timelines. Such distinctive feature, along with its high neuronal density and metabolic demands, make the cerebellum highly vulnerable to metabolic insults. Despite the expansion of metabolomic approaches to uncover biological mechanisms, little is known about the role of metabolism on cerebellar development and maintenance. To illuminate the intricate connections between metabolism, physiology, and cerebellar disorders, we examined here the impact of metabolism on cerebellar growth, maturation, and adulthood through the lens of inborn errors of metabolism.
Collapse
Affiliation(s)
- Manuel Gonzalez-Rodriguez
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isaac Marin-Valencia
- The Abimael Laboratory of Neurometabolism, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Departments of Neuroscience, Genetics and Genomics Medicine, and Pediatrics Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Chu WS, Ng J, Waddington SN, Kurian MA. Gene therapy for neurotransmitter-related disorders. J Inherit Metab Dis 2024; 47:176-191. [PMID: 38221762 PMCID: PMC11108624 DOI: 10.1002/jimd.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Inborn errors of neurotransmitter (NT) metabolism are a group of rare, heterogenous diseases with predominant neurological features, such as movement disorders, autonomic dysfunction, and developmental delay. Clinical overlap with other disorders has led to delayed diagnosis and treatment, and some conditions are refractory to oral pharmacotherapies. Gene therapies have been developed and translated to clinics for paediatric inborn errors of metabolism, with 38 interventional clinical trials ongoing to date. Furthermore, efforts in restoring dopamine synthesis and neurotransmission through viral gene therapy have been developed for Parkinson's disease. Along with the recent European Medicines Agency (EMA) and Medicines and Healthcare Products Regulatory Agency (MHRA) approval of an AAV2 gene supplementation therapy for AADC deficiency, promising efficacy and safety profiles can be achieved in this group of diseases. In this review, we present preclinical and clinical advances to address NT-related diseases, and summarise potential challenges that require careful considerations for NT gene therapy studies.
Collapse
Affiliation(s)
- Wing Sum Chu
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Genetic Therapy Accelerator Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Genetic Therapy Accelerator Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA Institute for Women's HealthUniversity College LondonLondonUK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of NeurologyGreat Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
4
|
Riva A, Iacomino M, Piccardo C, Franceschetti L, Franchini R, Baroni A, Minetti C, Bisello G, Zara F, Scala M, Striano P, Bertoldi M. Exome sequencing data screening to identify undiagnosed Aromatic l-amino acid decarboxylase deficiency in neurodevelopmental disorders. Biochem Biophys Res Commun 2023; 673:131-136. [PMID: 37385007 DOI: 10.1016/j.bbrc.2023.06.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder caused by biallelic pathogenic variants in the DDC gene and mainly characterized by developmental delay, hypotonia, and oculogyric crises. Early diagnosis is crucial for correct patient management; however, many patients remain misdiagnosed or undiagnosed due to the rarity and clinical heterogeneity of the disorder especially in the milder forms. Here, we applied exome sequencing approach by screening 2000 paediatric patients with neurodevelopmental disorders to identify possible new AADC variants and AADC deficiency patients. We identified five distinct DDC variants in two unrelated individuals. Patient #1 harboured two compound heterozygous DDC variants: c.436-12T > C and c.435 + 24A>C and presented with psychomotor delay, tonic spasms, and hyperreactivity. Patient #2 had three homozygous AADC variants: c.1385G > A; p.Arg462Gln, c.234C > T; p.Ala78 = , and c.201 + 37A > G and presented with developmental delay and myoclonic seizures. The variants were classified as benign class I variants and therefore non-causative according to the ACMG/AMP guidelines. Since the AADC protein is a structural and functional obligate homodimer, we evaluated the possible AADC polypeptide chain combinations in the two patients and determined the effects resulting from the amino acid substitution Arg462Gln. Our patients carrying DDC variants presented clinical manifestations not precisely overlapped to the classical symptoms exhibited by the most severe AADC deficiency cases. However, screening data derived from exome sequencing in patients featuring wide-range symptoms related to neurodevelopmental disorders may help to identify AADC deficiency patients, especially when applied to larger cohorts.
