1
|
Elshikha A, Ge Y, Choi SC, Park YP, Padilla L, Zhu Y, Clapp WL, Sobel ES, Mohamadzadeh M, Morel L. Glycolysis inhibition functionally reprograms T follicular helper cells and reverses lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618563. [PMID: 39464003 PMCID: PMC11507846 DOI: 10.1101/2024.10.15.618563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the production of pathogenic autoantibodies depends on T follicular helper (T FH ) cells. This study was designed to investigate the mechanisms by which inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reduces the expansion of T FH cells and the associated autoantibody production in lupus-prone mice. Integrated cellular, transcriptomic, epigenetic and metabolic analyses showed that 2DG reversed the enhanced cell expansion and effector functions, as well as mitochondrial and lysosomal defects in lupus T FH cells, which include an increased chaperone-mediated autophagy induced by TLR7 activation. Importantly, adoptive transfer of 2DG-reprogrammed T FH cells protected lupus-prone mice from disease progression. Orthologs of genes responsive to 2DG in murine lupus T FH cells were overexpressed in the T FH cells of SLE patients, suggesting a therapeutic potential of targeting glycolysis to eliminate aberrant T FH cells and curb the production of autoantibodies inducing tissue damage.
Collapse
|
2
|
Luo R, Chang D, Zhang N, Cheng Y, Ge S, Xu G. T Follicular Helper Cells in Tertiary Lymphoid Structure Contribute to Renal Fibrosis by IL-21. Int J Mol Sci 2023; 24:12535. [PMID: 37628716 PMCID: PMC10454845 DOI: 10.3390/ijms241612535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Tertiary lymphoid structure (TLS) represents lymphocyte clusters in non-lymphoid organs. The formation and maintenance of TLS are dependent on follicular helper T (TFH) cells. However, the role of TFH cells during renal TLS formation and the renal fibrotic process has not been comprehensively elucidated in chronic kidney disease. Here, we detected the circulating TFH cells from 57 IgAN patients and found that the frequency of TFH cells was increased in IgA nephropathy patients with renal TLS and also increased in renal tissues from the ischemic-reperfusion-injury (IRI)-induced TLS model. The inducible T-cell co-stimulator (ICOS) is one of the surface marker molecules of TFH. Remarkably, the application of an ICOS-neutralizing antibody effectively prevented the upregulation of TFH cells and expression of its canonical functional mediator IL-21, and also reduced renal TLS formation and renal fibrosis in IRI mice in vivo. In the study of this mechanism, we found that recombinant IL-21 could directly promote renal fibrosis and the expression of p65. Furthermore, BAY 11-7085, a p65 selective inhibitor, could effectively alleviate the profibrotic effect induced by IL-21 stimulation. Our results together suggested that TFH cells contribute to TLS formation and renal fibrosis by IL-21. Targeting the ICOS-signaling pathway network could reduce TFH cell infiltration and alleviate renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| |
Collapse
|
3
|
Curtiss ML, Rosenberg AF, Scharer CD, Mousseau B, Benavides NAB, Bradley JE, León B, Steele C, Randall TD, Lund FE. Chitinase-3-like 1 regulates T H2 cells, T FH cells and IgE responses to helminth infection. Front Immunol 2023; 14:1158493. [PMID: 37575256 PMCID: PMC10415220 DOI: 10.3389/fimmu.2023.1158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Medicine, Section of Allergy and Immunology, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Betty Mousseau
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Natalia A. Ballesteros Benavides
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - John E. Bradley
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Beatriz León
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - Troy D. Randall
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Frances E. Lund
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
4
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
5
|
Schmitt EG, Toth KA, Risma SI, Kolicheski A, Saucier N, Berríos RJF, Greenberg ZJ, Leiding JW, Bleesing JJ, Thatayatikom A, Schuettpelz LG, Edwards JR, Vogel TP, Cooper MA. A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice. JCI Insight 2022; 7:162695. [PMID: 36136607 PMCID: PMC9675480 DOI: 10.1172/jci.insight.162695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) represent a group of disorders characterized by immune dysregulation, presenting with a wide range of clinical disease, including autoimmunity, autoinflammation, or lymphoproliferation. Autosomal dominant germline gain-of-function (GOF) variants in STAT3 result in a PIRD with a broad clinical spectrum. Studies in patients have documented a decreased frequency of FOXP3+ Tregs and an increased frequency of Th17 cells in some patients with active disease. However, the mechanisms of disease pathogenesis in STAT3 GOF syndrome remain largely unknown, and treatment is challenging. We developed a knock-in mouse model harboring a de novo pathogenic human STAT3 variant (p.G421R) and found these mice developed T cell dysregulation, lymphoproliferation, and CD4+ Th1 cell skewing. Surprisingly, Treg numbers, phenotype, and function remained largely intact; however, mice had a selective deficiency in the generation of iTregs. In parallel, we performed single-cell RNA-Seq on T cells from STAT3 GOF patients. We demonstrate only minor changes in the Treg transcriptional signature and an expanded, effector CD8+ T cell population. Together, these findings suggest that Tregs are not the primary driver of disease and highlight the importance of preclinical models in the study of disease mechanisms in rare PIRD.
Collapse
Affiliation(s)
- Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Samuel I. Risma
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology and Immunology
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology and Immunology
| | | | - Zev J. Greenberg
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland.,Infectious Diseases and Immunology, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Jack J. Bleesing
- Division of BM Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Laura G. Schuettpelz
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology and Immunology,,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
7
|
Nutt SL, Tellier J. Bhlhe40: Gatekeeper of the GC. J Exp Med 2022; 219:e20212333. [PMID: 34940789 PMCID: PMC8711044 DOI: 10.1084/jem.20212333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The generation of high-affinity antibodies in the germinal center (GC) requires interplay between GC B cells and T follicular helper cells. Rauschmeier et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211406) report that Bhlhe40 restrains GC output through distinct regulatory roles in both arms of the response.
Collapse
Affiliation(s)
- Stephen L. Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|