1
|
Yu Y, Lien W, Lin W, Pan Y, Huang S, Mou C, Hu CJ, Mou KY. High-Affinity Superantigen-Based Trifunctional Immune Cell Engager Synergizes NK and T Cell Activation for Tumor Suppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310204. [PMID: 38937984 PMCID: PMC11434130 DOI: 10.1002/advs.202310204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/14/2024] [Indexed: 06/29/2024]
Abstract
The development of immune cell engagers (ICEs) can be limited by logistical and functional restrictions associated with fusion protein designs, thus limiting immune cell recruitment to solid tumors. Herein, a high affinity superantigen-based multivalent ICE is developed for simultaneous activation and recruitment of NK and T cells for tumor treatment. Yeast library-based directed evolution is adopted to identify superantigen variants possessing enhanced binding affinity to immunoreceptors expressed on human T cells and NK cells. High-affinity superantigens exhibiting improved immune-stimulatory activities are then incorporated into a superantigen-based tri-functional yeast-display-enhanced multivalent immune cell engager (STYMIE), which is functionalized with a nanobody, a Neo-2/15 cytokine, and an Fc domain for tumor targeting, immune stimulation, and prolonged circulation, respectively. Intravenous administration of STYMIE enhances NK and T cell recruitment into solid tumors, leading to enhanced inhibition in multiple tumor models. The study offers design principles for multifunctional ICEs.
Collapse
Affiliation(s)
- Yao‐An Yu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Doctoral Degree Program of Translational MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei112Taiwan
| | - Wan‐Ju Lien
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Wen‐Ching Lin
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Yi‐Chung Pan
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Sin‐Wei Huang
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Chung‐Yuan Mou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Ming Jack Hu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
- Doctoral Degree Program of Translational MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei112Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
2
|
Nanda N, Alphonse MP. From Host Defense to Metabolic Signatures: Unveiling the Role of γδ T Cells in Bacterial Infections. Biomolecules 2024; 14:225. [PMID: 38397462 PMCID: PMC10886488 DOI: 10.3390/biom14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The growth of antibiotic-resistant bacterial infections necessitates focusing on host-derived immunotherapies. γδ T cells are an unconventional T cell subset, making up a relatively small portion of healthy circulating lymphocytes but a substantially increased proportion in mucosal and epithelial tissues. γδ T cells are activated and expanded in response to bacterial infection, having the capability to produce proinflammatory cytokines to recruit neutrophils and clear infection. They also play a significant role in dampening immune response to control inflammation and protecting the host against secondary challenge, making them promising targets when developing immunotherapy. Importantly, γδ T cells have differential metabolic states influencing their cytokine profile and subsequent inflammatory capacity. Though these differential metabolic states have not been well studied or reviewed in the context of bacterial infection, they are critical in understanding the mechanistic underpinnings of the host's innate immune response. Therefore, this review will focus on the context-specific host defense conferred by γδ T cells during infection with Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
de Lima JF, Teixeira FME, Ramos YÁL, de Carvalho GC, Castelo Branco ACC, Pereira NV, Sotto MN, Aoki V, Sato MN, Orfali RL. Outlining the skin-homing and circulating CLA +NK cells in patients with severe atopic dermatitis. Sci Rep 2024; 14:2663. [PMID: 38302650 PMCID: PMC10834414 DOI: 10.1038/s41598-024-53224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Atopic dermatitis (AD) is a complex, multifactorial skin disease, characterized by pruritus and predominant Th2 inflammation. Innate immune cells may play a role in AD development and are composed of granulocytes, macrophages, innate-like T cells, and innate lymphoid cells. This study investigates the phenotypic and functional profile of circulating CLA+ natural killer (NK) cells and its role in the skin-homing to NK cells infiltrated in adults' skin with AD. We selected 44 AD patients and 27 non-AD volunteers for the study. The results showed increased frequencies of both CLA+CD56bright and CLA+CD56dim NK cell populations in the peripheral blood, mainly in severe AD patients. Upon SEB stimulation, we observed an augmented percentage of CLA+CD56dim NK cells expressing CD107a, IFN-γ, IL-10, and TNF, reinforcing the role of staphylococcal enterotoxins in AD pathogenesis. Additionally, we demonstrated increased dermal expression of both NK cell markers NCAM-1/CD56 and pan-granzyme, corroborating the skin-homing, mostly in severe AD. Further studies are necessary to elucidate the potential role of NK cells in the chronification of the inflammatory process in AD skin, as well as their possible relationship with staphylococcal enterotoxins, and as practicable therapeutic targets.