Collapse
Affiliation(s)
- Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Chiara Piccardo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Rossella Franchini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Vilanakis E, Papakonstantinou E, Paramera E, Argyri I, Drakou E, Kokkinou E, Zouvelou V, Outsika C, Pons R. Cerebrospinal Fluid Concentrations of Neurotransmitters in a Greek Pediatric Reference Population. Neuropediatrics 2023; 54:126-133. [PMID: 36442788 DOI: 10.1055/a-1988-2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Biogenic amines and pterins analysis in cerebrospinal fluid (CSF) are reliable biomarkers for the diagnosis of inherited disorders of monoamine neurotransmitters. OBJECTIVE The objectives of this study were the establishment of reference values of CSF biogenic amine metabolites in a cohort of Greek children, the detection of primary defects of biogenic amine metabolism, and the assessment of biogenic amine metabolites in children with different neurological disorders. METHODS CSF biogenic amine metabolites and pterins (biopterin and neopterin) were analyzed using high-performance liquid chromatography with electrochemical and fluorescence detection. Three hundred sixty-three samples were analyzed: 60 infants and children with no history of neurological disorder, 6 with inherited disorders of monoamine neurotransmitters, and 297 with diverse neurological disorders. RESULTS Reference values were stratified into six age groups. A strong correlation between homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5HIAA) levels with age was detected (p < 0.001). Two patients were diagnosed with a defect of the biogenic amine synthetic pathway and three with a defect of tetrahydrobiopterin cofactor production. HVA and 5HIAA abnormalities were detected within different groups of neurological disorders, but none followed a specific pattern of HVA and 5HIAA abnormalities. CONCLUSION In the current study, Greek reference values of biogenic amines and pterins in CSF are presented. Five new patients with inherited monoamine neurotransmitter disorders are described. Nonspecific secondary biogenic amine disturbances can be seen in patients with different neurological disorders.
Collapse
Affiliation(s)
- Emmanouil Vilanakis
- Pediatric Department, 401 General Military Hospital, Athens, Greece.,First Department of Pediatrics, National and Kapodistrian University of Athens, Agia Sofia Hospital, Athens, Greece
| | | | | | - Ioanna Argyri
- Second Department of Pediatrics, National and Kapodistrian University of Athens, Aglaia Kyriakou Hospital, Athens, Greece
| | - Eleni Drakou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Agia Sofia Hospital, Athens, Greece
| | - Eleftheria Kokkinou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Agia Sofia Hospital, Athens, Greece
| | - Vicky Zouvelou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Agia Sofia Hospital, Athens, Greece
| | - Chrysa Outsika
- First Department of Pediatrics, National and Kapodistrian University of Athens, Agia Sofia Hospital, Athens, Greece
| | - Roser Pons
- First Department of Pediatrics, National and Kapodistrian University of Athens, Agia Sofia Hospital, Athens, Greece
| |
Collapse
|
6
|
Tristán‐Noguero A, Fernández‐Carasa I, Calatayud C, Bermejo‐Casadesús C, Pons‐Espinal M, Colini Baldeschi A, Campa L, Artigas F, Bortolozzi A, Domingo‐Jiménez R, Ibáñez S, Pineda M, Artuch R, Raya Á, García‐Cazorla À, Consiglio A. iPSC-based modeling of THD recapitulates disease phenotypes and reveals neuronal malformation. EMBO Mol Med 2023; 15:e15847. [PMID: 36740977 PMCID: PMC9994475 DOI: 10.15252/emmm.202215847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management.
Collapse
Affiliation(s)
- Alba Tristán‐Noguero
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology DepartmentInstitut Pediàtric de Recerca, Hospital Sant Joan de DéuBarcelonaSpain
| | - Irene Fernández‐Carasa
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Carles Calatayud
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
- Regenerative Medicine ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Program for Translation of Regenerative Medicine in Catalonia (P‐[CMRC])Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
| | - Cristina Bermejo‐Casadesús
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology DepartmentInstitut Pediàtric de Recerca, Hospital Sant Joan de DéuBarcelonaSpain
| | - Meritxell Pons‐Espinal
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Arianna Colini Baldeschi
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Leticia Campa
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)BarcelonaSpain
- Institut d'Investigacions August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIIIMadridSpain
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)BarcelonaSpain
- Institut d'Investigacions August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIIIMadridSpain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)BarcelonaSpain
- Institut d'Investigacions August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIIIMadridSpain
| | - Rosario Domingo‐Jiménez
- Department of Pediatric NeurologyHospital Virgen de la ArrixacaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB)MurciaSpain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER)MadridSpain
| | - Salvador Ibáñez
- Department of Pediatric NeurologyHospital Virgen de la ArrixacaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB)MurciaSpain
| | - Mercè Pineda
- Fundació Sant Joan de Déu (FSJD), Hospital Sant Joan de Déu (HSJD)BarcelonaSpain
| | - Rafael Artuch
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER)MadridSpain
- Metabolic Unit, Departments of Neurology, Nutrition Biochemistry and GeneticsInstitut Pediàtric de Recerca, Hospital San Joan de DéuBarcelonaSpain
| | - Ángel Raya
- Regenerative Medicine ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Program for Translation of Regenerative Medicine in Catalonia (P‐[CMRC])Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Àngels García‐Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology DepartmentInstitut Pediàtric de Recerca, Hospital Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER)MadridSpain
| | - Antonella Consiglio
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
7
|
Mastrangelo M, Tolve M, Artiola C, Bove R, Carducci C, Carducci C, Angeloni A, Pisani F, Leuzzi V. Phenotypes and Genotypes of Inherited Disorders of Biogenic Amine Neurotransmitter Metabolism. Genes (Basel) 2023; 14:genes14020263. [PMID: 36833190 PMCID: PMC9957200 DOI: 10.3390/genes14020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Inherited disorders of biogenic amine metabolism are genetically determined conditions resulting in dysfunctions or lack of enzymes involved in the synthesis, degradation, or transport of dopamine, serotonin, adrenaline/noradrenaline, and their metabolites or defects of their cofactor or chaperone biosynthesis. They represent a group of treatable diseases presenting with complex patterns of movement disorders (dystonia, oculogyric crises, severe/hypokinetic syndrome, myoclonic jerks, and tremors) associated with a delay in the emergence of postural reactions, global development delay, and autonomic dysregulation. The earlier the disease manifests, the more severe and widespread the impaired motor functions. Diagnosis mainly depends on measuring neurotransmitter metabolites in cerebrospinal fluid that may address the genetic confirmation. Correlations between the severity of phenotypes and genotypes may vary remarkably among the different diseases. Traditional pharmacological strategies are not disease-modifying in most cases. Gene therapy has provided promising results in patients with DYT-DDC and in vitro models of DYT/PARK-SLC6A3. The rarity of these diseases, combined with limited knowledge of their clinical, biochemical, and molecular genetic features, frequently leads to misdiagnosis or significant diagnostic delays. This review provides updates on these aspects with a final outlook on future perspectives.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Manuela Tolve
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristiana Artiola
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rossella Bove
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Carducci
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Carducci
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Angeloni
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-649972930; Fax: +39-64440232
| | - Vincenzo Leuzzi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
8
|