Collapse
Affiliation(s)
- Josenilson Feitosa de Lima
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Yasmim Álefe Leuzzi Ramos
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Gabriel Costa de Carvalho
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Anna Claudia Calvielli Castelo Branco
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Naiura Vieira Pereira
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Mírian Nacagami Sotto
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Valéria Aoki
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Maria Notomi Sato
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil
| | - Raquel Leao Orfali
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies (LIM-56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 3o. andar ICHC, Sala 3016, Cerqueira Cesar, Sao Paulo, SP, 05403-002, Brazil.
| |
Collapse
|
4
|
Xie X, Karakoese Z, Ablikim D, Ickler J, Schuhenn J, Zeng X, Feng X, Yang X, Dittmer U, Yang D, Sutter K, Liu J. IFNα subtype-specific susceptibility of HBV in the course of chronic infection. Front Immunol 2022; 13:1017753. [PMID: 36311794 PMCID: PMC9616162 DOI: 10.3389/fimmu.2022.1017753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health problem worldwide and remains hard to be cured. Therapy with interferon (IFN) α is an important method for the clinical treatment of chronic hepatitis B. IFNα exhibits direct antiviral effects as well as immunomodulatory activities, which can induce sustained antiviral responses in part of the treated chronic hepatitis B patients. Numerous IFNα subtypes with high sequence identity between 76-96% exist which are characterized by diverse, non-redundant biological activities. Our previous studies have demonstrated that the clinically approved IFNα2 is not the most effective subtype for the anti-HBV treatment among all IFNα subtypes. So far very little is known about the IFNα subtype expression pattern during early HBV infection and the IFNα subtype-specific susceptibility during persistent HBV infection as well as its related cellular mechanism. Here we determined the Ifna subtype mRNA expression during acute and chronic HBV infection by using the well-established hydrodynamic injection (HDI) mouse model and we revealed a transient but strong expression of a panel of Ifna subtypes in the spleen of HBV persistent replication mice compared to HDI controls. Immunotherapy with distinct IFNα subtypes controlled chronic HBV infection. IFNα subtype-mediated antiviral response and immune activation were comprehensively analyzed in an AAV-HBV persistent infection murine model and murine IFNα2 was identified as the most effective subtype in suppression of HBV replication. Further analysis of the immune response revealed a strong immunomodulatory activity of murine IFNα2 on splenic and intrahepatic NK and T cell activation during persistent HBV infection. Taken together, our data provide IFNα subtype-specific differences in the antiviral and immunomodulatory effector responses and a strong expression of all IFNα subtypes in the spleen during persistent HBV infection in mice. This knowledge will support the development of novel immunotherapeutic strategies for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Xiaohong Xie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zehra Karakoese
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dilhumare Ablikim
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Julia Ickler
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jonas Schuhenn
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kathrin Sutter, ; Jia Liu,
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kathrin Sutter, ; Jia Liu,
| |
Collapse
|
5
|
Karakoese Z, Schwerdtfeger M, Karsten CB, Esser S, Dittmer U, Sutter K. Distinct Type I Interferon Subtypes Differentially Stimulate T Cell Responses in HIV-1-Infected Individuals. Front Immunol 2022; 13:936918. [PMID: 35911692 PMCID: PMC9326074 DOI: 10.3389/fimmu.2022.936918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022] Open
Abstract
The expression of type I interferons (IFNs) is one of the immediate host responses during most viral infections. The type I IFN family consists of numerous highly conserved IFNα subtypes, IFNβ, and some others. Although these IFNα subtypes were initially believed to act interchangeably, their discrete biological properties are nowadays widely accepted. Subtype-specific antiviral, immunomodulatory, and anti-proliferative activities were reported explained by differences in receptor affinity, downstream signaling events, and individual IFN-stimulated gene expression patterns. Type I IFNs and increased IFN signatures potentially linked to hyperimmune activation of T cells are critically discussed for chronic HIV (human immunodeficiency virus) infection. Here, we aimed to analyze the broad immunological effects of specific type I IFN subtypes (IFNα2, IFNα14, and IFNβ) on T and NK cell subsets during HIV-1 infection in vitro and ex vivo. Stimulation with IFNα14 and IFNβ significantly increased frequencies of degranulating (CD107a+) gut-derived CD4+ T cells and blood-derived T and NK cells. However, frequencies of IFNγ-expressing T cells were strongly reduced after stimulation with IFNα14 and IFNβ. Phosphorylation of downstream molecules was not only IFN subtype-specific; also, significant differences in STAT5 phosphorylation were observed in both healthy peripheral blood mononuclear cells (PBMCs) and PBMCs of HIV-infected individuals, but this effect was less pronounced in healthy gut-derived lamina propria mononuclear cells (LPMCs), assuming cell and tissue specific discrepancies. In conclusion, we observed distinct type I IFN subtype-specific potencies in stimulating T and NK cell responses during HIV-1-infection.
Collapse
Affiliation(s)
- Zehra Karakoese
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Mara Schwerdtfeger
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina B. Karsten
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Department of Dermatology and Venerology, University Medicine Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Ulf Dittmer, ; Kathrin Sutter,
| | - Kathrin Sutter
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Ulf Dittmer, ; Kathrin Sutter,
| |
Collapse
|