Buesch K, Zhang R, Szczepańska K, Veličković V, Turner L, Despotović M, Đorđević B, Russell A. Burden and severity of disease of aromatic L-amino acid decarboxylase deficiency: a systematic literature review. Curr Med Res Opin 2022; 38:1871-1882. [PMID: 35485958 DOI: 10.1080/03007995.2022.2072090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The objective was to investigate the severity of aromatic L-amino acid decarboxylase deficiency (AADCd) as reported in the published literature and to collate evidence of the clinical manifestations of AADCd, and the impact of the disease on patients, caregivers, and healthcare systems. METHODS Published articles reporting severity of disease or disease impact were eligible for inclusion in this review. Articles were searched in MEDLINE, EMBASE, Cochrane CENTRAL, TRIP medical, and CRD databases in October 2021. The quality of the included studies was investigated using a modified version of the grading system of the Centre for Evidence-Based Medicine (CEBM). Descriptive data of the literature was extracted and a narrative synthesis of the results across studies was conducted. This review is reported according to the PRISMA reporting guidelines for systematic reviews. RESULTS The search identified 970 unique reports, of which 59 met eligibility criteria to be included in the review. Of these, 48 included reports provided details on the clinical manifestations of AADCd. Two reports explored the disease impact on patients, while four described the impact on caregivers. Five reports assessed the impact on healthcare systems. Individuals with AADCd experience very severe clinical manifestations regardless of motor milestones achieved, and present with a spectrum of other complications. Individuals with AADCd present with very limited function, which, in combination with additional complications, substantially impact the quality-of-life of individuals and their caregivers. The five studies which explore the impact on the healthcare system reported that adequate care of individuals with AADCd requires a vast array of medical services and supportive therapies. CONCLUSIONS Irrespective of the ambulatory status of individuals, AADCd is a debilitating disease that significantly impacts quality-of-life for individuals and caregivers. It impacts the healthcare system due to the need for complex coordinated activities of a multidisciplinary specialist team.
Collapse
Affiliation(s)
| | | | | | - Vladica Veličković
- Core Models Ltd, London, United Kingdom
- Institute of Public Health, Medical Decision Making and HTA, UMIT, Hall in Tirol, Austria
| | - Lucy Turner
- Core Models Ltd, London, United Kingdom
- Research in Health Consulting, Ottawa, Canada
| | | | - Branka Đorđević
- Core Models Ltd, London, United Kingdom
- Biochemistry Department, Faculty of Medicine, University of Nis, Nis, Serbia
| | | |
Collapse
|
9
|
Manti F, Mastrangelo M, Battini R, Carducci C, Spagnoli C, Fusco C, Tolve M, Carducci C, Leuzzi V. Long-term neurological and psychiatric outcomes in patients with aromatic l-amino acid decarboxylase deficiency. Parkinsonism Relat Disord 2022; 103:105-111. [PMID: 36096017 DOI: 10.1016/j.parkreldis.2022.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION l-amino acid decarboxylase deficiency (AADCD) is an ultrarare autosomal recessive defect of biogenic amine synthesis that presents with early-onset encephalopathy progressing to severe neurological impairment and intellectual disability. We aimed to explore neurocognitive and behavioral profiles associated with AADCD and possible factors predicting outcome in more detail. METHODS Nine AADCD patients (23.2 ± 10.3 years; range 8-40) underwent systematic clinical and neuropsychological assessment. Diagnostic levels of CSF 5-hydroxyindolacetic acid (5-HIAA) and homovanillic acid (HVA), and DDC genotype (as ascertained by American College of Medical Genetics and Genomics grading) were included in the data analysis. RESULTS All AADCD patients were affected by intellectual disability and psychiatric disorders. Movement disorders included parkinsonism-dystonia, dysarthria, and oculogyric crises. CSF 5-HIAA and HVA levels at diagnosis had a significant influence on adaptive behavior and executive function performance. Patients homozygous for DDC pathogenetic variants showed lower CSF 5-HIAA and HVA levels and higher Unified Parkinson's Disease Rating Scale scores. The disease showed a self-limiting clinical course with partial improvement under pharmacological treatment (B6 and dopamine mimetic drugs). CONCLUSIONS Patients with AADCD suffer from neuropsychological and psychopathological impairment, which may be improved but not reversed under the present therapeutic approach. However, cognitive functioning should be specifically examined in order to avoid its underestimation on the basis of movement disorder severity. Genotype and biogenic amine level at diagnosis have an important prognostic value.
Collapse
Affiliation(s)
- Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mario Mastrangelo
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Manuela Tolve
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Alfonsi C, Stephan-Otto C, Cortès-Saladelafont E, Palacios NJ, Podzamczer-Valls I, Cruz NG, Jiménez MRD, Micó SI, Vila MT, Jeltsch K, Hübschmann OK, Opladen T, Fragua RV, Gómez T, Fortuny OA, Jiménez IG, Laso EL, Martínez AR, López JM, Garcia-Cazorla À. Volumetric study of brain MRI in a cohort of patients with neurotransmitter disorders. Neuroradiology 2022; 64:2179-2190. [PMID: 35662359 DOI: 10.1007/s00234-022-02989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Inborn errors of neurotransmitters are rare monogenic diseases. In general, conventional neuroimaging is not useful for diagnosis. Nevertheless, advanced neuroimaging techniques could provide novel diagnosis and prognosis biomarkers. We aim to describe cerebral volumetric findings in a group of Spanish patients with neurotransmitter disorders. METHODS Fifteen 3D T1-weighted brain images from the International Working Group on Neurotransmitter related Disorders Spanish cohort were assessed (eight with monoamine and seven with amino acid disorders). Volumes of cortical and subcortical brain structures were obtained for each patient and then compared with those of two healthy individuals matched by sex and age. RESULTS Regardless of the underlying disease, patients showed a smaller total cerebral tissue volume, which was apparently associated with clinical severity. A characteristic volumetric deficit pattern, including the right Heschl gyrus and the bilateral occipital gyrus, was identified. In severe cases, a distinctive pattern comprised the middle and posterior portions of the right cingulate, the left superior motor area and the cerebellum. In succinate semialdehyde dehydrogenase deficiency, volumetric affection seems to worsen over life. CONCLUSION Despite the heterogeneity and limited size of our cohort, we found novel and relevant data. Total volume deficit appears to be a marker of severity, regardless of the specific neurotransmitter disease and irrespective of the information obtained from conventional neuroimaging. Volumetric assessment of individual brain structures could provide a deeper knowledge about pathophysiology, disease severity and specific clinical traits.
Collapse
Affiliation(s)
- Chiara Alfonsi
- Inborn Errors of Metabolism Unit, Pediatric Neurology Department, Institut de Recerca Sant Joan de Déu, and MetabERN, Hospital Sant Joan de Déu, Passeig Sant Joan De Deu Nº 2, 08950, Esplugues De Llobregat, Barcelona, Spain.,Department of Human Neuroscience, Sapienza, University of Rome, Via dei Sabelli n.108, 00185, Rome, Italy
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Pg Sant Joan De Deu Nº 2, 08950, Esplugues De Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Elisenda Cortès-Saladelafont
- Unit of Inherited Metabolic Diseases and Neuropediatrics, Hospital German Trias I Pujol, Carretera de Canyet s/n, 08916, Badalona, Spain.,Universitat Autònoma de Barcelona, Plaza Cívica, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Natalia Juliá Palacios
- Inborn Errors of Metabolism Unit, Pediatric Neurology Department, Institut de Recerca Sant Joan de Déu, and MetabERN, Hospital Sant Joan de Déu, Passeig Sant Joan De Deu Nº 2, 08950, Esplugues De Llobregat, Barcelona, Spain
| | - Inés Podzamczer-Valls
- Universitat Autònoma de Barcelona, Plaza Cívica, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Hospital de La Santa Creu I Sant Pau, Carrer de Sant Antoni Maria Claret n. 167, 08025, Barcelona, Spain
| | - Nuria Gutiérrez Cruz
- Department of Pediatrics, Hospital Universitario Severo Ochoa, Av. de Orellana s/n, 28911, Leganés, Spain
| | - María Rosario Domingo Jiménez
- Department of Pediatric Neurology, Hospital Universitario Virgen de La Arrixaca, Ctra. Madrid-Cartagena s/n, 30120, El Palmar, Murcia, Murcia, Spain
| | - Salvador Ibáñez Micó
- Department of Pediatric Neurology, Hospital Universitario Virgen de La Arrixaca, Ctra. Madrid-Cartagena s/n, 30120, El Palmar, Murcia, Murcia, Spain
| | - Miguel Tomás Vila
- Department of Neurology, Hospital La Fe, Avinguda de Fernando Abril Martorell n.106, 46026, Valencia, Spain
| | - Kathrin Jeltsch
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital Heidelberg and MetabERN, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Oya Kuseyri Hübschmann
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital Heidelberg and MetabERN, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Thomas Opladen
- Division of Child Neurology and Metabolic Disorders, University Children's Hospital Heidelberg and MetabERN, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Ramón Velázquez Fragua
- Department of Pediatric Neurology, Hospital La Paz, C. de Pedro Rico n. 6, 28029, Madrid, Spain
| | - Teresa Gómez
- Department of Psychiatry, Hospital General de Granollers, Carrer de Francesc Ribas s/n, 08402, Granollers, Spain
| | - Oscar Alcoverro Fortuny
- Department of Psychiatry, Hospital General de Granollers, Carrer de Francesc Ribas s/n, 08402, Granollers, Spain
| | - Inmaculada García Jiménez
- Metabolic Disorders Unit, Hospital Universitario Miguel Servet, P.º Isabel La Católica, 1-3, 50009, Saragossa, Spain
| | - Eduardo López Laso
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Reina Sofía, IMIBIC, Av. Menendez Pidal S/N, 14004, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), C. de Melchor Fernández Almagro n. 3, 28029, Madrid, Spain
| | - Ana Roche Martínez
- Department of Pediatrics, Hospital Parc Tauli, Parc Taulí n. 1, 08208, Sabadell, Spain
| | - Jordi Muchart López
- Department of Radiology, Hospital Sant Joan de Déu, Pg Sant Joan De Deu Nº 2, 08950, Esplugues De Llobregat, Barcelona, Spain
| | - Àngels Garcia-Cazorla
- Inborn Errors of Metabolism Unit, Pediatric Neurology Department, Institut de Recerca Sant Joan de Déu, and MetabERN, Hospital Sant Joan de Déu, Passeig Sant Joan De Deu Nº 2, 08950, Esplugues De Llobregat, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), C. de Melchor Fernández Almagro n. 3, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Ray S, Padmanabha H, Gowda VK, Mahale R, Christopher R, Sreedharan S, Dhar D, Kamate M, Nagappa M, Bhat M, Anjanappa R, Arunachal G, Pooja M, Mathuranath PS, Chandra SR. Disorders of Tetrahydrobiopterin Metabolism: Experience from South India. Metab Brain Dis 2022; 37:743-760. [PMID: 34997870 DOI: 10.1007/s11011-021-00889-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Disorders of tetrahydrobiopterin metabolism represent a rare group of inherited neurotransmitter disorders that manifests mainly in infancy or childhood with developmental delay, neuroregression, epilepsy, movement disorders, and autonomic symptoms. METHODOLOGY A retrospective review of genetically confirmed cases of disorders of tetrahydrobiopterin metabolism over a period of three years (Jan 2018 to Jan 2021) was performed across two paediatric neurology centres from South India. RESULTS A total of nine patients(M:F=4:5) fulfilled the eligibility criteria. The genetic variants detected include homozygous mutations in the QDPR(n=6), GCH1(n=2), and PTS(n=1) genes. The median age at onset of symptoms was 6-months(range 3-78 months), while that at diagnosis was 15-months (8-120 months), resulting in a median delay in diagnosis of 9-months. The main clinical manifestations included neuroregression (89%), developmental delay(78%), dystonia(78%) and seizures(55%). Management strategies included a phenylalanine restricted diet, levodopa/carbidopa, 5-Hydroxytryphtophan, and folinic acid. Only, Patient-2 afforded and received BH4 supplementation at a sub-optimal dose later in the disease course. We had a median duration of follow up of 15 months (range 2-48 months). Though the biochemical response has been marked; except for patients with GTPCH deficiency, only mild clinical improvement was noted with regards to developmental milestones, seizures, or dystonia in others. CONCLUSION Tetrahydrobiopterin deficiencies represent a rare yet potentially treatable cause for non-phenylketonuria hyperphenylalaninemia with better outcomes when treated early in life. Screening for disorders of biopterin metabolism in patients with hyperphenylalaninemia prevents delayed diagnosis. This study expands the genotype-phenotype spectrum of patients with disorders of tetrahydrobiopterin metabolism from South India.
Collapse
Affiliation(s)
- Somdattaa Ray
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India.
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Rohan Mahale
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Shruthy Sreedharan
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Debjyoti Dhar
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Mahesh Kamate
- Division of Pediatric Neurology, K.A.H.E.R's JN medical college, Belagavi, India
| | - Madhu Nagappa
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Maya Bhat
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Rammurthy Anjanappa
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - M Pooja
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - P S Mathuranath
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| | - S R Chandra
- Department of Neurology, Neuroscience Faculty Center, National Institute of Mental Health and Neurosciences, Near Diary Circle, Hosur Road, Bengaluru, Karnataka, 560029, India
| |
Collapse
|
12
|
Havalı C, Dorum S, Ekici A, Görükmez Ö. Approaches for diagnosis and treatment in neurotransmitter disorders of childhood. Metab Brain Dis 2021; 36:2255-2262. [PMID: 34550503 DOI: 10.1007/s11011-021-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Neurotransmitter disorders are a group of neurometabolic syndromes caused by disturbances of neurotransmitter metabolism. The primary aim of this retrospective study is to present patients with disturbances of monoamine neurotransmitter metabolism. Cerebrospinal fluid (CSF) neurotransmitter measurements and genetic analysis were performed on five patients. Five patients who had various movement disorders and motor and cognitive disabilities were included. Four patients were diagnosed with sepiapterin reductase (SR) deficiency, and one was diagnosed with aromatic L-amino acid decarboxylase (AADC) deficiency. Different treatment responses appeared in patients with SR and AADC deficiency. The responses to drug treatment ranged from good to weak in our patients. The diagnosis process is challenging in patients with SR and AADC deficiency, which present similar clinical features to other neurological and metabolic diseases. Investigations of neurotransmitters in CSF and analysis of related genes are essential to differentiate disturbances of monoamine neurotransmitter metabolism from other neurometabolic diseases. For patients with monoamine neurotransmitter disorders, drugs that target these disturbances should be combined as necessary to produce the appropriate response.
Collapse
Affiliation(s)
- Cengiz Havalı
- Department of Pediatrics, Division of Neurology, Bursa Yuksek İhtisas Training and Research Hospital, 16310, Yıldırım/Bursa, Turkey.
| | - Sevil Dorum
- Department of Pediatrics, Division of Metabolism, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Arzu Ekici
- Department of Pediatrics, Division of Neurology, Bursa Yuksek İhtisas Training and Research Hospital, 16310, Yıldırım/Bursa, Turkey
| | - Özlem Görükmez
- Department of Medical Genetics, Bursa Yuksek İhtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
13
|
Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines. Nat Commun 2021; 12:5529. [PMID: 34545092 PMCID: PMC8452745 DOI: 10.1038/s41467-021-25515-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/12/2021] [Indexed: 01/04/2023] Open
Abstract
Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders. Inherited disorders of neurotransmitter metabolism represent a group of rare neurometabolic diseases characterized by movement disorders and developmental delay. Here, the authors report a standardized evaluation of a registry of 275 patients from 42 countries, and highlight an evolving phenotypic spectrum of this disease group and factors influencing diagnostic processes.
Collapse
|